用户名: 密码: 验证码:
有机碱功能化杂化材料的合成及在酯交换反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要采用后嫁接法制备了多种类型有机碱功能化的杂化材料,并考察了这些材料在苯酚和草酸二甲酯酯交换反应中的催化性能。系统研究了有机碱种类和性质、载体的组成和表面酸碱性质等对催化性能的影响;同时结合各种表征手段,对催化剂的结构、表面酸碱等性质进行了研究,并对反应活性中心性质、催化作用机制等问题进行了探讨。
     采用后嫁接法将不同类型的环戊二烯基衍生物(茂基)固载到介孔材料Si-MCM-41上,发现这类茂基功能化的杂化材料对苯酚和草酸二甲酯酯交换反应表现出良好的催化活性。其中,具有较强Lewis碱性和较小空间位阻的五甲基环戊二烯基功能化的杂化材料(Cp’’-Si-MCM-41)显示出相对较高的反应活性和主产物选择性。甲基环戊二烯基功能化的杂化材料(Cp’-Si-MCM-41)虽然反应活性略低,但却表现很高的稳定性,循环使用多次后,催化活性基本保持不变,这应主要归因于Cp’-具有相对较弱的Lewis碱性,从而使其在反应过程中不易与反应物或生成物产生较强的吸附作用而避免了失活。
     制备了几种不同类型有机胺功能化的介孔Si-MCM-41材料,考察了它们在酯交换反应中的催化性能。研究结果表明:这些有机胺功能化的杂化材料对该反应表现出较好的催化活性和稳定性;杂化材料的碱中心性质(包括碱强度和碱密度)对酯交换反应性能有显著的影响;催化剂经多次循环使用后反应活性仅略有降低,显示出良好的稳定性和循环性;采用碱处理可以使催化剂的反应活性基本恢复。此外,还对有机胺杂化材料催化剂上酯交换反应历程进行了探讨,阐述了反应副产物(苯甲醚)形成的主要历程。
     研究了载体种类及表面酸碱性质对有机胺功能化杂化材料的催化性能的影响。结果表明:对于二乙烯三胺基丙基功能化的杂化材料,以具有弱酸性的Al-MCM-41和介孔磷酸铝为载体制备的杂化材料表现出相对较低的催化活性,其原因可能主要是由于在反应体系中,载体表面的弱酸中心与引入的碱性官能团之间产生了相对较强的相互作用所致;此外,发现3-氨丙基功能化的HAP-γ-Fe2O3 (HAP:羟基磷灰石)具有较高的反应活性,这可能是由于载体本身具有的碱性特征对酯交换反应也起到一定的促进作用。
Diphenyl carbonate (DPC) is an important intermediate for the production of many organic compounds, especially as the precursor for the synthesis of engineering thermoplastics, such as polycarbonates (PC). DPC can also be used to increase the viscosity of polycondensates (e.g. polyamides and polyesters). Because PC possesses excellent mechanical, optical, electrical, and heat resistance properties, which have been used in many fields, there have been increasing demands for DPC. Therefore, DPC synthesis has received much attention as an alternative precursor to PC production. The traditional process for DPC synthesis was based on the reaction of phosgene (or chloroformic acid trichloromethyl ester (diphosgene), bis(trichloromethyl) carbonate) and phenol. Again, the obvious disadvantage of this method is the use of highly toxic phosgene as a raw material. With increasing demands for safer and cleaner processes, various non-phosgene approaches for DPC synthesis have been explored and investigated, including oxidative carbonylation of phenol and transesterification reaction. Among them, transesterification of dimethyl oxalate (DMO) with phenol to diphenyl oxalate (DPO), following a decarbonylation reaction, is an attractive and environmentally friendly route for the synthesis of DPC. The crucial problem of this route is the study on transesterification of DMO with phenol. For this transesterification reaction could not carry out without any catalyst, it is necessary to develop the highly efficient catalysts. Recently, it was reported that a variety of metal oxides bearing weak acidity and/or weak basicity were effective for the transesterification of DMO with phenol. However, the utility of these metal oxides is often limited by metal leaching or catalyst deterioration in liquid phase reaction.
     Recently, more attention has been drawn on organic-inorganic hybrid materials containing catalytic activities, which can be synthesized by grafting organic molecules bearing acid and/or basicity onto inorganic supports. Compared with other kinds of heterogeneous catalysts, organic-inorganic hybrid materials have been applied in catalytic fields and have excellent application prospects, because of several advantages, such as easy separation of products, high stability and easy reuse.
     In this thesis, the transesterification of DMO with phenol has been investigated over some different kinds of organic base-functionalized organic-inorganic hybrid materials. The effects of the type of the support and organic base on the catalytic properties of transesterification of phenol with DMO have been investigated. Both the structure and acid-base properties of catalysts were studied by different characterization means of XRD, N2-sorption, CO2-TPD, FT-IR and TGA, etc. Some other problems have also been discussed, including the nature of active sites and the reaction mechanism of the catalysts, and so on. The main experimental results and conclusions are as follows:
     1. Cyclopentadienyl-functionalized mesoporous Si-MCM-41 catalysts for the transesterification of dimethyl oxalate with phenol Three kinds of hybrid inorganic-organic catalysts (denoted as Cp’-Si-MCM-41, Cp’’-Si-MCM-41 and Cp*-Si-MCM-41) are prepared by grafting methylcyclopentadienyl (Cp’), pentamethylcyclopentadienyl (Cp’’) or 1,2-phenyl-4-methylcyclopentadienyl (Cp*) group onto the surface of mesoporous Si-MCM-41 by a post-grafting method, which can be characterized by means of X-ray powder diffraction (XRD), N2 sorption, thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FT-IR) and 29Si MAS NMR. It’s found that such cyclopentadienyl-functionalized materials are active for the transesteri?cation of DMO with phenol. Under test conditions, Cp’’-Si-MCM-41 bearing the relatively strong Lewis basicity and small steric hindrance gives the relatively high conversion of DMO and selectivity of DPO for the transesterification. Furthermore, the hybrid materials of Cp’-Si-MCM-41 and Cp’’-Si-MCM-41 are more active than the corresponding homogeneous catalysts (Cp’H and Cp’’H), in our opinion, there are at least two possible explanations: First, the strength of Lewis basicity of cyclopentadienyl groups may be changed after introducing it onto the surface of mesoporous Si-MCM-41. Second, the structure and the surface properties of the support are in favor of the adsorption and activation of reactant.
     Moreover, the recyclabilities of these two hybrid catalysts are also investigated. It is found that the catalytic activity of Cp’’-Si-MCM-41 decreases gradually with the increase of recycle time. And Cp’-Si-MCM-41 shows relatively high stability since the catalytic activity of the recycled sample does not change considerably, which might be mainly due to that Cp’- group bears the relatively weak Lewis basicity and the adsorption of organic molecules on the active sites does not easily occurs on Cp’-Si-MCM-41 under our experimental conditions.
     2. Amino-functionalized mesoporous Si-MCM-41 catalysts for the transesterification of dimethyl oxalate with phenol
     A series of hybrid mesoporous Si-MCM-41 materials containing different amino groups (e.g. 3-aminopropyl (AP-), (2-aminoethylamino)propyl (AAP-), [2-(2-aminoethylamino)ethylamino]propyl (AEP-) group) were prepared by a post-grafting method, and characterized by means of XRD, N2 adsorption, FT-IR, TGA and temperature-programmed desorption of CO2 (CO2-TPD). The catalytic properties of these hybrid materials were investigated for the transesterification of DMO with phenol. All the samples were active for the transesterification. Among them, the sample AEP-Si-MCM-41 exhibited the highest activity under test conditions, which might be assigned to the relatively strong Lewis basicity of AEP-Si-MCM-41. On the basis of some related literatures, a proposed mechanism for the transesterification of phenol with DMO catalyzed by the amino-functionalized materials was proposed. In short, the amino group could act as Lewis base to assist hydrogen transfer from phenol to the carbonyl oxygen of DMO to form a hexahedral intermediate and then the intermediate decomposes to form the main product along with the release of methanol. Moreover, both the density and the basic strength of the amino groups have notable effects on the catalytic properties. And only a slight decrease in activity could be observed after a few runs, which might be mainly because the adsorption of organic molecules on the active sites occurs on this material. Notably, the activity of the used catalyst could be regenerated by simple treatment with methanol solution of tetramethylamonium hydroxide under a mild condition. By designing several additional reactions, we suppose that the formation of the by-product anisole should be mainly due to the reaction of methyl phenyl oxalate (MPO) with phenol.
     3. The effect of the support on the catalytic performance of Transesterification over organoamine-functionalized catalysts
     The nature of the supports (aluminosilicate and aluminophosphate sieves) have an influence on catalytic performance over organoamine-functionalized hybrid catalysts. Under the same loadings of organic amine, the activity of different amino-functionalized materials decreases in the order: 0.5AEP-Si-MCM-41 > 0.5AEP-AlP1.0Os > 0.5AEP-Al-MCM-41, which might be ascribed to the mutual effects between acidic sites with basic sites under test conditions. In order to discern the above point, the surface M-OH of 0.5AEP-Al-MCM-41 becomes M-OSiMe3 via silazane silylation. The experimental results suggest that the activity of the silylated mesoporous material can clearly be improved.
     Two kinds of aminopropyl-functionalized magnetic materials containing different supports (e.g. Hydroxyapatite-encapsulatedγ-Fe2O3 nanoparticles, Iron oxide nanoparticles coated with mesoporous silica) were synthesized by a post-grafting method, and used for catalyzing the transesterification of DMO with phenol. The results suggest that 0.75AP/HAP-γ-Fe2O3 shows much higher activity than either 0.75AP/γ-Fe2O3@SiO2 or 0.75AP-Si-MCM-41. A reasonable explanation is that the cooperative activation between base carrier (HAP-γ-Fe2O3) and basic group (AP-). Considering magnetic hydroxyapatite-encapsulatedγ-Fe2O3 nanoparticles with cheap raw material, easy preparation and recovery, therefore, this kind of organo-functionalized hydroxyapatite-encapsulatedγ-Fe2O3 materials will have excellent application prospects.
引文
[1] FOX D W, FLORYAN D E. DE-OS 2359260, 1973.
    [2] FREITAG D, GRICO U, MULLER P R. in: H.F. Mark (Ed.), Polycarbonate in Encyclopedia of Polymer Science and Engineering, vol. 11, Wiley, New York, 1987.
    [3] SHAIKH A G, SIVARAM S. Organic Carbonates [J]. Chem. Rev., 1996, 96: 951-976.
    [4] BERANEK J, HLAVACKOVA J. Preparation of diaryl carbonates [J]. Nucl. Acid Chem., 1978, 2: 999-1001.
    [5] ONO Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block [J]. Appl. Catal. A: Gen., 1997, 155: 133-166.
    [6] TAKAGI M, MIYAGI H, YONEYAMA T, et al. Palladium-lead catalyzed oxidative carbonylation of phenol [J]. J. Mol. Catal. A: Chem., 1998, 129: L1-L3.
    [7] LINSEN K J L, LIBENS J, JACOBS P A. A new heterogeneous catalyst for the oxidative carbonylation of phenol to diphenyl carbonate [J]. Chem. Commun., 2002, 2728-2729.
    [8] XUE W, WANG Y J, ZHAO X Q. Oxidative carbonylation of phenol over the mesoporous palladium-copper-oxide/silica catalyst prepared by sol–gel coupling with W/O microemulsion [J]. Catal. Today 2005, 105: 724-728.
    [9]赵强,孟双明,李忠等.氧化羰基化法合成碳酸二苯酯催化剂的研究进展[J].化工进展, 2009, 28: 1175-1191.
    [10] YANG X J, HAN J Y, DU Z P, et al. Effects of Pb dopant on structure and activity of Pd/K-OMS-2 catalysts for heterogeneous oxidative carbonylation of phenol [J]. Catal. Commun., 2010, 11: 643-646.
    [11] MASAMICHI M, KATSUSHIGE H, KATSUHIRO I, et al. Process and catalysts for preparing aromatic carbonates [P]. EP 572980, 1993.
    [12] FUMIO O, Process and catalysts for the preparation of aromatic carbonates by oxidative carbonylation of aromatic hydroxy compounds [P]. JP 06211750, 1994.
    [13] AKINOBU Y. Preparation of aromatic carbonates by oxidative carbonylation of aromatic hydroxyl compounds [P]. JP 1001459, 1998.
    [14] LIU M, WU Y X, DU Z P, et al. Research advances in reaction mechanism for Pd-catalyzed oxidative carbonylation of phenol to diphenyl carbonate [J]. Chin. J. Catal., 2008, 29: 489-496.
    [15] YASUDA H, WATARAI K, CHOI J C, et al. Effects of bulky ligands and water in Pd-catalyzed oxidative carbonylation of phenol [J]. J. Mol. Catal. A: Chem., 2005, 236: 149-155.
    [16] XUE W, ZHANG J C, WANG Y J, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by ultrafine embedded catalyst Pd-Cu-O/SiO2 [J]. Catal. Commun., 2005, 6: 431-436.
    [17] KIM Y T, PARK E D. Transesteri?cation between dimethyl carbonate and phenol in the presence of (NH4)8Mo10O34 as a catalyst precursor [J]. Appl. Catal. A: Gen., 2009, 356: 211-215.
    [18] LI Z H, CHENG B W, SU K M, et al. The synthesis of diphenyl carbonate from dimethyl carbonate and phenol over mesoporous MoO3/SiMCM-41 [J]. J. Mol. Catal. A: Chem., 2008, 289: 100-105.
    [19] TONG D S, YAO J, WANG Y, et al. Transesterification of dimethyl carbonate with phenol to diphenyl carbonate over V2O5 catalyst [J]. J. Mol. Catal. A: Chem., 2007, 268: 120-126.
    [20] DU Z P, KANG W K, CHENG T, et al. Novel catalytic systems containing n-BuSn(O)OH for the transesteri?cation of dimethyl carbonate and phenol [J]. J. Mol.Catal. A: Chem., 2006, 246: 200-205.
    [21] NIU H Y, YAO J, WANG Y, et al. Cp2TiCl2 used as a catalyst for the transesteri?cation between dimethyl carbonate and phenol to diphenyl carbonate [J]. J. Mol. Catal. A: Chem., 2005, 235: 240-243.
    [22] NIU H Y, YAO J, WANG Y, et al. Transesterification of dimethyl carbonate and phenol to diphenyl carbonate catalyzed by titanocene complexes [J]. Catal. Commun., 2007, 8: 355-358.
    [23] KIM Y T, PARK E D. Deactivation phenomena of MoO3/SiO2 and TiO2/SiO2 during transesterification between dimethyl carbonate and phenol [J]. Appl. Catal. A: Gen., 2009, 356: 211-215.
    [24] TONG D S, CHEN T, MA F, et al. Transesterification of dimethyl carbonate with phenol over a bimetallic molybdenum and copper catalyst [J]. React. Kinet. Catal. Lett., 2008, 94: 121-129.
    [25] JOSHI U A, CHOI S H, JANG J S, et al. Transesterification of dimethylcarbonate and phenol over silica supported TiO2 and Ti-MCM-41 catalysts: Structure insensitivity [J]. Catal. Lett., 2008, 123: 115-122.
    [26] DU Z P, XIAO Y H, CHEN T. Catalytic study on the transesterification of dimethyl carbonate and phenol to diphenyl carbonate [J]. Catal. Commun., 2008, 9: 239-243.
    [27] TONG D S, CHEN T, YAO J, et al. V-Cu composite oxide catalyst for transesterification of dimethyl carbonate with phenol to diphenyl carbonate [J]. Chin. J. Catal., 2007, 28: 190-192.
    [28] LUO S W, CHEN T, TONG D S, et al. Synthesis of Diphenyl Carbonate via Transesterification Catalyzed by HMS Mesoporous Molecular Sieves Containing Heteroelements [J]. Chin. J. Catal., 2007, 28(11): 937-939.
    [29] WANG Q, WANG K L, WU X L, et al. Synthesis of Mg, ( CO, ) ( OH) 4H20 with Flower-like Microstructure and Its Catalytic Activity for Transesterification of Dimethyl Carbonate with Phenol [J]. CHEM. RES. CHINESE U., 2007, 23(6): 641-645.
    [30] HAN H J, CHEN T, YAO J, et al. A heterogeneous catalyst for thetransesterification of dimethyl carbonate and phenol to form diphenyl carbonate [J]. Chin. J. Catal., 2006, 27: 1-8.
    [31] NIU H Y, GUO H M, YAO J, et al. Transesteri?cation of dimethyl carbonate and phenol to diphenyl carbonate catalyzed by samarium diiodide [J]. J. Mol. Catal. A: Chem., 2006, 259: 292-295.
    [32] MEI F M, LI G X, NIE J, et al. A novel catalyst for transesteri?cation of dimethyl carbonate with phenol to diphenyl carbonate: samarium tri?uoromethanesulfonate [J]. J. Mol. Catal. A: Chem., 2002, 184: 465-468.
    [33] LUO S J, CHI Y N, SUN L N, et al. Single-step catalytic synthesis of diphenyl carbonate over transition-metal-substituted Keggin-type tungstophosphoric acid [J]. Catal. Commun., 2008, 9: 2560-2564.
    [34] ONO Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block [J]. Appl. Catal. A., 1997, 155: 133-166.
    [35] KIM W B, LEE J S, A new process for the synthesis of dipenyl carbonate from dimethyl carbonate and phenol over heterogeneous catalysts [J]. Catal. Lett., 1999, 59 (1): 83-88.
    [36] FU Z H, ONO Y. Two-step synthesis of diphenyl carbonate from dimethyl carbonate and phenol using MoO3/SiO2 catalysts [J]. J. Mol. Catal. A: Chem., 1997, 118: 293-299.
    [37] CHEN T, HAN H J, YAO J, et al. The transesteri?cation of dimethyl carbonate and phenol catalyzed by 12-molybdophosphoric salts [J]. Catal. Commun., 2007, 8: 1361-1365.
    [38] CAO M, MENG Y Z, LU Y X. Synthesis of diphenyl carbonate from dimethyl carbonate and phenol using O2-promoted PbO/MgO catalysts [J], Catal. Commun., 2005, 6: 802-807.
    [39] HIDEAKI T, MASARU K, KENICHI W, et al. Catalyst for Aryl Ester Production and Process for Producing Aryl Ester Therewith [P]. WO Patent 9517371, 1995.
    [40]张术栋,徐成华,冯良荣等. Ti-β分子筛催化苯酚和碳酸二甲酯合成碳酸二苯酯[J].精细化工, 2005, 2 (22): 115-115.
    [41] MEI F M, PEI Z, LI G X. The Transesterification of Dimethyl Carbonate with Phenol over Mg-Al-hydrotalcite Catalyst [J]. Org. Process Res. Dev. 2004, 3 (8): 372-375.
    [42]于琴琴,王庶,梅付名等. Zn-Al水滑石催化碳酸二甲酯于苯酚酯交换反应的研究[J],高等学校学报, 2005, 26 (5): 1502-1506.
    [43]王庶,于琴琴,黄金明等.类水滑石催化酯交换反应活性、寿命及失活原因研究[J].化学学报, 2005, 63 (17): 1575-1580.
    [44] NISHIHIRA K, TANAKA S, HARADA K, SUGISE R. US Patent 5834615, 1998.
    [45] NISHIHIRA K, TANAKA S, NISHIDA Y, et al. US Patent 5811573, 1998.
    [46] NISHIHIRA K, TANAKA S, HARADA K, et al. US Patent 5922827, 1999.
    [47] MA X B, GUO H L, WANG S P, et al. Transesterification of dimethyl oxalate with phenol over TS-1 catalyst [J]. Fuel Processing Technology, 2003, 83: 275-286.
    [48] GONG J L, MA X B, WANG S P, et al. Transesteri?cation of dimethyl oxalate with phenol over MoO3/SiO2 catalysts [J]. J. Mol. Catal. A: Chem., 2004, 207: 213-218.
    [49] GONG J L, MA X B, WANG S P, et al. EFFECT OF Mo CONTENT IN MoO3/γ-Al2O3 ON THE CATALYTIC ACTIVITY FOR TRANSESTERIFICATION OF DIMETHYL OXALATE WITH PHENOL [J]. React. Kinet. Catal. Lett., 2004, 83 (1): 113-120.
    [50] WANG S P, MA X B, GUO H L, et al. Characterization and catalytic activity of TiO2/SiO2 for transesteri?cation of dimethyl oxalate with phenol [J]. J. Mol. Catal. A: Chem., 2004, 214: 273-279.
    [51] MA X B, WANG S P, GONG J L, et al. A comparative study of supported TiO2 catalysts and activity in ester exchange between dimethyl oxalate and phenol [J]. J. Mol. Catal. A: Chem., 2004, 222: 183-187.
    [52] WANG S P, MA X B, GONG J L, et al. Transesterification of Dimethyl Oxalate with Phenol under SnO2/SiO2 Catalysts [J]. Ind. Eng. Chem. Res., 2004, 43: 4027-4030.
    [53] WANG S P, MA X B, GONG J L, et al. Characterization and activity of stannummodi?ed H? catalysts for transesteri?cation of dimethyl oxalate with phenol [J]. Catal. Today, 2004, 93-95: 377-381.
    [54] MA X B, GONG J L, WANG S P, et al. Reactivity and surface properties of silica supported molybdenum oxide catalysts for the transesteri?cation of dimethyl oxalate with phenol [J]. Catal. Commun., 2004, 5: 101-106.
    [55] GONG J L, MA X B, YANG X, et al. A bimetallic molybdenum (VI) and stannum (IV) catalyst for the transesteri?cation of dimethyl oxalate with phenol [J]. Catal. Commun., 2004, 5: 179-184.
    [56] MA X B, GONG J L, YANG X, et al. A comparative study of supported MoO3 catalysts prepared by the new‘‘slurry’’impregnation method and by the conventional method: their activity in transesteri?cation of dimethyl oxalate and phenol [J]. Appl. Catal. A: Gen., 2005, 280: 215-223.
    [57] GONG J L, MA X B, YANG X, et al. Comparative preparation of MoO3/SiO2 catalysts using conventional and slurry impregnation method and activity in transesteri?cation of dimethy oxalate with phenol [J]. Catal. Lett., 2005, 99: 187-191.
    [58] MA X B, GONG J L, WANG S P, et al. Characterization and reactivity of stannum modi?ed titanium silicalite TS-1 catalysts for transesteri?cation of dimethyl oxalate with phenol [J]. J. Mol. Catal. A: Chem., 2005, 237: 1-8.
    [59] LIU Y, MA X B, WANG S P. Activity and Surface Properties of Titanium Oxide Modified Silica Supported Molybdenum Oxide Catalysts for Transesterification of Dimethyl Oxalate with Phenol [J]. Ind. Eng. Chem. Res., 2007, 46: 1045-1050.
    [60] LIU Y, MA X B, WANG S P, et al. The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2-SiO2 for transesteri?cation of dimethyl oxalate with phenol: A comparative investigation [J]. Appl. Catal. B: Environ., 2007, 77: 125-134.
    [61] WANG S P, LIU Y, SHI Y, et al. Dispersion and Catalytic Activity of MoO3 on TiO2-SiO2 Binary Oxide Support [J]. Aiche J., 2008, 54: 741-749.
    [62] ZHAO G M, ZHU X M, WANG Z L, et al. TRANSESTERIFICATION OF DIMETHYL OXALATE WITH PHENOL OVER Ti-CONTAINING PHOSPHATE CATALYSTS [J]. React. Kinet. Catal. Lett., 2007, 91: 77-83.
    [63] LIU G, LIU Y, YANG G, et al. Preparation of Titania Silica Mixed Oxides by aSol-Gel Route in the Presence of Citric Acid [J]. J. Phys. Chem. C, 2009, 113: 9345-9351.
    [64] CHEN C X, PENG J S, LI B, et al. The catalytic activity of CuNi-containing hydrotalcites in the transesteri?cation of dimethyl oxalate with phenol [J]. J Porous Mater., 2009, 16: 233-238.
    [65] ILLUMINATI G, ROMANO U, TESEI R. process for the preparation of aromatic carbonates [P]. US 4182726, 1980.
    [66] TUINSTRA H E, et al. Process for the preparation of phenyl carbonates or polycarbonates [P]. US 5349102, 1994.
    [67] HIDEAKI T, YOSHIYUKI O, ATUSI M, et al. Process for preparing carbonate esters [P]. EP 684221, 1995.
    [68] HIDEAKI H, KENICHI W, YOSHUKI O. Preparation of aryl carbonates and catalysts for it [P]. JP 08198817, 1996.
    [69] MASAMICHI M, HDEFNMI H. Preparation of diaryl carbonates from cyclic carbonate and phenyl carboxylates [P]. JP 09176093, 1997.
    [70] MASAMICHI M, HDEFNMI H. Preparation of aromatic carbonic acid esters by transesterification [P]. JP 1036321, 1998.
    [71] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template meehanism [J]. Nature, 1992, 359: 710-712.
    [72] BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114: 10834-10843.
    [73] TANEV P T, PINNAVAIA T J. A neutral templating route to mesoporous molecular Sieves [J]. Science, 1995, 267: 865-867.
    [74] BAGSHAW S A, PROUZET E, PINNAVAIA T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
    [75] BAGSHAW S A, KEMMITT T, MILESTONE N. Mesoporous [M]-MSU-metallo-silicate catalysts by non-ionic polyethylene oxide surfactanttemplating Acid [N0(N+)X?I+] and base (N0M+I?) catalysed pathways [J]. Micropor. Mesopor. Mater., 1998, 22: 419-433.
    [76] PROUZET E, PINNAVAIA T J. Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: control of pore size by synthesis temperature [J]. Angew. Chem. Int. Ed., 1997, 36: 516-518.
    [77] KIM S S, ZHANG W, PINNAVAIA T J. Ultrastable mesostructured silica vesicles [J]. Science, 1998, 282: 1302-1305.
    [78] ZHOU W, HUNTER H M A, WRIGHT P A, et al. Imaging the pore structure and polytypic intergrowths in mesoporous silica [J]. J. Phys. Chem. B, 1998, 102: 6933-6936.
    [79] ZHAO D Y, HOU Q, FENG J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [80] ZHAO D Y, FENG J, HOU Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279: 548-552.
    [81] TANEV P T, CHIBWE M, PINNAVAIA T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994,368: 317-321.
    [82] LIN W Y, CAI Q, PANG W Q, et al. Preparation of aluminosilicate MCM-41 in desirable forms via a novel coassemble route [J]. Chem. Commun., 1998, 2473-2474.
    [83] FENG P, XIA Y, FENG J, et al. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route [J]. Chem. Commun., 1997, 949-950.
    [84] ZHAO D Y, LUAN Z, KEVAN L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves [J]. Chem. Commun., 1997, 1009-1010.
    [85] TIAN Z R, TONG W, WANG J Y, et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts [J]. Science, 1997, 276: 926-930.
    [86] KIMURA T, SUGAHARA Y, KURODA K. Synthesis and Characterization ofLamellar and Hexagonal Mesostructured Aluminophosphates Using Alkyltrimethylammonium Cations as Structure-Directing Agents [J]. Chem. Mater., 1999, 11: 508-518.
    [87] CARBRERA S, HASKOURI J, ALAMO J, et al. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes [J]. Adv. Mater., 1999, 11: 379-381.
    [88] ATTARD G S, GLYDE J C, GOLTNER C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature, 1995, 378: 366-368.
    [89] TAN B, LEHMLER H J, VYAS S M, et al. Controlling nanopore size and shape by fluorosurfactant templating of silica [J]. Chem. Mater., 2005, 17: 916-925.
    [90] TOHVER V, BRAUN P V, PRALLE M U, et al. Counterion Effects in Liquid Crystal Templating of Nanostructured CdS [J]. Chem. Mater., 1997, 9: 1495-1498.
    [91] RYOO R, KIM J M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium [J]. Chem. Commun., 1995, 711-712.
    [92] SAYARI A, YANG Y, KRUK M, et al. Expanding the pore size of MCM-41 silicas: Use of amines as expanders in direct synthesis and postsynthesis procedures [J]. J. Phys. Chem. B, 1999, 103: 3651-3658.
    [93] WIGHT A P, DAVIS M E. Design and Preparation of Organic-Inorganic Hybrid Catalysts [J]. Chem. Rev., 2002, 102: 3589-3614.
    [94] LI C. Chiral Synthesis on Catalysts Immobilized in Microporous and Mesoporous Materials [J]. Catal. Rev., 2004, 46: 419-462.
    [95] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials [J]. Angew. Chem. Int. Ed., 2006, 45: 3216-3251.
    [96] LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11: 3285-3295.
    [97] HUQ R, MERCIER L. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512-4519.
    [98] JIA M J, SEIFERT A, THIEL W R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene [J]. Chem. Mater., 2003, 15: 2174-2180.
    [99] JIA M J, SEIFERT A, BERGER M, et al. Hybrid Mesoporous Materials with a Uniform Ligand Distribution: Synthesis, Characterization, and Application in Epoxidation Catalysis [J]. Chem. Mater., 2004, 16: 877-882.
    [100] JIA M J, SEIFERT A, THIEL W R. Sol-gel synthesis of oxodiperoxo molybdenum-modi?ed organic–inorganic materials for the catalytic epoxidation of cyclooctene [J]. J. Catal., 2004, 221: 319-324.
    [101] ASEFA T, MACLACHLAN M J, COOMBS N, et al. Periodic mesoporous organosilicas with organic groups inside the channel walls [J]. Nature, 1999, 402: 867-871.
    [102] INAGAKI S, GUAN S, FUKUSHIMA Y, et al. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks [J]. J. Am. Chem. Soc., 1999, 121: 9611-9614.
    [103] MELDE B J, HOLLAND B T, BLANFORD C F, et al. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks [J]. Chem. Mater., 1999, 11: 3302-3308.
    [104] ASEFA T, MACLACHLAN M J, GRONDEY H, et al. Metamorphic Channels in Periodic Mesoporous Methylenesilica [J]. Angew. Chem. Int. Ed., 2000, 39: 1808-1811.
    [105] LU Y, FAN H, DOKE N, et al. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality [J]. J. Am. Chem. Soc., 2000, 122: 5258-5261.
    [106] YOSHINA-ISHII C, ASEFA T, COOMBS N, et al. Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry‘inside’the channel walls of hexagonal mesoporous silica [J]. Chem. Commun., 1999, 24: 2539-2540.
    [107] INAGAKI S, GUAN S, OHSUNA T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature, 2002, 416: 304-307.
    [108] SHYLESH S, SAMUEL P P, SISODIYA S, et al. Periodic Mesoporous Silicasand Organosilicas: An Overview Towards Catalysis [J]. Catal. Surv. Asia, 2008, 12: 266-282
    [109] MELERO J A, VAN GRIEKEN R., MORALES G. Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials [J]. Chem. Rev., 2006, 106: 3790-3812.
    [110] WANG P Y, ZHAO L, WU R A, et al. Phosphonic Acid Functionalized Periodic Mesoporous Organosilicas and Their Potential Applications in Selective Enrichment of Phosphopeptides [J]. J. Phys. Chem. C, 2009, 113 (4): 1359-1366.
    [111] BALKUS JR K J, PISKLAK T J, HUNDT G, et al. Photoluminescent and redox active periodic mesoporous organosilicas based on 2,7-diazapyrene [J]. Micropor. Mesopor. Mater., 2008, 112: 1-13.
    [112] HAN W, JIA Y X, YAO N, et al. A novel template-free sol-gel synthesis of silica materials with mesoporous structures and zeolitic walls [J]. J. Sol-Gel Sci. Technol., 2007, 43: 205-211.
    [113] WANG X G, TSENG Y H, CHAN J C C, et al. Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in ?avanones synthesis [J]. J. Catal., 2005, 233: 266-275.
    [114] WANG X G, CHENG S, CHAN J C C, et al. Template-free synthesis of mesoporous phenylsulfonic acid functionalized silica [J]. Micropor. Mesopor. Mater., 2006, 96: 321-330.
    [115] WANG X G, CHENG S, CHAN J C C, Propylsulfonic Acid-Functionalized Mesoporous Silica Synthesized by in Situ Oxidation of Thiol Groups under Template-Free Condition [J]. J. Phys. Chem. C, 2007, 111: 2156-2164.
    [116] BRUNEL D, FAJULA F, NAGY J B, et al. Comparison of two MCM-41 grafted TEMPO catalysts in selective alcohol oxidation [J]. Appl. Catal. A: Gen., 2001, 213, 73-82.
    [117] KARIMI B, BIGLARI A, CLARK J H, et al. Transition-Metal-Free Aerobic Oxidation of Alcohols Using a Highly Durable Supported Organocatalyst [J]. Angew. Chem. Int. Ed., 2007, 46: 7210-7213.
    [118] TANG J Y, WANG L, LIU G, et al. Mesoporous SBA-15 materials modi?edwith oxodiperoxo tungsten complexes as ef?cient catalysts for the epoxidation of ole?ns with hydrogen peroxide [J]. J. Mol. Catal. A: Chem., 2009, 313: 31-37.
    [119] LOU L L, YU Y, YU K, et al. Chiral Mn(Ⅲ) salen complex immobilized on imidazole-modified mesoporous material via co-condensation method as an effective catalyst for olefin epoxidation [J]. Sci. Chin. Ser B-Chem., 2009, 52: 1417-1422.
    [120] SAYAH R, LE FLOCH M, FRAMERY E, et al. Immobilization of chiral cationic diphosphine rhodium complexes in nanopores of mesoporous silica and application in asymmetric hydrogenation [J]. J. Mol. Catal. A: Chem., 2010, 315: 51-59.
    [121] YIU H H P, WRIGHT P A, BOTTING N P, Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J]. J. Mol. Catal. B: Enzym., 2001, 15: 81-92.
    [122] WANG L, REIS A, SEIFERT A, et al. A simple procedure for the covalent grafting of triphenylphosphine ligands on silica: application in the palladium catalyzed Suzuki reaction [J]. J. Chem. Soc., Dalton Trans., 2009, 3315-3320.
    [123] WANG P Y, LU Q S, LI J G, Palladium supported on functionalized mesoporous silica as an efficient catalyst for Heck reaction [J]. Mater. Res. Bulletin, 2010, 45: 129-134.
    [124] DAS D, LEE J F, CHENG S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups [J]. J. Catal., 2004, 223: 152-160.
    [125] SHIMIZU K, HAYASHI E, HATAMACHI T, et al. Acidic properties of sulfonic acid-functionalized FSM-16 mesoporous silica and its catalytic ef?ciency for acetalization of carbonyl compounds [J]. J. Catal., 2005, 231: 131-138.
    [126] SOW B, HAMOUDI S, ZAHEDI-NIAKI M H, et al. 1-Butanol etherification over sulfonated mesostructured silica and organo-silica [J]. Micropor. Mesopor. Mater., 2005, 79: 129-136.
    [127] DUFAUD V, DAVIS M E, Design of Heterogeneous Catalysts via Multiple Active Site Positioning in Organic-Inorganic Hybrid Materials [J]. J. Am. Chem. Soc., 2003, 125, 9403-9413.
    [128] MBARAKA I K, SHANKS B H, Design of multifunctionalized mesoporous silicas for esteri?cation of fatty acid [J]. J. Catal., 2005, 229: 365-373.
    [129] MARGELEFSKY E L, BENDJERIOU A, ZEIDAN R K, et al. Nanoscale Organization of Thiol and Arylsulfonic Acid on Silica Leads to a Highly Active and Selective Bifunctional, Heterogeneous Catalyst [J]. J. Am. Chem. Soc., 2008, 130: 13442-13449.
    [130] KAPOOR M P, FUJII W, KASAMA Y, et al. An alternate approach to the preparation of versatile sulfonic acid functionalized periodic mesoporous silicas with superior catalytic applications [J]. J. Mater. Chem., 2008, 18: 4683-4691.
    [131] AN Y Q, CHEN M, XUE Q J, et al. Preparation and self-assembly of carboxylic acid-functionalized silica [J]. J. Colloid Inter. Sci., 2007, 311: 507-513.
    [132] ELINGS J A, AIT-MEDDOUR R, CLARK J H, et al. Preparation of a silica-supported peroxycarboxylic acid and its use in the epoxidation of alkenes [J]. Chem. Commun., 1998, 2707-2708.
    [133] CORRIU R J P, GUARI Y, MEHDI A, et al. Ordered SBA-15 mesoporous silica containing phosphonic acid groups prepared by a direct synthetic approach [J]. Chem. Commun., 2001, 763-764.
    [134] MARGOLESE D, MELERO J A, CHRISTIANSEN S C, et al. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups [J]. Chem. Mater., 2000, 12: 2448-2459.
    [135] JAENICKE S, CHUAH G K, LIN X H, et al. Organic-inorganic hybrid catalysts for acid- and base-catalyzed reactions [J]. Micropor. Mesopor. Mater., 2000, 35-36: 143-153.
    [136] SAKAI T, TSUTSUMI Y, EMA T. Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Green Chem., 2008, 10: 337-341.
    [137] FENG X J, LU X B, HE R. Tertiary amino group covalently bonded to MCM-41 silica as heterogeneous catalyst for the continuous synthesis of dimethyl carbonate from methanol and ethylene carbonate [J]. Appl. Catal. A: Gen., 2004, 272: 347-352.
    [138] SATHICQ G, MUSANTE L, ROMANELLI G, et al. Transesteri?cation of b-ketoesters catalyzed by hybrid materials based on silica sol-gel [J]. Catal. Today 2008, 133-135: 455-460.
    [139] SUJANDI, PRASETYANTO E A, PARK S. Synthesis of short-channeled amino-functionalized SBA-15 and its beneficial applications in base-catalyzed reactions [J]. Appl. Catal. A: Gen., 2008, 350: 244-251.
    [140] WANG Q Q, SHANTZ D F. Nitroaldol reactions catalyzed by amine-MCM-41 hybrids [J]. J. Catal., 2010, 271: 170-177.
    [141] ZHOU Z, MENG Q G, SEIFERT A, et al. Hybrid mesoporous materials containing covalently anchored N-phenylthiazolium salts as organo catalysts [J]. Micropor. Mesopor. Mater., 2009, 121: 145-151.
    [142] HUH S, CHEN HT, WIENCH J W, et al. Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System [J]. J. Am. Chem. Soc., 2004, 126: 1010-1011.
    [143] BSAA J D, SOLOVYOV A., PASCALL A J, et al. Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis: A Comparative Investigation of Model Primary Amine Catalysts [J]. J. Am. Chem. Soc., 2006, 128: 3737-3747.
    [144] a. SHARMA K K, ASEFA T. Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials [J]. Angew. Chem. Int. Ed., 2007, 46: 2879-2882. b. SHARMA K K, ANAN A, BUCKLEY R P, et al. Toward Efficient Nanoporous Catalysts: Controlling Site-Isolation and Concentration of Grafted Catalytic Sites on Nanoporous Materials with Solvents and Colorimetric Elucidation of Their Site-Isolation [J]. J. Am. Chem. Soc., 2008, 130: 218-228.
    [145] ANAN A, SHARMA K K, ASEFA T. Selective, ef?cient nanoporous catalysts for nitroaldol condensation: Co-placement of multiple site-isolated functional groups on mesoporous materials [J]. J. Mol. Catal. A: Chem., 2008, 288: 1-13.
    [146] XIE Y W, SHARMA K K, ANAN A, et al. Ef?cient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups onnanoporous silica [J]. J. Catal., 2009, 265: 131-140.
    [147] a. ZEIDAN R K, HWANG S J, DAVIS M E, Multifunctional Heterogeneous Catalysts: SBA-15-containing Primary Amines an Sulfonic Acids [J]. Angew. Chem. Int. Ed., 2006, 45: 332-6335. b. ZEIDAN R K, DAVIS M E. The effect of acid–base pairing on catalysis: An ef?cient acid–base functionalized catalyst for aldol condensation [J]. J. Catal., 2007, 247: 379-382.
    [148] SHYLESH S, WAGNER A, SEIFERT A, et al. Cooperative Acid–Base Effects with Functionalized Mesoporous Silica Nanoparticles: Applications in Carbon-Carbon Bond-Formation Reactions [J]. Chem. Eur. J., 2009, 15: 7052-7062.
    [149] a. MOTOKURA K, TADA M, IWASAWA Y. Acid-Base Bifunctional Catalytic Surfaces for Nucleophilic Addition Reactions [J]. Chem. Asian J., 2008, 3: 1230-1236. b. MOTOKURA K, TADA M, TADA M, et al. Acid-Base Bifunctional Catalysis of Silica–Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions [J]. Chem. Eur. J., 2008, 14: 4017-4027.
    [150] HRUBY S L, SHANKS B H. Acid-base cooperativity in condensation reactions with functionalized mesoporous silica catalysts [J]. J. Catal., 2009, 263: 181-188.
    [151] SHYLESH S, WAGNER A, SEIFERT A, et al. Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions [J]. Angew. Chem. Int. Ed., 2010, 49: 184-187.
    [1] ZHAO G M, ZHU X M, WANG Z L, et al. TRANSESTERIFICATION OF DIMETHYL OXALATE WITH PHENOL OVER Ti-CONTAINING PHOSPHATE CATALYSTS [J]. React. Kinet. Catal. Lett., 2007, 91: 77-83.
    [2] GONG J L, MA X B, WANG S P, et al. Transesterification of dimethyl oxalate with phenol over MoO3/SiO2 catalysts [J]. J. Mol. Catal. A: Chem., 2004, 207: 213-218.
    [3] XING A H, ZHANG M Q. Qualitative and quantitative determination of the products synthesized by the transesterification of dimethyl carbonate with phenol [J]. Chromatographia, 2005, 61: 423-426.
    [4]刑爱华,张敏卿,何志敏.碳酸二甲酯与苯酚酯交换法反应精馏合成碳酸二苯酯的定量分析[J].分析化学,2005, 33 (8): 1147-1150.
    [1] HLATKY G G. Metallocene catalysts for olefin polymerization [J]. Coord. Chem. Rev., 1999, 181: 243-296.
    [2] STALKE D. The Lithocene Anion and Open Calcocene-New Impulses in the Chemistry of Alkali and Alkaline Earth Metallocenes [J]. Angew. Chem. Int. Ed., 1994, 33: 2168-2171.
    [3] JUTZI P, SIEMELING U. Cyclopentadienyl compounds with nitrogen donors in the side-chain [J]. J. Organomet. Chem., 1995, 500: 175-185.
    [4] LANCASTER S J, ROBINSON O B, BOCHMANN M, et al. SYNTHESIS AND REACTIVITY OF NEW MONO(CYCLOPENTADIENYL)ZIRCONIUM AND MONO(CYCLOPENTADIENYL)HAFNIUM ALKYL COMPLEXES- CRYSTAL-STRUCTURE AND MOLECULAR-STRUCTURE OF [(C5H3(SIME(3))(2))HFME(2)(ETA(6)-TOLUENE)][BME(C6F5)(3)] [J]. Organometallics, 1995, 14: 2456-2462.
    [5] WANG Q Y, QUYOUM R, GILLIS D J, et al. Ethylene, styrene, and alpha-methylstyrene polymerization by mono(pentamethylcyclopentadienyl)(Cp(*)) complexes of titanium, zirconium, and hafnium: Roles of cationic complexes of the type [Cp*MR(2)](+) (R=alkyl) as both coordination polymerization catalysts and carbocationic polymerization initiators [J]. Organometallics, 1996, 15: 693-703.
    [6] SCHNEIDER N, HUTTENLOCH M E, STEHLING U, et al. Ansa-metallocene derivatives ansa-zirconocene complexes with modified benzindenyl ligands: Syntheses, crystal structure, and properties as propene polymerization catalysts [J]. Organometallics, 1997, 16: 3413-3420.
    [7] KIM Y, KOO B H, DO Y. Synthesis and polymerization behavior of varioussubstituted indenyl titanium complexes as catalysts for syndiotactic polystyrene [J]. J. Organomet. Chem., 1997, 527: 155-161.
    [8] BLAIS M S, CHIEN J C W, RAUSCH M D, Pendent aminoaklyl-substituted monocyclopentadienyltitanium compounds and their polymerization behavior [J]. Organometallics, 1998, 17: 3775-3783.
    [9] JUTZI P, BURFORD N. Structurally diverse pi-cyclopentadienyl complexes of the main group elements [J]. Chem. Rev., 1999, 99: 969-990.
    [10] SITZMANN H. Maximum spin cyclopentadienyl complexes of 3d transition metals [J]. Coord. Chem. Rev., 2001, 214: 287-327.
    [11] ARNDT S, OKUDA J. Mono(cyclopentadienyl) complexes of the rare-earth metals [J]. Chem. Rev., 2002, 102: 1953-1976.
    [12] QIAN Y L, HUANG J L, BALA M D, et al. Synthesis, structures, and catalytic reactions of ring-substituted titanium(IV) complexes [J]. Chem. Rev., 2003, 103: 2633-2690.
    [13] CHRISTOFFERS J, WERNER T, BARO A, et al. Synthesis of a tin-functionalized cyclopentadiene derivative [J]. J. Organomet. Chem., 2004, 689: 3550-3555.
    [14] CALUCCI L, FORTE C, PAMPALONI G, et al. Chemical implantation of Group 4 cations on silica via cyclopentadienyl and N,N-dialkylcarbamato derivatives [J]. Inorgan. Chim. Acta, 2010, 363: 33-40.
    [15] KOELLE U. The Tentacular Chemistry of [Cp*Ru(OMe)]2 [J]. Chem. Rev., 1998, 98: 1313-1334.
    [16] PAUSON P L. Ferrocene-how it all began [J]. J. Organomet. Chem., 2001, 637-639: 3-6.
    [17] FISCHER E O, JIRA R. How metallocene chemistry and research began in Munich [J]. J. Organomet. Chem., 2001, 637-639: 7-12.
    [18] COTTON F A. Cyclopentadienyl–metal chemistry in the Wilkinson Group, Harvard, 1952-1955 [J]. J. Organomet. Chem., 2001, 637-639:18-26.
    [19] CARMONA D, LAMATA M P, VIGURI F, et al. ethylcyclopentadienyl-iridium(III) complexes with pyridylamino ligands: synthesisand applications as asymmetric catalysts for Diels–Alder reactions [J]. J. Chem. Soc., Dalton Trans., 2007, 1911-1921.
    [20] KNOWLES W S, Asymmetric Hydrogenations [J]. Angew. Chem. Int. Ed., 2002, 41: 1998-2007.
    [21] SHARPLESS K B. Searching for New Reactivity [J]. Angew. Chem. Int. Ed., 2002, 41: 2024-2032.
    [22] BRINTZINGER H H, FISCHER D, MULHAUPT R, et al. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts [J]. Angew. Chem. Int. Ed., 1995, 34: 1143-1170.
    [23] BARRETT A G M, DE MIGUEL Y R. A well-defined metallocene catalyst supported on polystyrene beads [J]. Chem. Commun., 1998, 2079-2080.
    [24] THOMAS E J, CHIEN J C W, RAUSCH M D. Influence of alkyl substituents on the polymerization behavior of asymmetric ethylene-bridged zirconocene catalysts [J]. Organometallics, 1999, 18: 1439-1443.
    [25] SPITZ R, VERDEL N, PASQUET V, et al. in: W. Kaminsky (Ed.), Metallorganic Catalysts for Synthesis, Polymerization: Recent Results by Ziegler-Natta, Metallocene Investigations [C]. Springer-Verlag, 1999, pp. 347-357.
    [26] KAGEYAMA K, TAMAZAWA J, AIDA T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica [J]. Science, 1999, 285: 2113-2115.
    [27] LIU Y, LIU Y, DREW M G B. Correlation between regioselectivity and site charge in propylene polymerization catalyzed by metallocene [J]. Structur. Chem., 2010, 21: 21-28.
    [28] JUVASTE H, PAKKANEN T T, IISKOLA E I. Preparation of heterogeneous constrained-geometry catalysts of group 4 transition metals by amine elimination reaction [J]. Organometallics, 2000, 19: 4834-4839.
    [29] GLADYSZ J A, Guest Editor. Special Issue on Frontiers in Metal-Catalyzed Polymerization [J]. Chem. Rev., 2000, 100: 1167-1682.
    [30] JEZEQUEL M, DUFAUD V, RUIZ-GARCIA M J, et al. Supported metallocene catalysts by surface organometallic chemistry. Synthesis, characterization, andreactivity in ethylene polymerization of oxide-supported mono- and biscyclopentadienyl zirconium alkyl complexes: Establishment of structure/reactivity relationships [J]. J. Am. Chem. Soc., 2001, 123: 3520-3540.
    [31] UUSITALO A M, PAKKANEN T T, ISKOLA E I. Immobilization of metal chloride complexes of titanium, zirconium, and hafnium on a cyclopentadienyl surface of silica for ethylene polymerization [J]. J. Mol. Catal. A: Chem., 2002, 177: 179-194.
    [32] ABRANTES M, GAGO S, VALENTE A A, et al. Incorporation of a (cyclopentadienyl)molybdenum oxo complex in MCM-41 and its use as a catalyst for olefin epoxidation [J]. Eur. J. Inorg. Chem., 2004, 4914-4920.
    [33] ENDERS M, KOHL G, PRITZKOW H. Synthesis of Main Group and Transition Metal Complexes with the (8-Quinolyl)cyclopentadienyl Ligand and Their Application in the Polymerization of Ethylene [J]. Organometallics, 2004, 23: 3832-3839.
    [34] WU Q L, SU Q, LI G H, et al. Diphenyl substituted cyclopentadienyl titanium trichloride derivatives: Synthesis, crystal structure and properties as catalysts for styrene polymerization [J]. Polyhedron, 2006, 25: 2565-2570.
    [35] MANZ T A, PHOMPHRAI K, MEDVEDEV G, et al. Structure Activity Correlation in Titanium Single-Site Olefin Polymerization Catalysts Containing Mixed Cyclopentadienyl/Aryloxide Ligation [J]. J. Am. Chem. Soc., 2007, 129: 3776-3777.
    [36] TURUNEN J P J, PAKKANEN T T. Characterization of stepwise prepared, silica supported zirconocene catalysts designed for ole?n polymerization [J]. J. Mol. Catal. A: Chem., 2007, 263: 1-8.
    [37] DYGUTSCH D P, EILBRACHT P. Synthesis of cyclopentanone derivatives with polystyrene-supported cyclopentadienyl rhodium catalysts [J]. Tetrahedron, 1996, 52: 5461-5468.
    [38] TUNG H S, BRUBAKER C H. A polymer-supported dichloro(cyclopentadienyl)rhodium(III) catalyst [J]. J. Organomet. Chem., 1981, 216: 129-137.
    [39] CERMAK J, KVICALOVA M, BLECHTA V, et al. Hydrogenation catalytic activity of substituted cyclopentadienyl titanium complexes anchored on polysiloxanes prepared by a sol-gel procedure [J]. J. Organomet. Chem., 1996, 509: 77-84.
    [40] KOPF-MAIER P. Complexes of metals other than platinum as antitumour agents [J]. Eur. J. Clin. Pharmacol., 1994, 47: 1-16.
    [41] CHRISTODOULOU C V, ELIOPOULOS A G, YOUNG L S, et al, Anti-proliferative activity and mechanism of action of titanocene dichloride [J]. Br J Cancer, 1998, 77: 2088-2097.
    [42] GUO M, SADLER P J. Competitive binding of the anticancer drug titanocene dichloride to N,N′-ethylenebis(o-hydroxyphenylglycine) and adenosine triphosphate: a model for TiIV uptake and release by transferrin [J]. J. Chem. Soc., Dalton Trans., 2000, 7-9.
    [43] KROGER N, KLEEBERG U R, MROSS K, et al. Phase II clinical trial of titanocene dichloride in patients with metastatic breast cancer [J]. Onkologie, 2000, 23: 60-62.
    [44] BOYLES J R, BAIRD M C, CAMPLING B G, et al. Enhanced anti-cancer activities of some derivatives of titanocene dichloride [J]. J. Inorg. Biochem., 2001, 84: 159-162.
    [45] TACKE M, ALLEN L T, CUFFE L P, et al. Novel titanocene anti-cancer drugs derived from fulvenes and titanium dichloride [J]. J. Organomet. Chem., 2004, 689: 2242-2249.
    [46] ALLEN O R, CROLL L, GOTT A L, et al. Functionalized cyclopentadienyl titanium organometallic compounds as new antitumor drugs [J]. Organometallics, 2004, 23: 288-292.
    [47] GAUSEY P W, BAIRD M C. Synthesis characterization, and assessment of cytotoxic properties of a series of titanocene dichloride derivatives [J]. Organometallics, 2004, 23: 4486-4494.
    [48] MEYER R, BRINK S, VAN RENSBURG C E J, et al. Synthesis, characterization and antitumor properties of titanocene derivatives with thiophenecontaining ligands [J]. J. Organomet. Chem., 2005, 690: 117-125.
    [49] O’CONNOR K, GILL C, TACKE M, et al. Novel titanocene anti-cancer drugs and their effect on apoptosis and the apoptotic pathway in prostate cancer cells [J]. Apoptosis, 2006, 11: 1205-1214.
    [50]申宝剑,任申勇,郭巧霞.茂锆金属配合物在介孔分子筛MCM-41上的接枝研究[J].分子催化,2004, 18: 93-97.
    [51] ALT H G, REB A, MILIUS W, et al. Amido functionalized ansa half-sandwich dichloride complexes of titanium, zirconium and hafnium with alkyl andω-alkenyl substituents as homogeneous and self-immobilizing catalyst precursors for ethylene polymerization [J]. J. Organomet. Chem., 2001, 628: 169-182.
    [52] UUSITALO A M, PAKKANEN T T, ISKOLA E I. Immobilization of CrCl3(THF)3 on a cyclopentadienyl surface of silica [J]. J. Mol. Catal. A: Chem., 2000, 156: 181-193.
    [53] TIMONEN S, PAKKANEN T T, ISKOLA E I. Immobilization of zirconium amide on a Cp-modi?ed silica surface and its use as a catalyst for ethylene polymerization [J]. J. Organomet. Chem., 1999, 582: 273-278.
    [54] FISCH A G, GARDOZO N S M, SECCHI A R, et al. Immobilization of metallocene within silica-titania by a non-hydrolytic sol-gel method [J]. Appl. Catal. A: Gen., 2009, 354: 88-101.
    [55] NIU H Y, YAO J, WANG Y, et al. Cp2TiCl2 used as a catalyst for the transesteri?cation between dimethyl carbonate and phenol to diphenyl carbonate [J]. J. Mol. Catal. A: Chem., 2005, 235: 240-243.
    [56] NIU H Y, YAO J, WANG Y, et al. Transesteri?cation of dimethyl carbonate and phenol to diphenyl carbonate catalyzed by titanocene complexes [J]. Catal. Commun., 2007, 8: 355-358.
    [57] GEISSMANN T A, KOELSCH C F. J. Organomet. Chem., 1939, 3: 489-502.
    [58] LIN W Y, CAI Q, PANG W Q, et al. Preparation of aluminosilicate MCM-41 in desirable forms via a novel co-assemble route [J]. Chem. Commun., 1998, 2473-2474.
    [59] ZHAO X S, LU G Q. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study [J]. J. Phys. Chem. B., 1998, 102: 1556-1561.
    [60] ANWANDER R, NAGL I, WIDENMEYER M, et al. Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation [J]. J. Phys. Chem. B., 2000, 104: 3532-3544.
    [61] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [62]安群力,王水利.室温下介孔分子筛MCM-41的合成与表征[J].化工新型材料,2004, 32: 39-42.
    [63] (a) LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11: 3285-3295. (b) HUQ R, MERCIER L. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512-4519.
    [64] JIA M J, SEIFERT A, THIEL W R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene [J]. Chem. Mater., 2003, 15: 2174-2180.
    [65] JIA M J, SEIFERT A, BERGER M, et al. Hybrid Mesoporous Materials with a Uniform Ligand Distribution: Synthesis, Characterization, and Application in Epoxidation Catalysis [J]. Chem. Mater., 2004, 16: 877-882.
    [66]陈静,韩梅,孙蕊,王锦堂.苄基磺酸接枝MCM-41介孔分子筛的合成与表征[J].无机化学学报,2006, 22: 1568-1572.
    [67] GREGG S J, SING K S W. Adsorption, Surface Area and Porosity [M]. 2nd ed.; Academic Press: London, 1982.
    [68] LIU L, ZHANG G Y, DONG J X. Effects of different templating agent on the structure of silica MCM-41 mesoporous molecular sieves [J]. Acta. Phys. Chim. Sin., 2004, 20: 65-69.
    [69] ZHANG L, LIU J, YANG J, et al. Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas [J]. Micropor. Mesopor. Mater., 2008,109: 172-183.
    [70] BAE J A, SONG K C, JEON J K, et al. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation [J]. Micropor. Mesopor. Mater., 2009, 123: 289-297.
    [71] LAUKKANEN M K, PEUSSA M, LESKELA M, et al. Reactions of bis(cyclopentadienyl)zirconium dichloride with porous silica surface [J]. Appl. Surf. Sci., 2001, 183: 290-300.
    [72] COSTA F G, BRAGA E A, BRANDAO S T, et al. Infrared and ultraviolet-visible spectroscopic studies of silica, [(Cp)2ZrCl2] and trimethylaluminum interactions [J]. Appl. Catal. A: Gen., 2005, 290: 221-226.
    [73]邢其毅,徐瑞秋,周政,裴伟伟.基础有机化学[M].高等教育出版社。
    [74] WANG X G, TSENG Y H, CHAN J C C, et al. Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis [J]. J. Catal., 2005, 233: 266-275.
    [75] DUFAUD V, DAVIS M E. Design of Heterogeneous Catalysts via Multiple Active Site Positioning in Organic Inorganic Hybrid Materials [J]. J. Am. Chem. Soc., 2003, 125: 9403-9413.
    [76] BIJPOST E A, DUCHATEAU R, TEUBEN J H. Early transition metal catalyzed-hydroboration of alkenes [J]. J. Mol. Catal. A: Chem., 1995, 95: 121-128.
    [77] SIEMELING U. Chelate Complexes of Cyclopentadienyl Ligands Bearing Pendant O-Donors [J]. Chem. Rev., 2000, 100: 1495-1526.
    [1] CORMA A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev., 1997, 97: 2373-2420.
    [2] CIESLA U, SCHUTH F. Ordered mesoporous materials [J]. Micropor. Mesopor. Mater., 1999, 27: 131-149.
    [3] YING J Y, MEHNERT C P, WONG M S. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem., Int. Ed., 1999, 38: 56-77.
    [4] SCHUTH F, SCHMIDT W. Microporous and mesoporous materials [J]. Adv. Mater., 2002, 14: 629-638.
    [5] STEIN A. Advances in microporous and mesoporous solids - Highlights of recent progress [J]. Adv. Mater., 2003, 15: 763-775.
    [6] TANEV P T, CHIBWE M, PINNAVAIA T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994,368: 321-323.
    [7] YING J Y, MEHNERT C P, WONG M S. Sythesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [8] DE VOS D E, DAMS M, SELS B F, et al. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations [J]. Chem. Rev., 2002, 102: 3615-3640.
    [9] BRANTON P J, HULL P G, KING K S W. Physisorption of nitrogen and oxygen by MCM-41, a model mesoporous adsorbent [J]. Chem. Commun., 1993, 1257.
    [10] SANCHEZ C, LEBEAU B, CHAPUT F, et al. Optical properties of functional hybrid organic-inorganic nanocomposites [J]. Adv. Mater., 2003, 15: 1969-1994.
    [11] WIGHT A P, DAVIS M E. Design and Preparation of Organic-Inorganic Hybrid Catalysts [J]. Chem. Rev., 2002, 102: 3589-3614.
    [12] VALLET-REGI M, BALAS F, ARCOS D. Mesoporous materials for drug delivery [J]. Angew. Chem. Int. Ed., 2007, 46: 7548-7558.
    [13] HAGIWARA H, KOSEKI A, ISOBE K, et al. Sustainable transesterification of beta-ketoesters catalyzed by amine grafted on silica gel [J]. Synlett, 2004, 12: 2188-2190.
    [14] SCHUCHARDT U, VARGAS R M, GELBARD G. Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes [J]. J. Mol. Catal. A: Chem., 1996, 109: 37-44.
    [15] JAENICKE S, CHUAH G K, LIN X H, et al. Organic-inorganic hybrid catalysts for acid- and base-catalyzed reactions [J]. Micropor. Mesopor. Mater., 2000, 35-36: 143-453.
    [16] YADAV J S, REDDY B V S, KRISHNA A D, et al. Triphenylphosphine: An efficient catalyst for transesterification ofβ-ketoesters [J]. J. Mol. Catal. A: Chem., 2007, 261: 93-97.
    [17] TAKSHI S, YOSHIHIRO T, TADASHI E. Highly active and robustorganic–inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Green Chem., 2008, 10: 337-341.
    [18] KAMBER N E, JEONG W, WAYMOUTH R M. Organocatalytic ring-opening polymerization [J]. Chem. Rev., 2007, 107: 5813-5840.
    [19] ENDERS D, NIEMEIER O, HENSELER A. Organocatalysis by N-heterocyclic, carbenes [J]. Chem. Rev., 2007, 107: 5606-5655.
    [20] MARION N, DIEZ-GONZALEZ S, NOLAN S P, N-heterocyclic carbenes as organocatalysts [J]. Angew. Chem. Int. Ed., 2007, 46: 2988-3000.
    [21] OTERA J. Transesterification [J]. Chem. Rev., 1993, 93: 1449-1470.
    [22] CHRISTOFFERS J, ONAL N. Azeotropic transesterification of beta-keto esters [J]. Eur. J. Org. Chem., 2000, 1633-1635.
    [23] CAUVEL A, RENARD G, BRUNEL D. Monoglyceride Synthesis by Heterogeneous Catalysis Using MCM-41 Type Silicas Functionalized with Amino Groups [J]. J. Org. Chem., 1997, 62: 749-751.
    [24] HRUBY S L, SHANKS B H. Acid-base cooperativity in condensation reactions with functionalized mesoporous silica catalysts [J]. J. Catal., 2009, 263: 181-188.
    [25] PARIDA K M, RATH D. Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction [J]. J. Mol. Catal. A: Chem., 2009, 310: 93-100.
    [26] XIE Y W, SCHARMA K K, ANAN A, et al. Ef?cient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica [J]. J. Catal., 2009, 265: 131-140.
    [27] SUZUKI T M, NAKAMURA T, FUKUMOTO K, et al. Direct synthesis of amino-functionalized monodispersed mesoporous silica spheres and their catalytic activity for nitroaldol condensation [J]. J. Mol. Catal. A: Chem., 2008, 280: 224-232.
    [28] WANG X G, LIN K S K, CHAN J C C, CHENG S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials [J]. J. Phys. Chem. B, 2005, 109: 1763-1769.
    [29] SARAVANAMURUGAN S. SUJANDI, HAN D S, et al. Transesteri?cation reactions over morphology controlled amino-functionalized SBA-15 catalysts [J].Catal. Commun., 2008, 9: 158-163.
    [30] FENG X J, LU X B, HE R. Tertiary amino group covalently bonded to MCM-41 silica as heterogeneous catalyst for the continuous synthesis of dimethyl carbonate from methanol and ethylene carbonate [J]. Appl. Catal. A: Gen., 2004, 272: 347-352.
    [31] SATHICQ G, MUSANTE L, ROMANELLI G, et al. Transesteri?cation of ?-ketoesters catalyzed by hybrid materials based on silica sol-gel [J]. Catal. Today, 2008, 133-135: 455-460.
    [32] ZHANG L, LIU J, YANG J, et al. Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas [J]. Micropro. Mesopor. Mater., 2008, 109: 172-183.
    [33] MUELLER U, SCHUBERT M, TEICH F, et al. Metal-organic frameworks-prospective industrial applications [J]. J. Mater. Chem., 2006, 16: 626-636.
    [34] LLABRES I XAMENA F X, CASANOVA O, TAILLEUR R G, et al. Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation [J]. J. Catal., 2008, 255: 220-227.
    [35] LLABRES I XAMENA F X, ABAD A, CORMA A, et al. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF [J]. J. Catal., 2007, 250: 294-298.
    [36] HASEGAWA S, HORIKE S, MATSUDA R, et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: Selective sorption and catalysis [J]. J. Am. Chem. Soc., 2007, 129: 2607-2614.
    [37] WANG Z Q, COHEN S M. Postsynthetic covalent modification of a neutral metal-organic framework [J]. J. Am. Chem. Soc., 2007, 129: 12368-12639.
    [38] MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. J. Am. Chem. Soc., 2005, 127: 17998-17999.
    [39] SEO J S, WHANG D, LEE H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature, 2000, 404: 982-986.
    [40] HWANG Y K, HONG D Y, CHANG J S, et al. Amine Grafting onCoordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation [J]. Angew. Chem. Int. Ed., 2008, 47: 4144-4148.
    [41] GASCON J, AKTAY U, HERNANDEZ-ALONSO M D, et al. Amino-based metal-organic frameworks as stable, highly active basic catalysts [J]. J. Catal., 2009, 261: 75-87.
    [42] ROSENHOLM J M, PENNINKANGAS A, LINDEN M, Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine [J]. Chem. Commun., 2006, 3909-3911.
    [43] FILIPPIS P D, GIAVARINI C, MAGGI C, et al. Modified Polyamines for CO Absorption. Product Preparation and Characterization [J]. Ind. Eng. Chem. Res., 2000, 39 (5): 1364-1368.
    [44] XU X C, SONG C S, ANDRESEN J M, et al. Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture [J]. Energy Fuels, 2002, 16(6): 1463-1469.
    [45] HUANG H Y, YANG R T, CHINN D, et al. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas [J]. Ind. Eng. Chem. Res., 2003, 42: 2427-2433.
    [46] KNOWLES G P, GRAHAM J V, DELANEY S W, et al. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents [J]. Fuel Processing Technology, 2005, 86: 1435-1448.
    [47] KHATRI R A, CHUANG S S C, SOONG Y, et al. Carbon Dioxide Capture by Diamine-Grafted SBA-15: A Combined Fourier Transform Infrared and Mass Spectrometry Study [J]. Ind. Eng. Chem. Res., 2005, 44 (10): 3702-3708.
    [48] ZHENG F, TRAN D N, BUSCHE B J, et al. Ethylenediamine-Modified SBA-15 as Regenerable CO Sorbent [J]. Ind. Eng. Chem. Res., 2005, 44 (9): 3099-3105.
    [49] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts [J]. Micropor. Mesopor. Mater., 2006, 90: 314-326.
    [50] SAKAMOTO Y, NAGATA K, YOGO K, et al. Preparation and CO2 separation properties of amine-modi?ed mesoporous silica membranes [J]. Micropor. Mesopor. Mater., 2007, 101: 303-311.
    [51] ARSTAD B, FJELLVAG H, KONGSHAUG K O, et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide [J]. Adsorption, 2008, 14: 755-762.
    [52] ZELENAKA V, BADANICOVA M, HALAMOVA D, et al. Amine-modi?ed ordered mesoporous silica: Effect of pore size on carbon dioxide capture [J]. Chemical Engineering Journal, 2008, 144: 336-342.
    [53] ZELENAK V, HALAMOVA D, GABEROVA L, et al. Amine-modi?ed SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties [J]. Micropor. Mesopor. Mater., 2008, 116: 358-364.
    [54] GRAY M L, CHAMPAGNE K J, FAUTH D, et al. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide [J]. international journal of green house gas control, 2008, 2: 3-8.
    [55] YUE M B, SUN L B, CAO Y, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group [J]. Micropor. Mesopor. Mater., 2008, 114: 74-81.
    [56] CHATTI R, BANSIWAL A K, THOTE J A, et al. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies [J]. Micropor. Mesopor. Mater., 2009, 121: 84-89.
    [57] CHEN C, YANG S T, AHN W S, et al. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity [J]. Chem. Commun., 2009, 3627-3629.
    [58] ROSENHOLM J M, PENNINKANGA A, LINDEN M. Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine [J]. Chem. Commun., 2006, 3909-3911.
    [59] YIU H H P, WRIGHT P A. Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid [J]. J. Mater. Chem., 2005, 15: 3690-3700.
    [60] HU B, PAN J, YU H L, et al. Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate [J]. Process Biochemistry, 2009, 44: 1019-1024.
    [61] LIU Y, ZHAO G M, LIU G, et al. Cyclopentadienyl-functionalized mesoporous MCM-41 catalysts for the transesteri?cation of dimethyl oxalate with phenol [J]. Catal. Commun. 2008, 9; 2022-2025.
    [62] LIN W Y, CAI Q, PANG W Q, et al. Preparation of aluminosilicate MCM-41 in desirable forms via a novel co-assemble route [J]. Chem. Commun., 1998, 2473-2474.
    [63] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [64]安群力,王水利.室温下介孔分子筛MCM-41的合成与表征[J].化工新型材料, 2004, 32: 39-42.
    [65] (a) LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11: 3285-3295. (b) HUQ R, MERCIER L. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512-4519.
    [66] M.J. Jia, A. Seifert, W.R. Thiel, Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene [J]. Chem. Mater., 2003, 15: 2174-2180.
    [67] JIA M J, SEIFERT A, BERGER M, et al. Hybrid Mesoporous Materials with a Uniform Ligand Distribution: Synthesis, Characterization, and Application in Epoxidation Catalysis [J]. Chem. Mater., 2004, 16: 877-882.
    [68] LIU L, ZHANG G Y, DONG J X. Effects of different templating agent on the structure of silica MCM-41 mesoporous molecular sieves [J]. Acta. Phys. Chim. Sin., 2004, 20: 65-69.
    [69] FIDALGO A, IIHARCO L M. Chemical tailoring of porous silica xerogels: Local structure by vibrational spectroscopy [J]. Chem. Eur. J., 2004, 10: 392-398.
    [70] CHONG A S M, ZHAO X S. Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials [J]. J. Phys. Chem. B, 2003, 107:12650-12657.
    [71] BAE J A, SONG K C, JEON J K, et al. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation [J]. Micropor. Mesopor. Mater., 2009, 123: 289-297.
    [72] SARTORI G, BIGI F, MAGGI R, et al. Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes [J]. J. Catal., 2004, 222: 410-418.
    [73] GREGG S J, SING K S W. Adsorption, Surface Area and Porosity [M]. 2nd ed.; Academic Press: London, 1982.
    [74] WANG X G, TSENG Y H, CHAN J C C, et al. Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis [J]. J. Catal., 2005, 233: 266-275.
    [75] DUFAUD V, DAVIS M E. Design of Heterogeneous Catalysts via Multiple Active Site Positioning in Organic Inorganic Hybrid Materials [J]. J. Am. Chem. Soc., 2003, 125: 9403-9413.
    [76] LIN X H, CHUAH G K, JAENICKE S. Base-functionalized MCM-41 as catalysts for the synthesis of monoglycerides [J]. J. Mol. Catal. A: Chem., 1999, 150: 287-294.
    [77] ETIENNE M, WALCARIUS A. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium [J]. Talanta, 2003, 59: 1173-1188.
    [78] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts [J]. Micropor. Mesopor. Mater., 2006, 90: 314-326.
    [79] CHEN Y, HAN J Y, ZHANG H T. Structure and acid–base properties of surface-modi?ed mesoporous silica [J]. Appl. Surf. Sci., 2007, 253: 9400-9406.
    [80] (a) BEUTEL T. Spectroscopic and kinetic study of the alkylation of phenol with dimethyl carbonate over NaX zeolite [J]. J. Chem. Soc., Faraday Trans., 1998, 94: 985-993. (b) DU Z P, XIAO Y H, CHEN T, et al. Catalytic study on the transesteri?cation of dimethyl carbonate and phenol to diphenyl carbonate [J]. Catal.Commun., 2008, 9: 239-243.
    [81] WANG S P, MA X B, GUO H L, et al. Characterization and catalytic activity of TiO2/SiO2 for transesteri?cation of dimethyl oxalate with phenol [J]. J. Mol. Catal. A: Chem., 2004, 214: 273-279.
    [82] LIU Y, MA X B, WANG S P, et al. The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2-SiO2 for transesteri?cation of dimethyl oxalate with phenol: A comparative investigation [J]. Appl. Catal. B: Environ., 2007, 77: 125-134.
    [83] LAI C L, LEE H M, HU C H. Theoretical study on the mechanism of N-heterocyclic carbene catalyzed transesteri?cation reactions [J]. Tetrahedron Lett., 2005, 46: 6265-6270.
    [84] MOVASSAGHI M, SCHMIDT M A, N-Heterocyclic Carbene-Catalyzed Amidation of Unactivated Esters with Amino Alcohols [J]. Org. Lett., 2005, 7: 2453-2456.
    [85] CHUMA A, HORN H W, SWOPE W C, et al. The Reaction Mechanism for the Organocatalytic Ring-Opening Polymerization of L-Lactide Using a Guanidine-Based Catalyst: Hydrogen-Bonded or Covalently Bound? [J]. J. Am. Chem. Soc., 2008, 130: 6749-6754.
    [86] MA X B, GUO H L, WANG S P, et al. Transesterification of dimethyl oxalate with phenol over TS-1 catalyst [J]. Fuel Processing Technology, 2003, 83: 275-286.
    [1]赵骧.催化剂[M].北京:中国物资出版社, 2001.
    [2] MOTOKURA K, TADA M, IWASAWA Y. Acid-Base Bifunctional Catalytic Surfaces for Nucleophilic Addition Reactions [J].Chem. Asian J., 2008, 3: 1230-1236.
    [3] MOTOKURA K, TOMITA M, TADA M, et al. Acid-Base Bifunctional Catalysis of Silica-Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions [J]. Chem. Eur. J., 2008, 14: 4017-4027.
    [4] CLIMENT M J, CORMA A, FORNES V, et al. Aldol Condensations on Solid Catalysts: A Cooperative Effect between Weak Acid and Base Sites [J]. Adv. Synth. Catal., 2002, 344: 1090-1096.
    [5] ZHANG Y, ZHAO Y W, XIA C G. Basic ionic liquids supported on hydroxyapatite-encapsulatedγ-Fe2O3 nanocrystallites: An efficient magnetic and recyclable heterogeneous catalyst for aqueous Knoevenagel condensation [J]. J. Mol. Catal. A: Chem., 2009, 306: 107-112.
    [6] ZHANG Y, XIA C G. Magnetic hydroxyapatite-encapsulatedγ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation [J]. Appl. Catal. A: Gen., 2009, 366: 141-147.
    [7] PALANI A, GOKULAKRISHNAN N, PALANICHAMY M, et al. Transesteri?cation of dimethyl carbonate with diethyl carbonate over Al-Zn-MCM-41 and Al-MCM-41 molecular sieves [J]. Appl. Catal. A: Gen., 2006, 304: 152-158.
    [8] LIU G, WANG Z L, JIA M J, et al. Thermally Stable Amorphous Mesoporous Aluminophosphates with Controllable P/Al Ratio: Synthesis, Characterization, and Catalytic Performance for Selective O-Methylation of Catechol [J]. J. Phys. Chem. B, 2006, 110: 16953-16960.
    [9] STEIN A. Advances in microporous and mesoporous solids - Highlights of recent progress [J]. Adv. Mater., 2003, 15: 763-775.
    [10] LIN W Y, CAI Q, PANG W Q, et al. Preparation of aluminosilicate MCM-41 in desirable forms via a novel co-assemble route [J]. Chem. Commun., 1998, 2473-2474.
    [11] ZHAO D Y, HUO Q S, FENG J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [12] ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548.
    [13] ANWANDER R, NAGL I, WIDENMEYER M, et al. Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation [J]. J. Phys. Chem. B., 2000, 104: 3532-3544.
    [14] GREGG S J, SING K S W. Adsorption, Surface Area and Porosity [M]. 2nd ed.; Academic Press: London, 1982.
    [15] BECK J S, VARTULI J C, ROTH W J, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates [J]. J. Am. Chem. Soc., 1992, 114: 10834-10843.
    [16] GONZALEZ F, PESQUERA C, PERDIGON A, et al. Synthesis, characterization and catalytic performance of Al-MCM-41 mesoporous materials [J]. Appl. Sur. Sci.,2009, 255: 7825-7830.
    [17] (a) LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11: 3285-3295. (b) HUQ R, MERCIER L. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512-4519.
    [18] JIA M J, SEIFERT A, THIEL W R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene [J]. Chem. Mater., 2003, 15: 2174-2180.
    [19] JIA M J, SEIFERT A, BERGER M, et al. Hybrid Mesoporous Materials with a Uniform Ligand Distribution: Synthesis, Characterization, and Application in Epoxidation Catalysis [J]. Chem. Mater., 2004, 16: 877-882.
    [20] SELVARAJ M, PANDURANGAN A, SESHADRI K S, et al. Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al [J]. Appl. Catal. A: Gen., 2003, 242: 347-364.
    [21] ZHANG L, LIU J, YANG J, et al. Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas [J]. Micropor. Mesopor. Mater., 2008, 109: 172-183.
    [22] BAE J A, SONG K C, JEON J K, et al. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation [J]. Micropor. Mesopor. Mater., 2009, 123: 289-297.
    [23] SOCRATES G. Infrared Characteristics Group Frequencies. Wiley, New York, 1994.
    [24] RAJAGOPALAN T, LAHLOUH B, LUBGUBAN J A, et al. Investigation on hexamethyldisilazane vapor treatment of plasma-damaged nanoporous organosilicate ?lms [J]. Appl. Sur. Sci., 2006, 252: 6323-6331.
    [25] PARK K W. Spectroscopy characteristics for interlamellar silylation of H+-titanosilicate using dodecylamine and octyltriethoxysilane [J]. Micropor. Mesopor. Mater., 2010, 127: 142-146.
    [26] IGARASHI N, HASHIMOTO K, TATSUMI T. Catalytical studies on trimethylsilylated Ti-MCM-41 and Ti-MCM-48 materials [J]. Micropor. Mesopor.Mater., 2007, 104: 269-280.
    [27] CAMPELO J M, JARABA M, LUNA D, et al. Effect of phosphate precursor and organic additives on the structural and catalytic properties of amorphous mesoporous AlPO4 materials [J]. Chem. Mater., 2003, 15: 3352-3364.
    [28] BAUTISTA F M, CAMPELO J M, GARCIA A, et al. Structure, Texture, Surface Acidity, and Catalytic Activity of AlPO4-ZrO2 (5-50 wt% ZrO2) Catalysts Prepared by a Sol-Gel Procedure [J]. J. Catal., 1998, 179: 483-494.
    [29] CHONG A S M, ZHAO X S. Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials [J]. J. Phys. Chem. B, 2003, 107: 12650-12657.
    [30] LUAN Z H, FOURNIER J A, WOOTEN J B, et al. Preparation and characterization of (3-aminopropyl)triethoxysilane-modified mesoporous SBA-15 silica mollecular sieves [J]. Micropor. Mesopor. Mater., 2005, 83: 150-158.
    [31] SARTORI G, BIGI F, MAGGI R, et al. Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes [J]. J. Catal., 2004, 222: 410-418.
    [32] ETIENNE M, WALCARIUS A. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium [J]. Talana, 2003, 59: 1173-1188.
    [33] GOLUB A A, ZUBENKO A I, ZHMUD B V.γ-APTES Modified Silica Gels: The Structure of the Surface Layer [J]. J. Colloid. Interf. Sci., 1996, 179: 482-487.
    [34] ZHMUD B V, PECHENYI A B. Acid-Base Properties and Electrokinetic Behavior of Amine-Containing Organopolysiloxane Matrices [J]. J. Colloid. Interf. Sci., 1995, 173: 71-78.
    [35]但敏,李斌,陈枫等.羟基磷灰石(HA)的制备方法及其研究进展[J].现代生物医学进展, 2006 , 6: 125-127.
    [36]梁琼,韩冬梅,顾福博.热重结晶法制备羟基磷灰石纳米棒[J].无机化学学报, 2007, 23: 86-90.
    [37]汪晓霞,张海矜.羟基磷灰石晶须的水热合成法合成及表征[J].南京航空航天大学报, 2005, 37: 611-615.
    [38]郭广生,王颖,王志华等.化学沉淀法制备羟基磷灰石纳米粒子[J].化学通报, 2004, 11: 830-834.
    [39]郭连峰,张文光,王成焘.纳米羟基磷灰石的制备及结晶尺寸的控制[J].无机化学学报, 2004, 20: 291-296.
    [40] BOGDANOVICIENE I, BEGANSKIENE A, GLASER J, et al. Calcium hydroxyapatite Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol-gel processing [J]. Materials Research Bulletin, 2006, 41: 1754-1762.
    [41]王峰,李木森,隋金玲等.快速溶胶-凝胶法制备纳米级羟基磷灰石[J].生物骨科材料与临床研究, 2004 , 1: 17-20.
    [42]程艳玲.溶胶凝胶法制备羟基磷灰石粉体的新工艺[D].兰州:兰州理工大学, 2007, 19-26.
    [43]刘敬肖,史非,周靖等.模拟体液中仿生羟基磷灰石超细粉的制备及表征[J].硅酸盐学报, 2006, 34: 334-339.
    [44] TAS A C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃in synthetic body fluids [J]. Biomaterials, 2000, 21: 1429-1438.
    [45] RODRIGUEZ R, ESTEVEZ M, VARGAS S, et al. Synthesis and characterization of HAP-based porous materials [J]. Mater. Lett., 2009, 63: 1558-1561.
    [46]赵森林,廖立兵.介孔羟基磷灰石研究进展[J].有色金属, 2009, 61: 55-60.
    [47] TSUCHIDA T, KUBO J, YOSHIOKA T, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst [J]. J. Catal. 2008, 259: 183-189.
    [48] YAMAGUCHI K, MORI K, MIZUGAKI T, et al. Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation [J]. J. Am. Chem. Soc., 2000, 122: 7144-7145.
    [49] MORI K, YAMAGUCHI K, MIZUGAKI T, et al. Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen [J]. Chem. Commun., 2001, 461-462.
    [50] PETCHSANG N, PON-ON W, HODAK J H, et al. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure [J]. J.Magn. Magn. Mater., 2009, 321: 1990-1995
    [51] (a) YANG Z P, ZHANG C J. Adsorption and photocatalytic degradation of bilirubin on hydroxyapatite coatings with nanostructural surface [J]. J. Mol. Catal. A: Chem., 2009, 302: 107-111. (b) LIN K L, PAN J Y, CHEN Y W, et al. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders [J]. J. Hazard. Mater., 2009, 161: 231-240.
    [52] (a) KRONICK P L, CAMPBELL G L, JOSEPH K, Science, 1978, 200: 1074-1076. (b) OKTEM H A, BAYRAMOGLU G, OZALP V C, et al. Biotechnol. Prog., 2007, 23: 146-154. (c) KIM J, LEE J E, LEE J, et al. J. Am. Chem. Soc., 2006, 128: 688-689.
    [53] YU J X, ZHAO H Y, YE L, et al. Effect of surface functionality of magnetic silica nanoparticles on the cellular uptake by glioma cells in vitro [J]. J. Mater. Chem., 2009, 19: 1265-1270.
    [54] LU A H, SCHMIDT W, MATOUSSEVITCH N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst [J]. Angew. Chem. Int. Ed., 2004, 43: 4303-4306.
    [55] ZHAI Y P, DOU Y Q, LIU X X, et al. One-pot synthesis of magnetically separable ordered mesoporous carbon [J]. J. Mater. Chem., 2009, 19: 3292-3300.
    [56] TELEKI A, SUTER M, KIDAMBI P R, et al. Hermetically Coated Superparamagnetic Fe2O3 Particles with SiO2 Nano?lms [J]. Chem. Mater., 2009, 21: 2094-2100.
    [57] ZBORIL R, MASHLAN M, PETRIDIS D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications [J]. Chem. Mater., 2002, 14: 969.
    [58] MORI K, YAMAGUCHI K, HARA T, et al. Controlled synthesis of hydroxyapatite- supported palladium complexes as highly efficient heterogeneous catalysts [J]. J. Am. Chem. Soc., 2002, 124: 11572-11573.
    [59] MORI K, KANAI S, HARA T, et al. Development of Ruthenium Hydroxyapatite-Encapsulated Superparamagneticγ-Fe2O3 Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen [J]. Chem. Mater., 2007, 19:1249-1256.
    [60] MORI K, KONDO Y, MORIMOTO S, et al. Synthesis and Multifunctional Properties of Superparamagnetic Iron Oxide Nanoparticles Coated with Mesoporous Silica Involving Single-Site Ti Oxide Moiety [J]. J. Phys. Chem. C, 2008, 112: 397-404.
    [61] WANG C X, YIN L W, ZHANG L Y, et al. Magnetic (γ-Fe2O3@SiO2)n@TiO2 Functional Hybrid Nanoparticles with Actived Photocatalytic Ability [J]. J. Phys. Chem. C, 2009, 113: 4008-4011.
    [62] HYEON T, LEE S S, PARK J, et al. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process [J]. J. Am. Chem. Soc., 2001, 123: 12798.
    [63] KALITA S J, VERMA S. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization [J]. Materials Science and Engineering C, 2010, 30: 295-303.
    [64] BORUM L, WILSON JR O C. Surface modi?cation of hydroxyapatite.Part II.Silica [J]. Biomaterials, 2003, 24: 3681-3688.
    [65] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts [J]. Micropor. Mesopor. Mater., 2006, 90: 314-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700