用户名: 密码: 验证码:
河流储层相控地质建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地北部扶杨油层以干旱环境的河流相沉积为主,砂地比低、储层物性横向变化快、砂层厚度较薄。近年来采用地震技术来研究储层,虽然提高了岩性预测精度,但由于无法精确描述储层的分布特征及其与油气成藏之间关系的研究,导致本区针对隐蔽油气藏部署的探井成功率较低。因此,如何合理而高效地利用地球物理处理与解释信息,并采用相控储层建模技术来解决储层预测问题是当前储层研究的核心。
     本文以肇源南扶余油层为例,以地震地质模式识别储层预测、大倾角地层微幅度构造识别、有效河道砂体判别、相控储层建模等核心技术为基础,开展了充分利用地震处理与解释储息的,并适合坳陷湖盆河流储层的相控地质建模研究。通过对单井层序地层和沉积相特征的分析,获得各层序的沉积微相发育类型;开展地震保真处理流程试验,形成了针对扶余油层特点(坳陷湖盆干旱环境河流相沉积)的保幅处理流程,并对本区地震资料进行处理;通过井震结合确定了研究区目的层的层序格架,对三级层序对应的地震层位进行精细解释;通过模式判别技术,提取各四级层序单元内的储层厚度,实现薄互层砂岩的储层精细预测;利用地震沉积学基本原理,利用保幅处理成果,采用基于参考标准层的层拉平精细解释、最佳属性视窗刻画等技术清晰刻画了曲流河点砂坝的分布;通过构造精细成图,削弱构造趋势方法,突出了隐蔽微幅度构造;在薄层储层精细预测和河道砂识别的基础上,结合单井沉积微相分析结果,在平面上划分出各层序的沉积相带,选择可靠的沉积相带参与地质建模。通过该方法建立了研究区精细地质模型,应用建立的综合地质模型开展储集层的空间展布特征、成藏应力条件研究,提出钻探目标,解决了生产部署中有效储层无法预测、储层与成藏动力不匹配等难题。本文主要创新点如下:
     1、通过井震模式判别技术,在井资料较少区域,预测每一地震道地下地质组合;并以四级层序单元为最小单位提取储层厚度,实现了去除强地震反射轴屏蔽影响的接近单砂体级别的精细储层预测。
     2、通过构造精细成图、削弱构造趋势方法,实现大倾角地层背景中微幅度构造识别,既突出了隐蔽微幅度构造,又保持了大的构造形态,为河流相隐蔽构造圈闭识别探索出一种简单易行的识别方法。
     3、提出利用模式判别储层预测与单井沉积相划分成果相结合,划分优势相带,识别出有效储层,较好地解决了扶余油层有效砂岩地震资料无法预测的问题。
     本文提出的方法流程适用于坳陷湖盆河流相沉积的勘探阶段后期到油藏评价阶段的地质建模工作,已在松辽盆地北部的朝长地区推广应用并取得了较好的效果。
The reservoir sand of Fu Yang oil layer is arid environment fluvial deposition in the South of Song-Liao Basin. Comparing with the other areas, the sandstone/stratum is lower, the lateral variation of reservoir physical properties is larger, and the thickness of sand is thinner. Although, applying seismic techniques in reservoir study increase the accurate of lithologic prediction in recent years, the research can not precise identify the characters of reservoir distribution and the relationship between reservoir and hydrocarbon accumulation. As a result, the successful ratio of exploration well deployment to subtle oil-gas reservoir is lower than our expectation. Therefore, using geographic information processing and interpretation efficiently and reasonably, then fix the reservoir prediction by facies-controlled reservoir modeling is the key point to solve reservoir study problems at present.
     In this paper, we establish facies-controlled reservoir modeling suitable for fluvial reservoir of depression lake basin by utilizing seismic processing and interpretation information-with Fu Yang oil layer of the Zhao Yuan Nan as an example, which is based on mode determination reservoir prediction, conformation identification in high dip angle strata, fluvial sand body identification and facies-controlled reservoir model. Through the analysis for single well sequence stratigraphy and sedimentary facies features, obtain the type of sedimentary facies in each stratum. We developed seismic relative amplitude preserved processing flow experiment, formed a seismic relative amplitude preserved processing flow suitable for sedimentary characteristics of Fu Yang oil layer. Target layer sequence stratigraphic framework of Zhao Yuan Nan is determined, then, seismic horizon correspondence with third-order sequence can be interpreted. We get reservoir thickness of each fourth order sequences; implement fine reservoir prediction of thin-interbedded sandstone. The distribution characters of meandering river point bar has been depicted based on many techniques of seismic sedimentology basic principle, seismic relative amplitude preserved processing results, seismic horizon flattening interpretation using the reference layer and reservoir identification by short time window seismic attribute. The subtle micro-range structure can be recognized by means of fine structural map and weakening structural trend. Plane sedimentary facie zones of each stratum were divided, and then build geological model base on the result of fine reservoir prediction of thin-nterbedded sandstone and fluvial sand body identification. Finally, we build fine geological model of Zhao Yuan Nan, and propose drilling targets by researching the spatially distributing feature of reservoir and reservoir forming stress conditions through the application of fine geological model. It effectively solved the problem that effective reservoir was hard to prediction and does not math the reservoir-forming dynamic. Through the studies that mentioned above, the following essential awareness and conclusions had been made in this dissertation:
     1. This research work predicts geologic structural association of average seismic trace by the means of mode determination reservoir prediction technology in areas less well data. reservoir thickness of each fourth order sequences was be predicted, fine reservoir prediction in single sand body level was realized without influence of strong high energy shield.
     2. The subtle micro-range structure can be recognized by fine structural map and weakening structural trend in high dip angle strata. By using this method, one hand we can highlight subtle micro-range structure, on the other hand, we can keep region structural shape. So we can find out an easy way to identify the subtle micro-range structure.
     3. We divvied dominant sedimentary facies by the combination of mode determination reservoir prediction and the result of single well sedimentary facies.
     This method is suitable for geological setting model from final exploration period to earlier reservoir evaluation. It has been applied in Chao Chang district of the South of Song-Liao Basin, and achieved successful result in recent years.
引文
1.于兴河,李胜利,赵舒等.河流相油气储层的井震结合相控随机建模约束方法[J].地学前缘,2008,15(4):33-41
    2.裘怿楠.储层地质模型[J].石油学报,1991;12(4):55-61
    3.薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991.51-63.
    4.雷卞军,张昌民,林克湘,刘怀波,屈平彦,马文雄;定量储层沉积学是获取储层建模地质信息的重要途径—以青海省油砂山露头研究为例[J].石油实验地质;1998,20(1):61-67
    5.焦养泉,李思田.陆相盆地露头储层地质建模研究与概念体系[J].石油实验地质,1998,20(4):346-353
    6.裘怿楠,贾爱林.储层地质模型10年[J].石油学报,2000,21(4):101-105
    7.张春雷,段林娣,熊琦华.河道模型的改进及扩展应用[J].石油大学学报,2003,4:6-10
    8.王端平,杨耀忠,龚蔚青等.沉积微相约束条件下的随机地质建模方法及应用研究[J].科技通报,2004,2:121-126
    9.杨辉廷,江同文,颜其彬等.缝洞型碳酸盐岩储层三维地质建模方法初探[J].大庆石油地质与开发,2004(23)4:11-12
    10.张公社.储层参数模型建立[D].西南石油学院,2005
    11.侯国伟.大牛地气田盒2和盒3段河流相储层描述与建模[D].中国地质大学(北京),2005.
    12.左毅,芦凤明,刘天鹤.相控建模技术在河流相复杂断块的应用[J].特种油气藏,2006,13(1):36-39
    13.黄继新,彭仕宓,黄述旺.河流相储层建模中测井和地震资料整合研究[J].中国矿业大学学报,2007,36(01):126-131
    14.骆杨,赵彦超.多点地质统计学在河流相储层建模中的应用[J].地质科技情报2008,27(03):68-72
    15.马世忠,孙雨,范广娟等.地下曲流河道单砂体内部薄夹层建筑结构研究方法[J].沉积学报,2008,26(4):632-639.
    16.张永贵等.储层地质统计随机模拟[J].石油大学学报,1998,22(3):113-116
    17.王仁铎,胡光道.线性地质统计学[M].石油工业出版社,1989
    18.孙洪泉.地质统计学及其应用[M].中国矿业大学出版社,1990
    19.宋立忠,李本才,王芳.松辽盆地南部扶余油层低渗透油藏形成机制[J].岩性油气藏,2007,19(2):57-61
    20.裘亦楠等.油气储层评价技术[M].北京:石油工业出版社,1997
    21.王志章等.现代油藏描述技术[M].石油工业出版社,1999
    22.兰朝利,吴峻,张为民,等.冲积沉积构型单元分析法—原理及其适用性[J].地质科技情报,2001,20(2):37-40
    23.王俊玲,任纪舜.嫩江现代河流沉积体岩相及内部构形要素分析[J].地质科学,2001,36(4):385-394
    24.林博,戴俊生,冀国盛等.河流相建筑结构随机建模与剩余油分布研究[J].石油学报,2007,28(4):81-85
    25.尹太举,张昌民,樊中海等.地下储层建筑结构预测模型的建立[J].西安石油学院学报:自然科学版,2002,17(3):7-14
    26.舒治睿.鄂尔多斯盆地镇北地区长3_长8_1储层地质建模[D].西北大学,2006
    27.李双应,李阳,王忠诚等.胜利油区孤岛油田馆上段沉积模式研究[J].沉积学报.2001,19(3):386-393
    28.林博,戴俊生,冀国盛等.河流相建筑结构随机建模与剩余油分布研究[J].石油学报,2007,28(4):81-85
    29.吕晓光,潘懋,王家华等.指示主成分模拟建立分流河道砂体相模型及意义[J].石油学报,2003,24(1):53-57
    30.Miall A D.Architectural-elements analysis:A new method of facies analysis applied to fluvial deposits[J].Earth Scienec Reviews,1985,22(4):261-308
    31.Miall A D.Hierarchies of architectural units in clastic rocks,and their relationship to sedimentation rate.In:Miall A D,Tyler N.TheThree-Dimensional Facies Architecture of Terrigenous Clastic Sediments,And Its Implications for Hydrocarbon Discovery and Recovery.Soc Eco Paleontol Mineral Conc Sedimentol Paleontol,1991,3:6-12
    32.Miall A D.The Geology of Fluvial Deposits:Sedimentary Facies,Basin Analysis and Petroleum Geology[J].Berlin,Heidelberg.NewYork:Springer-Verlag,1996.3:74-98
    33.Haldorsen H H,Damslet h E.Stochastic modeling[J].JPT,1990,42(4):404-412
    34.Henriquez,Adolfo,Tyler,Kelly J.,Hurst,Andrew,Statoil.Characterization of Fluvial Sedimentology for Reservoir Simulation Modeling[J].SPE Formation Evaluation,1990,5,(3):211-21
    35.HaldorsenHH,Damsleth E.Challenges in Reservoir Characterisation[J].AAPG Bulletin,1993,77(4):541-551
    36.Andrew Hurst,Bryan Cronin,Adrian Hartley.Reservoir modelling sand-rich deep-water clastics: the necessity of down-scaling[J]. Petroleum Geoscience, 2000, 6:67-76
    
    37. Jef Caers. Geostatistical history matching under training-image based geological model constraints[J]. SPE 77429, 2002
    
    38. Romero C E. Carter J N. Using genetic algorithms for reservoir characterization[J]. Journal of Petroleum Science and Engineering, 2001, 31(2-4):113-123
    
    39. Miall A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: a reality check[J]. AAPG Bull, 2006, 90: 989-1002
    
    40. Merletti G.D. and Torres-Verdin C. 2006. Accurate detection and spatial delineation of thin-sandsedimentary sequences via joint stochastic inversion of well logs and 3D pre-stack seismic amplitude data[J]. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Sept. 2006. SPE102444.
    
    41. K. Choi, M. D. Jackson, G. Hampson, A. D. W. Jones, T. Reynolds. Impact of Heterogeneity on Flow in Fluvial-Deltaic Reservoirs- Implications for the Giant ACG Field, South Caspian Basin (SPE-107137) [J]. Event name: 69th EAGE Conference & Exhibition, Shared Earth Model (EAGE/EUROPEC), 2007
    
    42. Pranter M. J., A. I. Ellison, R. D. Cole, and P. E. Patterson. Modeling and analysis of intermediate-scale reservoir heterogeneity based on a fluvial point-bar outcrop analog, Williams Fork Formation, Piceance Basin, Colorado[J]. AAPG Bulletin, , 2007,91:1025-1051
    
    43. Pranter M. J., M. F. Vargas, and T. L. Davis. Characterization and 3-D reservoir modeling of fluvial sandstones of the Williams Fork Formation, Rulison Field, Piceance Basin, Colorado[J]. Journal of Geophysics and Engineering, 2008, 5:158-172
    
    44. Pranter M. J., R. D. Cole, H. Panjaitan, N. K. Sommer. Sandstone-body dimensions in a lower coastal-plain depositional setting: lower Williams Fork Formation, Coal Canyon, Piceance Basin, Colorado[J]. AAPG Bulletin, 2009, 93:1379-1401
    
    45. Marinus E. Donselaar and Irina Overeem. Connectivity of fluvial point-bar deposits: An example from the Miocene Huesca fluvial fan, Ebro Basin[J]. Spain. AAPG Bulletin, 2008, 92(9):1109 - 1129
    46. Allen J. R. L. A review of the origin and characteristics of recent alluvial sediments[J]. Sedimentology. 1965, 5(2):89-191
    
    47. Allen J. R. L. Sediments of the modern Niger Delta:a summary and review:. in Morgan, J. P., and Shaver, R. H,, EDS., Deltaic Sedimentation Modern and Ancient[J].SEPM Special Publication, 1970, 15:138-151
    
    48. Klein G. V. A Sedimentary model for determining Plaeotidal range[J].GSA Bulletin, 1972,82:2585-2592
    
    49. Hongliu Zeng, Stephen C. Henry, John P. Riola. Stratal slicing, part II: Real 3-D seismic data[J]. Geophysics, 1998,63(2) :514-522
    
    50. Levorsen A I. The obscure and subtle trap[J]. AAPG Bulletin, 1996, 50(10):2058-2067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700