用户名: 密码: 验证码:
松辽盆地上白垩统旋回地层与坳陷盆地的沉积演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白垩纪是当前国际地学界研究的热点。对白垩纪沉积的旋回性研究是深入探讨白垩纪地球表层系统的有效途径之一,而旋回地层学恰恰提供了可行的研究思路和方法。松科1井是一口全取心科学探井,完成了松辽盆地泉三段顶部-泰康组底部的取心,取心率高达96.46%,其为松辽盆地上白垩统旋回沉积研究提供了前所未有的平台。作者对松科1井岩心进行了精细岩性识别与分类和沉积微相的系统识别与类型划分,完成了精细岩性-沉积微相剖面。以沉积微相的解释为基础,在全井段识别出各类具有成因意义的米级旋回。运用米级旋回的Fischer图解建立了松辽盆地上白垩统的旋回地层格架。在不同沉积环境中选择具有确定周期的旋回,以可靠的极性地层点对应的年龄为计算基准点,计算得到与本井极性地层、古生物地层、U-Pb年代值基本吻合的旋回地层年代格架,给出了各组段的底界年代值和不整合缺失时间,进而增修了松辽盆地晚白垩世年代地层格架。在年代格架下计算得到各级次旋回的旋回时限。最后,基于松科1井中发育的震积岩、变形构造和红层探讨了晚白垩世松辽盆地的沉积演化特征。
Cretaceous is a one of current international hot spot in geological researches. The study on cyclicity of Cretaceous sediments is an effective way to explore the Cretaceous earth surface system, and the cyclostratigraphy just provides a feasible ideas and methods for that. CCSD-SKI ( China Continental Scientific Drilling-SongKe I), a scientific drilling hole with whole coring, had taken the cores from the top of Quantou Fm. (upper Cretaceous) to the bottom of Taikang Fm. (Tertiary) with 96.46% of core recovery. Continuous core of upper Cretaceous provided an unprecedented platform for sediment cyclicity research.
     The rock core 2485.89m long is the study material of this thesis. Upper Cretaceous lithology section is built up by centimeter-level core description. Kinds of sedimentary microfacies are identified and typical sedimentary sequences are summarized. Meter-scale cycles (a basic genetic stratigraphic unit) are identified based on the explanation of sedimentary microfacies. Metre-scale cycles are classified based on detailed studies of internal characteristics within a metre-scale cycle. Fischer plots of metre-scale cycles show the stacking patterns of meter-scale cycle(sixth-order cycle), fifth-order cycle, fourth-order cycle and third-order cycle, and then cyclostratigraphic framework of upper Cretaceous in Songliao Basin is established. The bottom boundary ages of all members are calculated in three steps.First is taking reliable reference points in the section with the absolute ages from polarity stratigraphy and biostratigraphy as calculation starting points. Second is counting numbers of cycles which have orbit period (precession period or obliquity period) from the bottom boundary of member to starting points. The third is calculating the the duration by calculating the summation of each product of cycle number and corresponding period from starting point to bottom boundary. All boundary ages of member are calculated in this way. Upper Cretaceous chronostratigraphy of Songliao Basin is finally improved. Further calculation includes the time limits of all orders of cycles and the durations of unconformities. The mechanisms of different order cycles also are explained. Sedimentary evolution of Songliao Sag basin are discussed based on seismites in Qingshankou Formation, faults in Mingshui Formation and red beds, as well as sedimentary cyles in whole section of CCSD-SKI.
     The main progresses are following:
     1. Identification and classification of rocks
     Terrigenous clastic rock, intraclast rock and sedimentary pyroclastic rock are three main rock sorts indentified from the core rocks with 2485.89 m in CCSD-SKI. The terrigenous clastic rock is divided into 7 types of rocks after the grain size, including mudstone, siltystone, fine sandstone, medium sandstone, coarse sandstone, fine and medium conglomerate and there are 37 specific lithologies. The intraclast rock includes 3 types of rocks: limestone, dolomite and combustible organic rock, and there are 7 specific lithologies. The sedimentary pyroclastic rock is tuff only.
     2. Recognition and identification of sedimentary microfacies
     Lithology, structure, content, rock color and the sequence characteristics are considered in identifying sedimentary microfacies. There are five types of sedimentary environments, including meandering river, delta, lakeshore, shallow lake and semi-deep to deep lake in which 29 kinds of microfacies deveoped. The meandering river develops channel lag, point bar, natural levee, crevasse splay, crevasse channel, flooded plain and flooding lake. The delta develops subaqueous distributary channel, mouth bar, interdistributary bay, distal bar and slump sediment. The lakeshore develops sand beach and mud beach. The shallow lake develops mudstone of still water, turbdite, nearshore bar and tempestite. The semi-deep to deep lake develops mudstone of still water, mud limestone, dolostone, oil shale, volcanic ash, turbidite, slump sediment, temperitite, seismite, ostracoda limestone and sparite carbonate.
     3. Establishment of microfacies succession
     The succession of sedimentary microfacies of CCSD-SKI is established based on completeness of microfacies identification in the whole well. Quantou Formation (from the top of the third member to the fourth member) was dominanted by meandering river facies, and shallow lake and delta just developed at the top of the fourth member of Quantou Formation. Qingshankou Formation was dominated by semi-deep lake and deep lake facies except the top part of the third member which developed the shallow lake facies. Yaojia Formation was dominated by shallow lake and semi-deep lake faices, and delta facies just developed at the bottom of the first member of Yaojia Formation. The first and the second members of Nenjiang Formation were domimated by semi-deep and deep lake facies, the third and the fourth members of Nenjiang Formation were dominated by shallow lake and delta facies, and the fifth member of Nenjiang Formation was dominated by meandering river facies, and delta facies just developed at the bottom of the fifth member of Nenjiang Formation. The lower and the upper parts of Sifangtai Formation were dominated by meandering river facies, and shallow lake facies developed at the middle part. Mingshui Formation was dominated by meandering river facies and the shallow lake facies just developed at the middle and the upper parts. The sedimentary microfacies are different,developed in the same facies but in different formations.
     4. Identification and classification of meter-scale cycles
     The identification of basic genetic stratigraphic cycle unit is the basis of section cyclstratography research. Each meter-scale cycle represents a forming process of basic stratigraphic unit. Sediments in different sedimentary environments formed their own unique type of meter-scale cycles. Three sorts of meter-scale cycle are classified, which are normal grading, reverse grading and non-grading. The normal grading with fining upward developed in meandering river sediments, lakeshore sediments and upper nearshore bar,indicating a decreasing hydrodynamic energy upward. This sort includes channel lag-point bar, channel lag-point bar-natural levee, point bar-natural levee, point bar-natural levee- flooding lake, crevasse splay- flooding lake, crevasse splay-flooded plain-flooding lake, crevasse splay-flooded plain, flooded plain-flooding lake, crevasse channel-flooded plain, crevasse channel-flooding lake, crevasse channel- crevasse splay-flooded plain, upper nearshore bar, sand beach-mud beach, sand beach and tempestite. The reverse grading with coarsing upward developed in deltac sediments, shallow lake sediments and semi-deep to deep lake sediments,indicating a increasing hydrodynamic energy upward. This sort includes subaqueous interdistributary bay-mouth bar- subaqueous distributary channel, mouth bar- subaqueous distributary channel, subaqueous interdistributary bay-mouth bar, distal bar- mouth bar, mudstone of still water-distal bar, mudstone of still water-sheet sand, mudstone of still water-slump sediment, medium nearshore bar, lower nearshore bar, mudstone of still water-gravity flow channel, mudstone of still water-sandy turbidite, mudstone of still water-ostracoda clast turbidite and mudstone of still water-seismite. Non-grading with no grade changing presents mainly the changes of lithology (mudstone and intraclast rocks) and rock color within a meter-scale cycle. This sort includes marlite-mudstone of still water, recrystalline limestone-mudstone of still water, mudstone of still water-dolomite, oil shale-mudstone of still water, reduction color- oxidation color, strong reduction color- weak reduction color.
     5. Establishment of upper Cretaceous cyclostratigraphic framework in Songliao Basin
     Fischer plots of meter-scale cycles present the vertical stacking patterns of meter-scale cycles (equivalent to sixth-order cycle). Fifth-order cycle, fourth-order cycle and third-order cycle are identified in turn based on accommodation space changing trend showed by Fischer plots. Fifth-order cycles are defined by vertical stacking of meter-scale cycles, Fourth-order cycles are defined by vertical stacking of fifth-order cycles, third-order cycles are defined by vertical stacking of fourth-order cycles. Each stacking process presents the accommodation space change of increasing at first and then decreasing. Quantou Formation presents seventy-six meter-scale cycles(six-order), twenty-five fifth-order cycles, eight fourth-order cycles and one third-order cycle. Average three or four meter-scale cycles stacked one fifth-order cycle, and average two or three fifth-order cycles stacked one fourth-order cycle. Qingshankou Formation presents five hundred and three metre-scale cycles, one hundred and fifty-five fifth-order cycles, twenty-six fourth-order cycles and three third-order cycles. Average three or four metre-scale cycles stacked one fifth-order cycle, and average five or six fifth-order cycles stacked one fourth-order cycle. Yaojia Formation presents five hundred and fifty-one meter-scale cycles, forty-five fifth-order cycles, ten fourth-order cycles and one complete and two incomplete third-order cycles. Average three or four metre-scale cycles stacked one fifth-order cycle, and, average four or five fifth-order cycles stacked one fourth-order cycle. Nenjiang Formation presents six hundred and thirty metre-scale cycles, one hundred and fifty-two fifth-order cycles, forty fourth-order cycles and five third-order cycles. Average three to five metre-scale cycles stacked one fifth-order cycle, average three or four fifth-order cycles stacked one fourth-order cycle. Sifangtai Formation presents one hundred and seventy-four metre-scale cycles, forty-three fifth-order cycles, thirteen fourth-order cycles and two third-order cycles. Average three or four metre-scale cycles stacked one fifth-order cycle, and average three or four fifth-order cycles stacked one fourth-order cycle. Mingshui Formation presents three hundred and sixty-one meter-scale cycles, one hundred and nine fifth-order cycles, twenty-nine fourth-order cycles and one complete and two incomplete third-order cycles. Average three or four metre-scale cycles stacked one fifth-order cycle, and average three or four fifth-order cycles stacked one fourth-order cycle.
     6. The improvement of late Cretaceous chronostratigraphy framework in Songliao Basin
     Calculating geological age in high resolution is an important advantage of cyclostratigraphy, just as it is used in International Stratigraphic Chart (2004). Meter-scale cycles with main precession period in meandering river sediments and fifth-order cycles with main obliquity period are used used in calculating cyclostratigraphic age of CCSD-SKI. The final calculated result is basically consistent with polarity stratigraphy, biostratigraphy and U-Pb ages. The chronostratigraphy framework of upper Cretaceous Songliao Basin is improved based on cyclostratigraphic age. The bottom boundary ages of each member and the duration of unconformity are provided. The bottom boundary age of Qingshankou Formation is 92.04Ma, the bottom boundary age of Yaojia Formation is 85.97Ma, the bottom boundary age of Nenjiang Formation is 84.21Ma, the bottom boundary age of Sifangtai Formation is 75.36Ma, the bottom boundary age of Mingshui Formation is 70.63Ma, and the top boundary age of Mingshui Formation is 64.32Ma. The duration of the unconformity developed at the top of Nenjiang Formation is 1.1 Ma and that developed at the top of Sifangtai Formation is 1.2Ma.
     7. Time limits of cycles
     Each cycle in cyclostratigraphy framework has it’s own time limit of cycle. The time limit of cycle is closely related to main controlling factors of cycle forming, but sedimentary records of main controlling factors are differential in different sedimentary environments. The time limits of cycles in CCSD-SKI are as follows.The meter-scale cycles in delta and lake environment have semi-precession period of 8.1~12.29ka, the meter-scale cycles in meandering river environment have precession period of 22.28~22.50ka. The fifth-order cycles in lake and delta environment have obliquity period of 39.03~39.59ka, the fifth-order cycles in meandering river have periods within short eccentricity of 72.5~92.2ka. The fourth-order cycles have eccentricity period of 149~275.38ka. The third-order cycles have a minimum period of 1.10Ma and a maximum period of 3.42Ma.
     8. Forming mechanisms of cycles
     The forming mechanisms of meter-scale cycles and higher-order cycles are determined based on detailed explainations of autocyclic factors of meter-scale cycle, stacking patterns of cycles and time limits of cycles. The results are as follows: the forming mechanism of normal-grading and reverse-grading meter-scale cycles (excluding event sediments induced meter-scale cycles) was a process of autocycle controlled by allocycle, the forming mechanism of event sediments induced meter-scale cycles was a process of autocycle induced by allocyclic factors, the forming mechanism of non-grading meter-scale cycles was a process of allocycle. The forming process of fifth-order cycles was controlled by obliquity and superposition effect of obliquity period and short eccentricity period. The forming process of fourth-order cycles was controlled by superposition effect of short period and eccentricity period. The forming process of third-order cycles was mainly controlled by basin tectonic activities, followed by external source input, climate change and earth orbit system factors which may controlled the external source input and climate change.
     9. New understandings of sedimentary evolution of Songliao sag basin based on CCSD-SKI
     Seismites developed in Qingshankou Formation are evidence of Sunwu-Shuangliao transcrustal fault activities. Transcrustal fault activities and associated volcanic activities show that basin extension occurred at the strong subsidence stage of sag basin. Expansion of the lake area and the development of extensional faults in the lower and middle part of Sifangtai Formation, the first member and parts of second member of Mingshui Formation, indicate that extension also occurred at the shrinkage stage of sag basin. Cyclic development is a significant characteristics of upper Cretaceous red beds in Songliao Basin. The studies of relations between rock colors and palaeoclimate show that the red beds developed in high temperature and arid environment or medium temperature and semiarid environment. In addition, red beds corresponding to low accommodation and sedimentary records of Milankovitch cycle (orbital cycle) in whole well indicate climate played an important role at the sedimentary evolution stage of Songliao sag basin.
引文
[1] Abdul Aziz H, Hilgen F, Krijgsman W, Sanz E and Calvo J P. Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain) [J]. Earth and Planetary Science Letters, 2000, 177: 9-22.
    [2] Adhémar J A. Revolucion des Mers, Déluges periodique [M].Carilian-Goeury et V. Dalmont, Paris, 1842.
    [3] Ambraseys N. Engineering seismology [J]. Earthquake Engineering and Structural Dynamics, 1988, 17: 1-105.
    [4] Anderson R Y. A long geoclimatic record from the Permian [J].Journal of Geophysical Research ,1982,87: 7285-7294.
    [5] Anderson R Y. Orbital forcing of evaporite sedimentation [G]//Imbrie J, Hays J, Kukla G and Saltzman B (eds). Milankovitch and Climate: Understanding the Response to Orbital Forcing. Reidel, Dordrecht, 1984:147-162.
    [6] Anderson R Y. The varve microcosm: propagator of cyclic bedding [J]. Paleoceanography, 1986, 1:373-382.
    [7] Anderson E J, Goodwin P W.The significance of meter - scale allo-cyces in the quest for a fundamental stratigraphic unit [J].Journal of Geology,1990,147:507-518.
    [8] Aswan, Tomowo Ozawa. Milankovitch 41000-year cycles in lithofacies and molluscan content in the tropical Middle Miocene Nyalindung Formation, Jawa, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235:382-405.
    [9] Axel Hofmann, Abedlilah Tourani and Reinhard Gaupp. Cyclicity of Triassic to Lower Jurassic continental red beds of the Argana Valley, Morocco: implications for palaeoclimate and basin evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161: 229-266.
    [10] Berger A. Accuracy and frequency stability of the Earth’s orbital elements during the Quaternary [G]//Berger A, Imbrie J, et al. eds. Milankovitch and Climate, Nato Asiser. C, 1984, 3-39.
    [11] Berger A. Pre-Quaternary Milankovitch frequencies [J]. Nature, 1989, 342: 133.
    [12] Berger A, Loutre M F and Laskar J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies [J]. Science New Series, 1992, 255(5044): 560-566.
    [13] Berger A, Crucifix M, Loutre M F. Feedbacks in the response of the LLN climate model to the astronomical forcing [C]// Earth System Processes-Global Meeting, Edinburgh International Conference Centre: Pentland, 2001.
    [14] Berger W H and Keir R S. Glacial-Holocene changes in atmospheric CO2 and the deep-searecord [C]//Hansen J E and Takahashi T (Eds.). Climate processes and climate sensitivity: Geophysical Monograph 29, American Geophysical Union, Washington, D.C, 1984, 337-351.
    [15] Boss S K, Rasmussen K A. Misuse of Fischer plots as sea-level curves [J]. Geology, 1995, 23:221-224.
    [16] Bradley W B. The varves and climate of the Green River epoch [J]. U. S. Geological Survey Professional Paper, 1929, 158:87-110.
    [17] Burgess P M, Wright V P and Emery D. Numerical forward modeling of peritidal carbonate parasequence development: implications for outcrop interpretation [M]. Basin Research, 2001, 13: 1-16.
    [18] Chamberlin T C. The influence of great epochs of limestone formation upon the constitution of the atmosphere [J], J. Geology, 1898, 6:609-621.
    [19] Cheng R H, Wang G D, Wang P J and Gao Y F. Microfacies and deep-water deposits and forming models of the Chinese Continental Scientific Drilling-SKII [J]. Acta Geologica Sinica, 2007, 81(6): 1026-1032.
    [20] Croll J. Climate and Time in their Geological Relations: A Theory of Secular Changes of the Earth’s Climate [M]. Daldy, Ibister&Co., London, 1875.
    [21] Croll J. On the physical cause of the change of climate during geological epochs [J]. Philosophical Magazine, 1864, 4(28):121-137.
    [22] Cronin M, Tauxe L, Constable C, et al. Noise in the quite zone [J]. Earth and Planetary Science Letters, 2001, 190:13-30.
    [23] De Geer G. A geochronology of the last 12000 years [C]. Congr. Géol. Int. Stockholm 1910, C.R., 1912:241-253.
    [24] Dean W F and Gardner J V. Milankovitch cycles in neogene deep-sea sediment [J].Paleoceanograpy,1981, 1:539-533.
    [24] Dodson. Timing and response of vegetation change to Millankovitch forcing in temperate Australia and New Zealand [J]. Global and Planetary Change, 1998, 18: 161-174.
    [26] Einsele G.Limestone-marl-cycle(speriodites):Diagenesis,Significance,Causes-a review(C) // Einsele G, Seilacher A(Eds). Cyclic and event stratification,Springe(rBerlin),1982: 8-35.
    [27] Einsele G, Seilacher A. Cyclic and Event Stratification. Springer-Verlag,1982: 1-306.
    [28] Einsele G. Marine depositional events controlled by sediment supply and sea-level changes [J]. Geol. Rundsch., 1993, 82: 173-184.
    [29] Fairbridge R W and Claude Hillaire-Marcel. An 8000yr palaeoclimatic record of the‘Double-Hale’45yr solar cycle [J]. Nature,1977, 268: 413-416.
    [30] Fischer A G. The Lofter Cyclothems of the alpine Triassic [J]. Kansas Geological SurveyBulletin, 1964, 169(1): 107-149.
    [31] Fischer A G. Climate rhythms recorded in strata [J]. Annual Review of Earth and Planetary Science, 1986,14: 351-376.
    [32] Fischer A G, De Bore P L and Premoli Silva I. Cyclostratigraphy[C]// Beaudoin B R, Ginsburg N. Global Sedimentary Geology Program: Cretaceous Resources, Events, and Rhythms. NATO ASI Series, Kluwer,1988,139-172.
    [33] Friedman G M, Sanders J E, Kopaske-Merkel D C. Principles of Sedimentary Deposits- Stratigraphy and Sedimentology [M]. New York: Macmillan Publishing Company; Toronto: Maxwell Macmillan Canada; New York, Oxford, Singapore, Sydney: Maxwell Macmillan International, 1992.
    [34] Gilbert G K. Sedimentary measurement of Cretaceous time [J]. J. Geol.,1895,3:121-127.
    [35] Gradstein F M, Ogg J G, Smith A G, Bleeker W, Lourens L. A new geological time scale, with special reference to Precambrian and Neogene [J]. Episodes, 2004, 27(2):83-100.
    [36] Goldhammer R K,Dunn P A,Hardie I A. High frequency glacioeustatic sea-level oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in Northern Italy [J]. American Journal of Science, 1987, 287(9): 853-892.
    [37] Goodwin P W, Anderson E J. Punctuated aggradational cycles: A general hypothesis of episodic stratigraphic accumulation [J]. Journal of Geology, 1985, 93:515-533.
    [38] Helmke J P, Schulz Michael, Bauch H A. Sediment-color record from the Northeast Atlantic reveals patterns of millennial-scale climate variability during the past 50000 years. Quaternary Research, 2002, 57:49-57.
    [39] Helmut Mayer, Erwin Appel. Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy [J]. Cretaceous Research, 1999, 20: 189-214.
    [40] Helsley C E, Steniner M B. Evidence for long intervals of normal polarity during the Cretaceous period [J]. Earth and Planetary Science Letters, 1969, 5:325-332.
    [41] Herbert T D, Fischer A G. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy [J]. Nature,1986, 321:739-743.
    [42] Hilgen F J, Schwarzacher W and Strasser A. Concepts and definitions in cyclostratigraphy (second report of the cyclostratigraphy working group) [J]. SEPM. Spec. Publ. 2004, 81:303-305.
    [43] Hofmann A, Tourani A, Gaupp R. Cyclicity of Triassic to Lower Jurassic continental red beds of the Argana Valley, Morocco: implications for palaeoclimate and basin evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161(1-2):229-266.
    [44] House M R. A new approach to an absolute time scale from measurements of orbital cycles and sedimentary microrhythms [J]. Nature, 1985, 316:721-725.
    [45] House M R, Gale A S. Orbital Forcing Timescales and Cyclostratigraphy (85) [M]. London:Geological Society, 1995.
    [46] Hu X M, Luba Jansa, Wang C S, Massimo Sarti, Krzysztof Bak, Michael Wagreich, Jozef Michalik, Ján Soták. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies , age, and environments [J]. Cretaceous Research, 2005, 26:3-20.
    [47] Jenkyns H C. Cretaceous anoxic events: From continents to oceans [J]. Journal of the Geological Society London, 1980, 137: 171-188.
    [48] Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume [J]. Geology, 1991, 19:963-966.
    [49] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous [J]. Paleoceanography, 2002, 17(3):1-29.
    [50] Mihaela Carmen Melinte, Dan Jipa. Campanian-Maastrichtian marine red beds in Romania: biostratigraphic and genetic significance [J]. Cretaceous Research, 2005, 26:49-56.
    [51] Milankovitch M. Théorie mathématique des phénomènes thermiques produits par la radiation solaire [J]. Acad.Yougoslave Sci. Arts,Zagreb,1920.
    [52] Milankovitch M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeiten problem [J]. Acad. Roy.,1941, 133: 633.
    [53] Moretti M, Alfaro P, Caselles O, Canas J A. Modelling seismites with a digital shaking table [J]. Tectonophysics, 1999, 304: 369-383.
    [54] Neuhuber S, Wagreich M, Wendler I, Sp?tl C. Turonian Oceanic Red Beds in Eastern Alps: Concepts for palaeoceanographic changes in the Mediterranean Tethys [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251:222-238.
    [55] Newberry J S. Surface Geology [J]. Ohio Geol. Survey, 1874, 2:1-80.
    [56] Olsen P E. A 40-million-year lake record of early Mesozoic climatic forcing [J]. Science, 1986, 234:842-848.
    [57] Osleger D A. Subtidal carbonate cycles: Implications for allocyclic versus autocyclic controls [J]. Geology, 1991, 19:917-920.
    [58] Osleger D A, Read J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, USA [J]. Journal of Sedimentary Petrology, 1991, 61:1225-1252.
    [59] Perlmutter M A, Matthews M D. Global cyclostratigraphy-A model[C]//Cross T A. Quantitative dynamic stratigraphy. London, Prentice-Hall, 1989, 233-260.
    [60] Plotnick R E, Perlmutter M A. Lacunarity analysis of cyclic stratigraphic sequences [J]. 1997,3:513-518.
    [61] Posamentier H W, Vail P R. Eustatic controls on clastic deposition II-sequence and systems track models[G]// Wilgus C K, Hastings B S, Ross C A, Posamentier H W, Van Wagoner J C, Kendall C G. Sea-level Changes: An Integrated Approach. SEPM (Society for Sedimentay Geology) Special Publication , 1988,42: 125-154.
    [62] Read J F. Carbonate platform facies models [J]. American Assoc. Petrol. Geol. Bull., 1985, 69:1-21.
    [63] Read J F. Controls on evolution of Cambrian-Ordovician passive margin, US Appalachians[C] // Crevello P D, Wilson J L, Sarg J F, Read J F. Controls on Carbonate Platform and Basin Development. Society of Economic Paleontologists and Mineralogists Special Publication, 1989, 44:147-185.
    [64] Read J F, Goldhammer R K. Use of Fischer Plots to define third order sea-level curves in peritidal cyclic carbonates, Early Ordovician, Appalachians [J]. Geology, 1988, 16:895-899.
    [65] Rial J A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity [J]. Science, 1999, 285:564-568.
    [66] Rio D, Silva I P, Capraro L. The geological time scale and the Italian stratigraphic record [J]. Episodes, 2003, 26(3):259-263.
    [67] Rutherford S, Steven D’Hondt. Early onset and tropical forcing of 1000000-year Pleistocene glacial cycles [J]. Nature, 2000, 408:72-75.
    [68] Sadler P M, Osleger D A,Monta?ez I P.On the labeling, length, and objective basis of Fischer plots [J]. Journal of Sedimentary Petrology,1993, 63:360-368.
    [69] Sanders J E, Kumar N. Evidence of shoreface retreat and in–place‘drowning’during Holocene submergence of barriers, shelf off Fire Island, New York [J]. Bull. Geol. Soc. Am., 1975, 86:65-76.
    [70] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Cause and consequence [J]. Geol. Mijinb., 1976, 55:179-184.
    [71] Schwarzacher W. Uber die sedimentare Rhvtmik des Dachsteinkalkes von Lofer [J]. Verhandlungen der Geologischen Bundesanst, 1947:175-188.
    [72] Schwarzacher W. Cyclostratigraphy and the Milankovitch Theory [M]. Amsterdam, London, New York, Tokyo:Elsevier, 1993.
    [73] Seilacher A. Fault-graded beds interpreted as seismites [J]. Sedimentology, 1969, 13(1-2): 155-159.
    [74] Seilacher A. Sedimentary structures tentatively attributed to seismic events [J]. Mar. Geol.,1984, 55(1-2): 1-12.
    [75] Spalleta C, Vail G B. Upper Devonian intraclast parabreccias interpreted as seismites [J]. Mar. Geol., 1984, 55(1-2):133-144.
    [76] Thomas G H, Kevin T P, Stuart A R. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites [J]. Earth and Planetary Science Letters, 2008, 272:130-138.
    [77] Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap [C]//Payton C W, Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 1977, 26: 83-97.
    [78] Van der Zwan C J. The impact of Milankovitch-scale climatic forcing on sediment supply [J]. Sedimentary Geology, 2002, 147:271-294.
    [79] Walliser O H. Global Events and Event Stratigraphy in the Phanerozoic [M]. Berlin Heidelberg: Springer-verlag,1996: 242-252.
    [80] Wang C S, Hu X M, Massimo Sarti, et al. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-sea environments [J].Cretaceous Research, 2005, 26:21-32.
    [81] Wang P J, Liu W Z, Wang S X, Song W H. 40Ar/ 39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynamics[J]. Int J Earth Sci, 2002, 91:331-340.
    [82] Wang P J, Xie X A, Mattern Frank, Ren Y G, Zhu D F, Sun X M. The Cretaceous Songliao Basin: Volcanogenic Succession, Sedimentary Sequence and Tectonic Evolution, NE China [J]. Acta Geologica Sinica, 2007, 81(6):1002-1011.
    [83] Wanless H R, Shepard F P. Sea level and climatic changes related to late Paleozoic cycles [J]. GSA Bull., 1936, 47:1177-1206.
    [84]陈建业,冯庆来,陈晶,朱宗敏.广西东攀二叠系-三叠系界线剖面基于岩石磁参数的米兰科维奇旋回特征和地层对比[J].地层学杂志,2007,31(4):309-316.
    [85]陈丕基,施泽龙,叶宁,叶得泉.松花江生物群与东北白垩系地层序列[J].古生物学报,1998,37(3):380-385.
    [86]陈世悦,袁文芳,鄢继华.济阳坳陷早第三纪震积岩的发现及其意义[J].地质科学,2003,38(3):413-424.
    [87]陈昭年,陈发景.松辽盆地反转构造运动学特征[J].现代地质,1996,10(3):390-396.
    [88]陈中强,杨建国.米兰科维奇旋回在我国前第四纪地层之保存[J].微体古生物学报,1996,13(1):65-73.
    [89]程日辉,王国栋,王璞珺,高有峰.松科1井北孔四方台组-明水组沉积微相及其沉积环境演化[J].地学前缘,2009,16(6):85-95.
    [90]大庆油田石油地质志编写组.中国石油地质志(卷二)-大庆油田[M].北京:石油工业出版社,1993.
    [91]杜远生,彭冰霞,韩欣.广西北海涠洲岛晚更新世火山活动引起的地震同沉积变形构造[J].沉积学报,2005,23(2):203-209.
    [92]丁仲礼.米兰科维奇冰期旋回理论:挑战与机遇[J].第四纪研究,2006,26(5):710-717.
    [93]方大钧,王兆樑,金国?呷痨鳎兜萌唤趿?中国松辽盆地白垩系磁性地层[J].中国科学(B辑),1989,10:1084-1091.
    [94]单学东,刘文海,潘明臣,付民秋,王岩.辽西蓟县系雾迷山组震积岩的发现及其构造意义[J].辽宁地质,2000,17(4):267-270.
    [95]方德庆,张艳芯,徐敬惠.松辽盆地北部青山口组介形虫化石保存与沉积环境[J].大庆石油学院学报,1995,19(4):42-46.
    [96]冯志强,张顺,解习农,安广柱,赵波,侯艳平.地质学报,2006,80(8):1226-1233.
    [97]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997:94.
    [98]高有峰,王璞珺,王成善,任延广,王国栋,刘万洙,程日辉.松科1井南孔选址、岩心剖面特征与特殊岩性层的分布[J].地质学报,2008,82(5):669-676.
    [99]龚一鸣,徐冉,汤中道,李保华.广西上泥盆统轨道旋回地层与牙形石带的数字定年[J].中国科学D辑:地球科学,2004,34(7):635-643.
    [100]郭刚,童金南,张世红,张杰,白凌燕.安徽巢湖早三叠世印度期旋回地层研究[J].中国科学D辑:地球科学,2007,37(12):1571-1578.
    [101]郭少斌,陈成龙.利用米兰科维奇旋回划分柴达木盆地第四系层序地层[J].地质科技情报,2007,26(4):27-30.
    [102]郭占谦.石油天然气地质论文集(1994-2000)[M].北京:石油工业出版社,2003:119-124,138.
    [103]眭素文.松辽盆地旋回地层的地球物理替代性指标及分析方法研究[D].北京:中国地质大学(北京),2009.
    [104]韩广玲,赵洪涛,边吉.松辽盆地中央坳陷带青山口组玄武岩与油气分布的关系[J].石油实验地质,1988,10(3):248-255.
    [105]侯启军,郭占谦.松辽及周缘中生代沉积盆地“水火”二元结构地层[J].地球科学,1998,23(增刊):13-20.
    [106]侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009:11-20,73-74,77.
    [107]胡修棉,王成善.白垩纪大洋红层:特征、分布与成因[J].高校地质学报,2007,13(1):1-13.
    [108]胡望水.松辽盆地北部正反转构造与油气聚集[J].天然气工业,1996,16(5):20-24.
    [109]黄清华,张文婧,贾琼,党毅敏,王平,高宝明,谢磊.松辽盆地上、下白垩统界线划分[J].地学前缘,2009,16(6):77-84.
    [110]黄清华,郑玉龙,杨明杰,李星军,韩敏欣,陈春瑞.松辽盆地白垩纪古气候研究[J].微体古生物学报,1999,16(1):95-103.
    [111]贾志海,洪天求,郑文武,李双应.皖北新元古代望山组震积岩的基本特征及其形成环境分析[J].地层学杂志,2003, 27(2):146-149.
    [112]莱伊尔C.徐韦曼译.地质学原理[M].科学出版社,1959:113-130.
    [113]黎文本.从孢粉组合论证松辽盆地泉头组的地质时代及上、下白垩统界线[J].古生物学报,2001,40(2):153-176.
    [114]梁江平,辛仁臣,王树恒,姚勇,王颖,杜金玲.松辽盆地中部含油组层序地层格架及介形类特征的响应[J].地层学杂志, 2005,29(4): 405-409.
    [115]蔺毓秀.松辽盆地北部姚一段三角洲的沉积特征[J].大庆石油地质与开发,1983a,2(2):101-111.
    [116]蔺毓秀.试论松辽大型陆相湖盆水进三角洲沉积相[J].石油实验地质,1983b,5(4):265-275.
    [117]蔺毓秀.松辽盆地北部姚家组水进三角洲沉积和嫩一段浊流沉积[J].沉积学报,1986,4(2):101-110.
    [118]刘宝珺.沉积岩石学[M].北京:地质出版社,1980:97-98.
    [119]柳成志,张兴金,徐景祯,施尚明,李椿.松辽盆地北部哈尔温地区萨尔图油层风暴沉积特征[J]. 1993,17(1):143-149.
    [120]柳成志,辛仁臣,郝景波,李捷.松辽盆地北部齐家地区杨大城子油层河流相沉积特征[J].大庆石油学院学报,1998,22(1):71-74.
    [121]刘嘉麒.中国东北地区新生代火山幕[J].岩石学报,1988,1:1-10.
    [122]刘万洙,王璞珺.松辽盆地嫩江组白云岩结核的成因及其环境意义[J].岩相古地理,1997,17(1):22-26.
    [123]陆元法译编.旋回地层学[J].岩性古地理,1989,39(1):31-40.
    [124]孟祥化.沉积节律性及其动力学研究[J].地学前缘,1997,4(3-4):147-154.
    [125]孟祥化,葛铭.中朝板块层序事件演化——天文周期的沉积响应和意义[M].科学出版社,2004,25-26.
    [126]任延广,陈均亮,冯志强,林春华,冷鹏华.喜山运动对松辽盆地含油气系统的影响[J]。石油与天然气地质,2004,25(2):185-190.
    [127]苏德辰,李庆谋,罗光文,梅冥相.Fischer图解及其在旋回层序中研究中的应用-以北京西山张夏组为例[J].现代地质,1995,9(3):279-283.
    [128]孙钰,钟建华,姜在兴,饶孟余.松辽盆地南部青山口组湖相风暴沉积[J].煤田地质与勘探,2006,34(1):12-16.
    [129]田洪水,万中杰,王华林.鲁中寒武系馒头组震积岩的发现及初步研究[J].地质评论,2003, 49(2):123-133.
    [130]田军,汪品先,成鑫荣,李前裕.南海ODP1143站上新世至更新世天文年代标尺的建立[J].地球科学,2005,30(1):31-39.
    [131]童金南,殷鸿福.浙江长兴煤山剖面Griesbachian期旋回地层研究[J].地层学杂志,1999,23(2):130-135.
    [132]丸山茂德.方孝悌译.北美—欧亚板块边界的演化史[J].海洋地质译丛,1985,1:41-49.原文见日文刊《地球》,1984,1.
    [133]王佰长,张智礼,刘振文,林春明.松辽盆地泰康地区上白垩统姚家组沉积相[J]:地层学杂志,2007,31(4):361-367.
    [134]王炳山,张宪依,李金波.郯庐断裂带鲁南段新元古界石旺庄组的震积岩序列[J].山东科技大学学报自然科学版,2007,26(4):4-9.
    [135]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究—从重大地质时间探寻地球表层系统耦合[J].地球科学进展,2006,21(8):838-842.
    [136]王成善,胡修棉.白垩纪世界与大洋红层[J].地学前缘,2005,12(2):11-21.
    [137]王国栋,程日辉,于民凤,姜雪等.沉积物的矿物和地球化学特征与盆地构造、古气候背景[J].吉林大学学报(地球科学版),2006,36(2):202-206.
    [138]王国栋,程日辉,王璞珺,高有峰.松辽盆地嫩江组白云岩形成机理-以松科1井南孔为例[J].地质学报,2008,82(1):48-54.
    [139]王国栋,程日辉,王璞珺,高有峰.松辽盆地青山口组震积岩的特征、成因及其构造-火山事件[J].岩石学报,2010,26(1):121-129.
    [140]王衡鉴,曹文富.松辽湖盆白垩纪沉积相模式[J].石油与天然气地质,1981,2(3):227-242.
    [141]王衡鉴,曹文富.松辽盆地白垩纪砂岩体与隐蔽油气藏[J].大庆石油地质与开发,1984,3(1):130-140.
    [142]王衡鉴,曹文富.松辽盆地白垩纪湖盆三角洲沉积[J].大庆石油地质与开发,1983,2(2):91-100.
    [143]王鸿祯,史晓颖.沉积层序及海平面旋回的分类级别-旋回周期的成因讨论[J].现代地质,1998,12(1):1-16.
    [144]王立武,李建忠,王兆云,卢宗盛.松辽盆地保乾三角洲前缘带演变及其勘探意义[J].沉积学报,2003,21(3):404-408.
    [145]王树恒,卢双舫,杨善民.松辽盆地北部西斜坡青二、三段四级层序C1水进域沉积微相特征[J].大庆石油学院学报,2006,30(2):16-25.
    [146]汪品先.低纬过程的轨道驱动[J].第四纪研究,2006,26(5):694-701.
    [147]汪品先,翦知湣,赵泉鸿,李前?跞杲ǎ踔痉桑夤u,邵磊,王吉良,黄宝琦,房殿勇,田军,李建如,李献华,韦刚健,孙湘君,罗运利,苏新,茅绍智,陈木宏.南海演变与季风历史的深海证据[J].科学通报,2003,48(21):2228-2239.
    [148]王璞珺,高有峰,任延广,刘万洙,张建光.松辽盆地青山口组橄榄粗安岩:40Ar/39Ar年龄、地球化学及其成盆、成烃和成藏意义[J].岩石学报,2009,25(5):1178-1190.
    [149]王璞珺,刘万洙,单玄龙,等.事件沉积:导论·实例·应用[M].吉林科学技术出版社,2001:42-50,83-92.
    [150]王嗣敏,刘招君,董清水,朱建伟,郭巍.陆相盆地层序地层形成机制-以松辽盆地为例[J].长春科技大学学报, 2000,30(2):139-144.
    [151]王志武.松辽陆相盆地油气勘探的理论意义[G]//杨万里主编,松辽陆相盆地石油地质,北京:石油工业出版社,1984:15-25.
    [152]魏垂高,张世奇,姜在兴,刘金华.东营凹陷现河地区沙三段震积岩特征及其意义[J].沉积学报,2006, 24(6):798-805.
    [153]威廉斯G E.马宗晋,李存悌,张郢珍,杨玉荣,译.大旋回[M].北京:地震出版社,1986:1-9.
    [154]吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前缘,2008,15(4):159-169.
    [155]吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用[J].地球科学进展,2004,19(5):789-792.
    [156]徐道一,姚益民,韩延本,尹志强,张海峰.山东东营凹陷新近系明化镇组天文地层研究[J].古地理学报,2008,10(6):287-296.
    [157]徐道一,姚益民,张海峰,韩延本,尹志强,何青芳,边雪梅.山东东营凹陷渐新统的天文地层研究[J].地层学杂志,2007,31(增刊II):471-482.
    [158]徐道一,杨正宗,张勤文、孙亦因.天文地质学概论[M].地质出版社,1983:153-194.
    [159]姚益民,付国斌,徐道一,秦俭,姚盛.新疆吐哈盆地侏罗系旋回地层的初步研究[J].地层学杂志,2003,27(2):122-128.
    [160]姚益民,徐道一,韩延本,尹志强,张海峰.山东济阳坳陷始新统-渐新统天文地层界线年龄分析[J].地层学杂志,2007a,31(增刊II):483-494.
    [161]姚益民,徐道一,李保利,张海峰,张海鹏,姚盛.东营凹陷牛38井沙三段高分辨率旋回地层研究[J].地层学杂志,2007b,31(3):229-239.
    [162]姚益民,徐道一,张海峰,韩延本,张海鹏,尹志强,何青芳,边雪梅.东营凹陷辛2-4井上新世天文地层研究[J].地层学杂志,2007c,31(增刊II):458-469.
    [163]杨万里.松辽盆地油气分布基本规律及勘探远景预测[G]//杨万里主编,松辽陆相盆地石油地质.地质出版社,1985:1-14.
    [164]袁静.山东惠民凹陷古近纪震积岩特征及其地质意义[J].沉积学报,2004,22(1):41-46.
    [165]张志坚.松辽盆地北部泰康地区高台子油层四砂组沉积微相特征[J].大庆石油地质与开发,2005,24(3):11-13.
    [166]赵波,尹淑敏,张顺,林春明,梁江平.松辽盆地中央坳陷滨北地区上白垩统青山口组沉积相与沉积演化[J].古地理学报,2009,11(3):293-300.
    [167]周振南.松辽盆地白垩系青山口组与泉头组不整合接触关系及其石油地质意义[J].石油实验地质, 1986,8(4):344-350.
    [168]邹才能,薛叔浩,赵文智,李明,王永春,梁春秀,赵志魁,赵占银.松辽盆地南部白垩系泉头组-嫩江组沉积层序特征与地层-岩性油气藏形成条件[J].石油勘探与开发, 2004,31(2):14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700