用户名: 密码: 验证码:
基于冻融界面强度损伤的季冻区土质边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国季节性冻土地区占到了国土面积的53.5%,土体结构在该地区特殊的气候条件下,自身强度会发生变化。土质边坡作为道路重要的附属结构,其稳定性是保证道路安全运营的前提。季节冰冻地区土质边坡春融期经常发生浅层滑坡,土坡融化过程中融化土体与冻结土体间形成滞水润滑界面,并构成发生滑坡灾害的薄弱界面。本文设计特殊方法实现冻融界面,并以该界面强度试验作为基础展开该类土坡的稳定性分析,研究结论具有一定的理论和应用价值。
     本文是国家高技术研究发展计划(863计划)《季节冰冻区大范围道路灾害参数监测与辨识预警系统研究》项目(2009AA11Z104)中的一部分,主要的工作内容如下:
     1.改进试验方法,选用同一种土样分别添加1%盐水和普通水进行配比,按体积比1:1压实制作试件,并在? 3°C的试验温度下实现冻融界面。针对冻融界面进行剪切强度试验,并比较冻融界面强度与普通土试样的强度差异;
     2.结合边坡稳定性的主要影响参数,进行冻融界面土体抗剪强度损伤研究,鉴于季节冰冻区特有的气候特点,提出抗剪强度随冻融循环的损伤模型,给出抗剪强度参数粘聚力c及内摩擦角?值折减分析;
     3.通过土坡失稳时临界深度的损伤试验研究了冻融界面存在的边坡,其界面破坏形态及滑坡的临界深度,提出经历冻融循环前后该类边坡滑动面深度的损伤模型,并给出应对该类滑坡的措施;
     4.运用连续介质显式拉格朗日有限差分法,模拟土质边坡融化过程中其内部的塑性区分布特征和剪应变增量的发展趋势,分析季节冰冻地区正融土质边坡的最不利受力位置及其破坏形式,模拟结果有一定的实际意义。
Since the reform and opening up more than 30 years, the economic construction of China reaches rapid development stage. All kinds of modern construction such as water conservancy, hydropower facilities, high-speed railway and highways and others have been developed unprecedentedly. During the project construction process, a large number of slope engineering is inevitably set up. Soil slope is one of the main parts of the road engineering. The stability of the slope is an essential prerequisite to ensure the safe operation of road transport. In seasonal frozen regions, shallow landslide hazards in soil slopes usually happen, which pose a serious threat to road safety operations. During the melting process, there forms stagnant water lubrication between the melting soil and freezing soil interface, which constitutes the weak interface of landslide hazard. This paper designs special methods to form the freezing– thawing (F-T) surface, and takes consider the interface strength as the foundation of experimental tests, then opening to research the soil slope stability. The conclusions of the paper present certainly well theoretical and applied value.
     This paper is one important part of the National High Technology Research and Development Programs (863 Project). The main content of the paper is as follow:
     1. Theoretical analysis on soil slope stability based on damage of F-T surface strength.
     Combined with slope stability limit equilibrium analysis methods, put forward the soil slope stability analysis, which based on the mechanical properties test of the silty clay of seasonal frozen regions, considers shear strength of the F-T surface soil under changes in F-T cycles as well as water content. The region that meet the seasonal frozen soil slope stability factor of safety of modified methods, give regional stability analysis approach. Coefficient amendment of the aim soil slope stability safety factor is put forward, which presents a new approach to the soil slope stability analysis in seasonal frozen regions.
     2. Experimental test analysis based on the F-T surface
     (1) Improved testing methods, and obtained the F-T surface
     In view of the physical properties that the freezing point of salt water is below the ordinary water, based on which designing the special model tests. Select the same soil and add 1% ratio salt water and normal water separately. Then the compacting specimens are produced by soil volume ratio 1:1. At the temperature of ? 3°C , we get the F-T surface in the middle of the specimen, and achieve the innovation on the experiment method. Focused on the F-T surface, the shear strength parallel tests are carried out. The experimental tests results demonstrate that, the shear strength of the F-T surface is lower than the normal soil surface of the specimen, and the data ratio is about 70%. This indirectly proves that the F-T surface is a weak interface soil slope.
     (2) Combined with the affecting parameters to the soil slopes stability, carry out the research on strength deterioration of the freeze-thaw surface soil.
     The main affecting parameter of the soil slopes is the shear strength of the soil. Considering the affecting factor of shear strength is water content and F-T cycles times, so the shear strength of F-T surface soil with the factors is analyzed. The test results illustrated that the shear strength of freeze - thaw surface soil deteriorates with the increasing of water content and F-T cycles times significantly. Further more, the water content of the soil reflects more deteriorating affect. With the accumulation of the F-T cycles times, its impact to the shear strength is tends to ease. Considering the specific climate characteristics in seasonal frozen regions, the F-T surface shear strength deterioration model is put forward against the F-T cycles times. It can reflect true state of the melting soil slope, the interface shear strength deterioration within the F-T cycles. The results could present data support to the slope stability analysis in seasonal frozen regions.
     (3) Based on the shear strength parameters test results, put forward the experimental research on the shear strength parameters between the F-T surface of soil slope in seasonal frozen regions.
     Parameter reduction method is usually adopted in the soil slope stability analysis. Based on the results of the shear strength tests about the F-T surface, concluded that the shear strength parameters c and ? decrease with the increasing of water content and F-T cycle times. The impacts with the water content increases flatten gradually. At the same time, generalize the coupling number function of the water content and the freeze-thaw. The function shows that water content of the soil affects more significantly. Then put forward the parameter reduction models on the F-T surface of cohesion c and friction angel? , separately, which could present the data support to the analysis of the same type soil slope by parameter reduction method.
     (4) Based on the shear strength reduction models of F-T surface, put forward the experimental research on the critical depth deterioration of the soil slope in seasonal frozen regions.
     Combined with the F-T surface shear strength deterioration model, design the critical depth deterioration model test of the soil slope. Research the failure mode and the critical slide depth under different F-T times. The results demonstrate when the soil slope gets instability occurred during the spring melt period of destruction, the critical depth of specimens that contains F-T surface is lower than the normal soil slope. It demonstrates when failure occurred in the area, the slope slip surface is the F-T surface, and the type is shallow landslide.
     When slope sliding occurs, the slide surface is different from the normal curve style, but it is a region such as approximately rectangular body, and slip surface is approximately a plane. The slide surface is just the F-T surface. Test load - displacement curve compared reveals the damage process soil specimen well. The results reveal that as the more water content, and the smaller of the critical slip depth. As water content ranges from 16% to 21%, the depth of the critical slip decreases 43.2%, considering the seepage and water added, the injuries will be further intensified. Based on test results, the deterioration model of the critical sliding surface depth is put forward, which could provide a basis to a seasonal frozen regions roads slope for monitoring and optimization.
     3. Numerical simulation analysis of the soil slope stability during the melting process.
     (1) Based on the Finite Difference Method, set up the numerical simulation model, and analysis the soil slope stability.
     Apply Fast Lagrangian Analysis of Continua methods, combined the interaction of temperature, soil gravity and seepage, set up the numerical simulation model of seasonal frozen soil slope model.
     Self-compiled Fish programming to achieve the internal temperature gradient and set the seepage gradient into the slope model, simulate the melting process of the slope. Adopt the Mohr - Coulomb Model as the constitutive model of soil. The simulation results show that in the limit state, the failure modes of melting sliding soil slope of the seasonal frozen regions are as follows: near the top of the slope the slip surface is approximately parallel to the slope of the plane, just the bottom slip surface of the slope is as a circular surface. If the temperature in the slope is distributed well, the soil slope could adopt the unlimited slope analysis methods. The slope possesses big ratio between surface length and critical slide surface.
     According to the plastic zone distribution and shear strain increment of the development trend of the soil slope inside, determine the failure mode of the seasonal frozen regions slope and the position. Sliding occurs in 0℃soil region, the soil temperature under the sample is lower than 0℃. The sliding occurred in the F-T interface area. Verify initial judge of the F-T surface is the weak interface of slope in the melting process. The simulation results could provide numerical reference for the soil slope stability analysis in the regions.
     (2) Comparative simulate various factors influencing on the slope stability
     Consider F-T cycles and soil moisture as the main factors affecting slope stability. Pull in F-T surface shear strength of the test as a strength reduction factor input of damage parameter. Through analyzing the safety factors of interface under the critical state in F-T soil slope, simulate the F-T cycles and water content affect on the slope stability. The results demonstrate that, as the F-T cycle times and water content increasing, the safety factor of the slope get bigger. It illustrates the strength of the soil changed, resulting in a higher factor of safety conditions, has been formed inside the plastic shear strain through the damaged area and instability occurs. Comparing simulation results with the experimental results to verify the F-T cycles and water content increased, soil structure, slope stability was reduced, and the influence of water content is more apparent.
     The content of the research plays an important role in exploration results in both theoretical and experimental methods of the seasonal frozen soil slope stability analysis. The results of the research have some practical significance, and lay the foundation for designing and monitoring of the future practical engineering.
引文
[1]陈祖煜.土质边坡稳定性分析—原理·方法·程序[M].中国水利水电出版社,北京, 2003.
    [2]郑颖人.边坡与滑坡工程治理[M].人民交通出版社,北京, 2007.
    [3]徐邦栋.滑坡分析与防治[M].中国铁道出版社,北京, 2001.
    [4]姜德义.边坡稳定性分析与滑坡防治[M].重庆大学出版社, 2005.
    [5]吴玮江等.季节性冻结滞水促滑效应——滑坡发育的一种新因素[J].冰川冻土, 1997, 19(4): 62– 68.
    [6]丑亚玲,盛煜,马巍.多年冻土区道路边坡热状况差异对多年冻土融化形态的影响[J].冰川冻土, 2007, 29(6): 977– 985.
    [7]张永兴.边坡工程学[M].中国建筑工业出版社,北京, 2008.
    [8]陈玉超,杨更社,范建兵.寒区边坡冻融灾害及其分类探讨[J].山西建筑, 2006, 32(14): 82– 83.
    [9] Terzaghi. Mechanisms of landslides [J]. Geological Society of America (Berdey) Volume, 1950: 83 - 123.
    [10] Bishop, A. The use of the slip circle in the stability analysis of slope, Geo- technique, 1955, 5(1): 7– 17.
    [11] Skempton A.W. Long-term stability of clay slopes [J]. Geo-technique, 1964, 14 (02): 77– 101.
    [12] Q. Zaruba, V. Mencl. Landslide and their control [M]. Prague: Czechoslovakia academy of sciences press, 1969.
    [13]丁桦,张均锋等.关于边坡稳定分析的通用条分法的探讨[J].岩石力学与工程学报, 2004, 32(21):3684– 3688.
    [14] Fellenius W. 1927, Erdstarisch Berechnungen, Berlin W. Ernst and Sohn revised edition, 1939.
    [15] Bishop, A.W. The used of the slip circle in the Stability analysis of slopes [J]. Geotechnique, 1955, 5(1): 7– 17.
    [16] Spencer E. A method of analysis of embankments assuming parallel inter-slice forces [J]. Geotechnique, 1967, 17(1): 121– 153.
    [17] Janbu, N. Application of composite slip surfaces for stability analysis [C]. Proceedings of European Conference on Stability of Earth Slopes. Sweden, 1954, 43– 49.
    [18] Morgenstern, N. R. The analysis of the stability of general slip surface [J]. Geotechnique, 1965, 15(1):79– 93.
    [19] R. Baker, R. Shukha. Stability charts for pseudo-static slope stability analysis [J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 813– 823.
    [20] Amit Srivastava, G. L. Sivakumar Babu. Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis [J]. Engineering Geology, 2010, 110: 93– 101.
    [21] Azm S. Al-Homoud, Najat Tanash. Modeling uncertainty in stability analysis for design of embankment dams on difficult foundations [J]. Engineering Geology, 2004, 71: 323– 342.
    [22] Maceo-Giovanni Angeli, Alessandro Pasuto. Towards the definition of slope instability behaviour in the Alvera mudslide (Cortina d’Ampezzo, Italy) [J]. Geomorphology. 1999, 30: 201– 211.
    [23] Gilson Gitirana Jr, Delwyn G. Fredlund. Analysis of Transient Embankment Stability Using the Dynamic Programming Method [C]. 56th Canadian Geotechnical Conference, 2003.
    [24] K. M. Neaupane, M. Piantanakulchai. Analytic network process model for landslide hazard zonation [J]. Engineering Geology, 2006, 85: 281– 294.
    [25] Ha T.V. Pham, Delwyn G. Fredlund. The application of dynamic programming to slope stability analysis [J]. Canada Geotech Journal, 2003, 40: 830– 847.
    [26] R.Suchomel, D. Masìn. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c–φsoil [J]. Computers and Geotechnics, 2010, 37: 132– 140.
    [27] Jing-Cai Jiang, Takuo Yamagami. Charts for estimating strength parameters from slips in homogeneous slopes [J]. Computers and Geotechnics, 2006, 33: 294– 304.
    [28] Robert W. Day. Surficial Slope Failures: A Case Study [J]. Journal of Performance of Constructed Facilities, 1993, 7 (4): 264– 269.
    [29] Robert W. Day. Design and Repair for Surficial Slope Failures [J]. Practice Periodical on Structural Design and Construction, 1996, 3: 83– 87.
    [30] Quentin B. Travis, Sandra L. Houston. Unsaturated Infinite Slope Stability Considering Surface Flux Conditions [J]. Journal of Geotechnical and Geo- environmentalEngineering, 2009, 4.
    [31] Gens A., Hutchison J. N., Cavounidis S. Three dimensional analysis of slices in cohesive soils [J]. Geotechnique, 1988, 38: 1-23.
    [32] Hong Yang, David J. White. In-Situ Borehole Shear Test and Rock Borehole Shear Test for Slope Investigation [C]. Site and Geomaterial Characterization (GSP 149), 2006.
    [33] D. V. Griffiths, Jinsong Huang, Gordon A. Fenton. Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 1367– 1378.
    [34] Y. M. Cheng, T. Lansivaara. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods [J]. Computers and Geotechnics, 2007, 34: 137– 150.
    [35] T. Tanchaisawat, D. T. Bergado. Numerical simulation and sensitivity analyses of full-scale test embankment with reinforced lightweight geomaterials on soft Bangkok clay [J]. Geotextiles and Geomembranes, 2008, 26: 498– 511.
    [36] Amit Srivastava, G. L. Sivakumar Babu. Effect of Spatial Variation of Soil Properties on the Slope Stability Analysis [C]. Geocongress 2008: Characterization, Monitoring, and Modeling of Geosystems.
    [37] Aniruddha Sengupta, Anup Upadhyay. Locating the critical failure surface in a slope stability analysis by genetic algorithm [J]. Applied Soft Computing, 2009, 9: 387– 392.
    [38] Sung Eun Cho. Probabilistic stability analyses of slopes using the ANN-based response surface [J]. Computers and Geotechnics, 2009, 36: 787– 797.
    [39] K. S. Kahatadeniya, P. Nanakorn, K. M. Neaupane. Determination of the critical failure surface for slope stability analysis using ant colony optimization [J]. Engineering Geology, 2009, 108: 133– 141.
    [40] Zienkiewicz, C. Humpheson and R. W. Lewis. Associated and Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics [J]. Geotechnique, 1975, 25, 617– 689.
    [41] Harry M. Blijenberg. Application of physical modelling of debris flow triggering to field conditions: Limitations posed by boundary conditions [J]. Engineering Geology, 2007, 91: 25– 33.
    [42] Jilin Qi, Wei Ma, Chunxia Song. Influence of freeze–thaw on engineering properties of a silty soil [J]. Cold Regions Science and Technology, 2008, 53: 397– 404.
    [43] Willy A. Lacerda. Landslide initiation in saprolite and colluvium in southern Brazil:Field and laboratory observations [J]. Geomorphology, 2007, 87: 104– 119.
    [44] Norikazu Matsuoka. Solifluction rates, processes and landforms: a global review [J]. Earth-Science Reviews, 2001, 55: 107– 134.
    [45] Charles Harris, James S. Smith, Michael C. R. Davies, Brice Rea. An investigation of periglacial slope stability in relation to soil properties based on physical modelling in the geotechnical centrifuge [J]. Geomorphology, 2008, 93: 437– 459.
    [46] Carlo Colesanti. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique [J]. Engineering Geology, 2003, 88: 173– 199.
    [47] Kang-Tsung Chang, Shou-Hao Chiang. An integrated model for predicting rainfall-induced landslides [J]. Geomorphology, 2009, 105: 366– 373.
    [48] Michael G. Ferrick, Lawrence W. Gatto, Steven A. Grant. Soil Freeze– Thaw Effects on Bank Erosion and Stability: Connecticut River Field Site, Norwich, Vermont [R]. ERDC/CRREL TN-05-7, 2005.
    [49] Kate M. Swanger, David R. Marchant. Sensitivity of ice-cemented Antarctic soils to greenhouse-induced thawing: Are terrestrial archives at risk? [J]. Earth and Planetary Science Letters, 2007, 259: 347– 359.
    [50] Sally Shoop, Rosa Affleck, Robert Haehnel, Vincent Janoo. Mechanical behavior modeling of thaw-weakened soil [J]. Cold Regions Science and Technology, 2008, 52: 191– 206.
    [51]黄梦宏,丁桦等.边坡稳定性分析极限平衡法的简化条件[J]岩石力学与工程学报, 2006, 25 (12) : 2529– 2536.
    [52]赵尚毅,郑颖人等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报, 2002, 24 (3) : 343– 346.
    [53]夏元友,李梅等.边坡稳定性评价方法研究及发展趋势[J].岩石力学与工程学报, 2002, 21(7):1087– 1091.
    [54]郑颖人,赵尚毅等.有限元强度折减法研究进展[J].后勤工程学院学报, 2005, 3 : 1– 6.
    [55]张国祥,刘宝琛等.潜在滑移线法分析边坡滑动面及稳定性[J].土木工程学报, 2002, 35(6):82– 85.
    [56]张春笋,吴进良等.边坡荷载作用下的边坡稳定性[J].重庆交通大学学报(自然科学版), 2009, 28(3):569– 572.
    [57]杨京方,曹永华等.边坡稳定问题的基本方程[J].武汉大学学报(工学版), 2008, 41(Supp) : 10– 13.
    [58]陈祖煜,汪小刚等.边坡稳定分析最大原理的理论分析和试验验证[J].岩土工程学报, 2005, 27 (5) : 495– 499.
    [59]陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报, 2002, 24 (1) : 1– 11.
    [60]张培文,陈祖煜.弹性模量和泊松比对边坡稳定安全系数的影响[J].岩土力学, 2006, 27 (2) : 299– 303.
    [61]周桂云,李同春.边坡稳定分析的自适应性局部网格加密解法[J].岩土力学, 2007, 28 (Supp) : 398– 402.
    [62]姜朋明,盛欢等.边坡极限承载力的严密解[J].工程力学, 2009, 26(Supp1): 77– 80.
    [63]李亮,陈祖煜等.基于NURBS表示的三维土坡稳定分析[J].岩土工程学报, 2008, 30 (2) : 212– 218.
    [64]顾晓强,陈龙珠.边坡稳定分析的三维极限平衡法[J].上海交通大学学报, 2007, 41 (6) : 970– 974.
    [65]张均锋.三维简化法分析边坡稳定性的扩展[J].岩石力学与工程学报, 2004, 23(17):2876– 2881.
    [66]张均锋,王思莹,祈涛.边坡稳定分析的三维Spencer法[J].岩石力学与工程学报, 2005, 24(19):3434– 3440.
    [67]孙书伟,朱本珍,马惠民.典型顺层高边坡工程病害的地质力学模型试验研究[J].岩土工程学报, 2008, 30 (9) : 1349– 1355.
    [68]肖江,高喜才.复杂地质条件下露天矿边坡稳定的相似模型研究[J].岩石力学与工程学报, 2006, 25(Supp2):3661– 3666.
    [69]张玉成,杨光华.土质边坡土体抗剪强度室内外试验研究[J].湖南科技大学学报(自然科学版), 2007, 22(3):45– 49.
    [70]任伟中,陈浩.滑坡变形破坏机理和整治工程的模型试验研究[J].岩石力学与工程学报, 2005, 24(12):2136– 2141.
    [71]李春忠,陈国兴,樊有维.基于ABAQUS的强度折减有限元法边坡稳定性分析[J].防灾减灾工程学报, 2006, 26(2):207– 212.
    [72]王栋,金霞.考虑强度各向异性的边坡稳定有限元分析[J].岩土力学, 2008, 29(3):667– 672.
    [73]曹兴松,周德培.边坡开挖影响范围和潜在滑面的研究[J].岩石力学与工程学报, 2004, 23(17):2882– 2886.
    [74]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[J].岩石力学与工程学报, 2003, 22(10):1761.
    [75]林忠明,陈忠辉,王家臣.眼前山铁矿边坡稳定性模拟与损伤分析[J].岩石力学与工程学报, 2002, 21(Supp2):2393– 2398.
    [76]王志伟,王庚荪.裂隙性粘土边坡渐进性破坏的FLAC模拟[J].岩土力学, 2005, 26(10):1637– 1640.
    [77]马苹林,朱明,王建华.有限差分法FLAC在边坡稳定性分析中的应用[J].中国矿山工程, 2008, 37(5):19– 22.
    [78]张雪东,陈剑平,黄润秋等.呷爬滑坡稳定性的FLAC-3D数值模拟分析[J].岩土力学, 2003, 24(Supp1):113– 116.
    [79]李新平,郭运华,彭元平等.基于FLAC3D的改进边坡极限状态确定方法[J].岩石力学与工程学报, 2005, 24(Supp.2):5287– 5291.
    [80]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报, 2004, 26 (1) : 42– 46.
    [81]刘娉慧,房后国等. FLAC强度折减法在边坡稳定性分析中的应用[J].华北水利水电学院学报, 2007, 28 (5) : 52– 55.
    [82]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报, 2003, 23 (3) : 1– 8.
    [83]李红,宫必宁,陈琰.有限元强度折减法边坡失稳判据[J].水利与建筑工程学报, 2003, 23 (3) : 79– 82.
    [84]曹先锋,徐千军.边坡稳定分析的温控参数折减有限元法[J].岩土工程学报, 2006, 28 (11) : 2039– 2042.
    [85]廖红建,姬建,曾静.考虑饱和-非饱和渗流作用的土质边坡稳定性分析[J].岩土力学, 2008, 29(12):3230– 3235.
    [86]薛新华,张我华,刘红军.基于遗传算法和模糊神经网络的边坡稳定性评价[J].岩土力学, 2007, 28(12):2643– 2648.
    [87]于子国,杨子荣,宋国新.基于遗传–神经网络的边坡稳定性评价模型[J].辽宁工程技术大学学报(自然科学版), 2005, 24(Supp.1): 23– 25.
    [88]杨蕾,林红.混合遗传神经网络在边坡稳定性评价中的应用研究[J].中国农村水利水电, 2006, 7: 77– 79.
    [89]黄涛,罗喜元等.地表水入渗环境下边坡稳定性的模型试验研究[J].岩石力学与工程学报, 2004, 23(16):2671– 2675.
    [90]赵艳,郭明珠等.水对边坡稳定性的影响及边坡的加固措施分析[J].工业建筑, 2006, 36(Supp): 758– 760.
    [91]刘才华,陈从新等.地下水对库岸边坡稳定性的影响[J].岩土力学, 2005, 26 (3) : 419– 422.
    [92]樊有维,章羽等.降雨对均质各向异性土质边坡稳定性的影响[J].岩土力学, 2006, 27 (Supp.) : 1097– 1102.
    [93]黄茂松,贾苍琴.考虑非饱和非稳定渗流的土坡稳定分析[J].岩土工程学报, 2006, 28 (2) : 202– 206.
    [94]田东方,刘德富等.土质边坡非饱和渗流场与应力场耦合数值分析[J].岩土力学, 2009, 30 (3) : 810– 814.
    [95]徐东强,姜芳禄等.渗流作用下边坡最危险圆弧滑面的优化解[J].工程力学, 2005, 22 (5) : 214– 217.
    [96]刘红军,王丕祥.公路土质边坡冻融失稳稳定性分析[J].哈尔滨工业大学学报, 2006, 38(5):764– 766.
    [97]姚晓亮等.冻融作用对青藏粘土工程性质的影响[J].冰川冻土, 2008, 30(1): 165– 169.
    [98]陈玉超.冻融环境下岩土边坡穗定性研究初探[D].西安:西安科技大学, 2006.
    [99]单炜,刘红军等.季冻区土质路堑边坡浅层含水率变化研究[J].岩土力学, 2008, 29(Supp.):335– 340.
    [100]韩继国,王选仓等.季节性冰冻地区公路边坡侵蚀破坏模式[J].长安大学学报(自然科学版), 2008, 28(1):41– 45.
    [101]靳德武,孙剑锋,付少兰.青藏高原多年冻土区两类低角度滑坡灾害形成机理探讨[J].岩土力学, 2005, 26 (5): 774– 778.
    [102]靳德武.青藏高原多年冻土区斜坡稳定性研究.西安:长安大学, 2004.
    [103]齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报, 2003, 22(Supp.2):2690– 2694.
    [104]宋春霞,齐吉琳,刘奉银.冻融作用对兰州黄土力学性质的影响[J].岩土力学, 2008, 29 (4): 1077– 1081.
    [105]吴玮江.季节性冻结滞水促滑效应–滑坡发育的一种新因素[J],冰川冻土,1997, 19(4) : 359– 365.
    [106]许珊珊,高伟.寒区公路路堑边坡抗冻融稳定性分析[J].低温建筑技术, 2006, 2: 10– 12.
    [107]王彩霞,马春林.冻土地区路堑边坡溜方原因分析与稳定性验算方法[J].东北公路, 2001, 24(1): 35– 37.
    [108]牛富俊,程国栋,赖远明,靳德武.青藏高原多年冻土区热融滑塌型斜坡失稳研究[J].岩土工程学报, 2006, 28 (11) : 402– 406.
    [109]徐江,杨更社,刘慧.基于蒙特卡洛模拟法的冻土边坡可靠度评价[J].地下空间与工程学报, 2007, 3 (8) : 1433– 1437.
    [110]李杨.季节冻土水分迁移模型研究[D].长春:吉林大学, 2008.
    [111]冯勇,何建新,刘亮,杨力行.冻融循环作用下细粒土抗剪强度特性试验研究[J].冰川冻土,2008, 30(6) : 1013– 1017.
    [112]吴海燕.模拟冻融界面的冻土模型实验研究[D].成都:西南交通大学, 2004.
    [113]陈波等.土质路堑边坡冻融滑塌机理及稳定性分析[J].黑龙江交通科技, 2008, 2 : 65 - 66.
    [114]王根龙等.岩质边坡稳定塑性极限分析方法—斜分条法[J].岩土工程学报, 2007, 12: 1766– 1770.
    [115]汪益敏,王秉纲.公路土质路基边坡坡面冲刷稳定性的模糊综合评价[J].中国公路学报,2005, 18(1): 24 - 29.
    [116]李家春,田伟平.黄上路基坡顶及路肩暴雨冲蚀破坏机理试验[J].长安大学学报(自然科学版), 2004, 24(2): 27– 29.
    [117]汪益敏.路基边坡坡面冲刷特性与加固材料性能研究[J].岩上力学与工程学报, 2004, 23(4): 70 - 73.
    [118] Cray D H, Sotir R B. Biotechnical stabilization of highway out slope [J]. Journal of Geotechnical Engineering, 1992, 118(9): 1395 - 1409.
    [119]高大钊,袁聚云.土质学与土力学[M].北京:人民交通出版社, 2007.
    [120] Cheng Yong-chun, Ge Qi, He Yan. Experimental Research on the Shear Strength Deterioration between the Freezing and Thawing Surface of Melting Soil Slope in Seasonal Frozen Regions [C]. The 9th Intentional Conference of Chinese Transportation Professionals, 2009.
    [121]孙强,赵俊平等.基于摩擦学原理的土质边坡稳定性分析[J].长江科学院学报, 2008, 25(5) : 111– 114.
    [122]武鹤,高伟等.寒区公路土质路堑边坡滑塌原因及其防治[J].自然灾害学报, 2006, 15(3): 66– 70.
    [123]马时强,刘斌.锦屏高边坡稳定地质力学模型试验研究[J].西华大学学报(自然科学版), 2008, 7: 101– 105.
    [124]刘娉慧,房后国. FLAC强度折减法在边坡稳定性分析中的应用[J].华北水利水电学院学报, 2007, 28(5) : 52– 55.
    [125]沈宇鹏.青藏铁路安多段多年冻土斜坡路基稳定性研究[D].北京:北京交通大学, 2007.
    [126]马苹林,朱明,王建华.有限差分法在边坡稳定性分析中的应用[J].中国矿山工程, 2008, 37(5): 19– 22.
    [127]宿金成,杨林.基于有限元强度折减法的边坡稳定分析[J].低温建筑技术, 2008, 6: 86– 88.
    [128]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报, 2004, 26 (1): 42– 46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700