用户名: 密码: 验证码:
开放体系下钴系金属及其氧化物纳米材料的绿色合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,在小分子多元醇(丙三醇、乙二醇等)协同下,在室温水相开放体系中以绿色还原剂水合肼合成出2-5?m Co微球,探讨了多元醇中羟基对球形结构形成的作用机理;采用相似的路径,在低温水相的开放体系中,以NaH2PO2作为还原剂快速合成出了大小在600nm左右、尺寸均一、由纳米片组装而成的球形Co纳米结构,改变了此类还原过程必须引入络合剂的状况,为Co纳米结构合成提供了新的方法。通过对实验条件的考察,择优出反应的最佳条件,提出反应的可能进程,并研究了样品的磁学性能。
     其次,在室温水相开放体系中合成了分支结构的Co微粉。研究了多元醇聚合物分子对产物形貌与结构的影响,发现对于PEG分子链长的调变可实现对产物形貌的有效控制。通过研究反应机理,我们认为这种变化是Co的磁性及PEG分子的结构导向共同作用的结果。
     在水合肼还原制备Co纳米粒子的过程中,适量络合剂柠檬酸的加入是确保还原反应进行完全的关键。在研究中,我们创新性地发现极少量Cu离子的参与能够大幅度提高还原反应的速率,省去柠檬酸的加入,运用此种方法,我们在低温水相中合成了100nm的六方金属Co纳米片,初步研究了Cu催化的可能机理。
     最后,我们对Co3O4纳米粉体的水相开放体系制备和性能进行了研究。采用简单的液相沉淀法合成了在水相和醇相能够稳定分散数月的Co3O4纳米方。此结构的纳米Co3O4经电化学研究发现,其参与构成电极材料显著降低了吸氧电位、提高了电催化活性。同时,我们利用不同种类的沉淀剂在相似的温和环境下合成出了不同形貌的Co3O4纳米粉体:如球形、片状及棒状结构等,并对系列产品进行了光学性能研究。
Metallic Co and its oxide Co3O4 are important magnetic materials, which have broad application prospects. The development on their simple and mild preparation and morphology-controlled strategy are important topics, which are worthy of study for theoretical research and application. In this paper, metal Co and its oxide nanomaterials were prepared via a green synthesis method in an open system and these nanomaterials possess a series of characteristic parameters and would have many potential applications. We also did in-depth mechanism study of each reaction system. The main research results and innovations of the thesis are given in the following parts.
     First, Co microspheres of 2-5?m have been synthesized in aqueous-phase at room temperature with hydrazine hydrate as green reductive agent together with small molecule polyol (glycerin or glycol). The mechanism for the formation of microspheres was discussed. Through other synthesis route, uniformed Co microspheres of 600nm assembled by nanoplatelets were also synthesized by employing NaH2PO2 as reducing agent in a low-temperature aqueous system. We proposed the possible reaction process.
     Secondly, branched Co powders have been synthesized in aqueous at room temperature. We studied the effects of surfactant on the morphology and structure of samples and found that chain length of PEG as surfactant drastically influenced the morphologies of the produced cobalt crystals. Based on the investigation of reaction mechanism, we believe that the reasons for these variations may be caused by the interaction between magnetic properties of Co and direction of PEG.
     Appropriate citric acid was the key factor to complete the reduction of Co in which hydrazine hydrate was employed as reductive agent to prepare metal Co. In the course of the study, we innovatively found that participation of a small amount of Cu in the reaction system can not only substitute for citric acid to make reaction perform completely but also speed up the reaction. We have synthesized hexagonal Co nanoplates of 100nm in aqueous with help of Cu ions. The possible mechanism on Cu as catalyst was studied preliminarily.
     Finally, the preparation of Co3O4 powders in aqueous-phase and property evolution has been studied. Co3O4 nanocubes have been synthesized by aqueous precipitation method at low temperature, which can be stable suspension in aqueous or ethanol medium for several months. The as-prepared Co3O4 nanocubes extend improved electrocatalytic activities and decreased oxygen evolution potential in electrochemical reactions. Meanwhile, Co3O4 samples with different morphologies have been synthesized with different types of precipitator under a similar mild condition.
     In conclusion,different size of Co and Co3O4 nanomaterials with several dimensions are obtained by aqueous synthesis method. Our work gives an improved progress on the mild solution synthesis of Co nanomaterials.
     The synthesized methods used here are simple and the obtained Co and Co3O4 nanomaterials can be potential applied in magnetic devices, electrochemistry and catalysis.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [2] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev., 1989, 89: 1861-1873.
    [3] Kroto H W, C60:Buckminsterfullerene [J]. Nature, 1985,318:162-163.
    [4] Thompson D, Best J S, The future of magnetic data storage technology [J]. IBM. J.Res.Dev., 2000,44:311-322.
    [5] Weller D, Sun S H, Murray C, Folks L, Moser A, MOKE Spectra and Ultrahigh Density Data Storage Perspective of FePt Nanomagnet Arrays [J]. IEEE Trans.Magnet., 2001,37:2185-2187.
    [6] White R L, Giant magnetoresistance: a primer [J].IEEE Trans.Magn., 1992,28:2482-2487.
    [7] Liou S H, I-Iuang S, Klimek E, Kirby R D, Yao D, Enhancement of coercivity in nanometer-size CoPt crystallites [J]. J.Appl.Phys., 1999,85:4334-4336.
    [8] Shull R D, Magnetocaloric effect of ferromagnetic particles [J].IEEE Trans.Magn., 1993,29:2614-2615.
    [9] Jeong U, Teng X W, Wang Y, Yang H, Xia Y N, Superparamagnetic Colloids: Controlled Synthesis and Niche Applications [J]. Adv. Mater., 2007, 19, 33–60.
    [10] Mornet S, Vasseur S, Grasset F, Verveka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E, Magnetic nanoparticle design for medical applications [J]. Prog. Solid StateChem., 2006, 34:237-247.
    [11] Li Z, Wei L, Gao M Y, Lei H, One-pot reaction to synthesize biocompatible magnetite nanoparticles [J]. Adv. Mater., 2005, 17, 1001-1005.
    [12] Hyeon T, Chemical synthesis of magnetic nanoparticles [J]. Chem. Commun., 2003, 927-934.
    [13] Akinori K, Akihiro M, Akihisa I, Rapid-annealing effect on the microstructure and magnetic properties of the Fe-rich nanocomposite magnets [J]. J.Appl.Phys., 2000,87:6576-6578.
    [14]李国栋,磁的世界[M].长沙:湖南教育出版社,1994,p112。
    [15] Frase H N, Shull R D, Hong L B, Stephens T A, Gao Z Q, Fultz B, Soft magnetic properties of nanocrystalline Ni3Fe and Fe75Al12.5Ge12.5 [J]. Nanostruc.Mater., 1999,11:987-993. [16 ] Liu L, Zhang M X, Hu L C, The present and develop of the microwaveabsorption coat technology[J]. Aerosp. Sci.Technol., 1994 ,24(1) :1– 5. [17 ] Shong B G, Zhao H, The absorption materials of magneticmetal powder [J]. J. Metal. Funct.Mater., 1994 ,10 (1) :21– 23.
    [18] Bregar V B, Advantages of ferromagnetic nanoparticle composites in microwave absorbers [J]. IEEE Trans.Magn., 2004 ,40 (3) :1679– 1684.
    [19] Hu A, Yee G T, Lin W, Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones [J]. J. Am. Chem. Soc., 2005, 127:12486-12487.
    [20] Jun C H, Park Y J, Yeon Y R, Choi J, Lee W, Ko S, Cheon J, Demonstration of a magnetic and catalytic Co@Pt nanoparticles as a dual-function nanoplatform [J].Chem. Commun., 2006, 15:1619-1621.
    [21] Braos G P, Mairelles T P, Rodrguez C E, Gas-phase hydrogenation of caetonitrile on zirconium-doped mesoporous silica-supported nickel catalysts [J]. J.Mol.Catal.A.Chem., 2003,193:185-196.
    [22] Takimoto M, Nakamura Y, Kimura K, Mori M, Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes [J]. J.Am.Chem.Soc., 2001,126: 5956-5957.
    [23] Widder K J, Marino P A, Morris R M, Howard D P, Poore G A, Selective targeting of magnetic albumin cirospheres to the yoshida sarcoma: ultrastructural evaluation of microsphere disposition [J]. Eur.J.Can.Clini.Onc., 1983,19:141-147.
    [24] Gu H W, Xu K M, Xu C J, Xu B, Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chem. Commun., 2006, 941-949.
    [25]陈蓓京,陈利民等,纳米金属磁性材料的研制及其应用[J].云南大学学报·自然科学版,2005,37:122-126.
    [26]刘思林,藤荣厚,于英义,金属磁性液体的制备[J].功能材料,2000,31:369-376.
    [27]时东霞,宋延林,张昊旭,解思深,庞世瑾,高鸿钧,有机单体3-phenyl-1-ureidonitrile薄膜的超高密度信息存储[J]物理学报,2001,50:361-364。
    [28]鲍振武,刘钊,刘晶,传感器用特种光纤[J].光线与电缆及其应用技术,2000,1:26-33.
    [29] Lenz J, Anderson C D, Strandjord L K, Magnetic materials characterization using a fiber optic magnetometer [J]. J.Appl.Phys., 1985,57:3820-3822.
    [30] Cushing B L, Kolesnichenko V L, O’Connor C J, Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chem. Rev., 2004, 104: 3893-3946.
    [31] Hu F Q, Wei L, Zhou Z, Ran Y L, Li Z, Gao M Y, Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer [J]. Adv.Mater., 2006, 18:2553-2556.
    [32] K. Woo, H. J. Lee, J.-P. Ahn, Y. S. Park, Sol-Gel Mediated Synthesis of Fe2O3 Nanorods, Adv. Mater., 2003, 15:1761-1764.
    [33] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y, Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed., 2005, 44:2782-2785.
    [34] Liz-Marzn L M, Mulvaney P. The Assembly of Coated Nanocrystals [J] J. Phys. Chem. B, 2003, 107: 7312-7326.
    [35] Baldi G, Bonacchi D, Franchini M C, Gentili D, Lorenzi G, Ricci A, Ravagli C, Synthesis and Coating of Cobalt Ferrite Nanoparticles: A First Step toward the Obtainment of New Magnetic Nanocarrier [J]. Langmuir, 2007, 23: 4026-4028.
    [36] Wang S B, Min Y L, Yu S H, Synthesis and Magnetic Properties of Uniform Hematite Nanocubes [J]. J. Phys. Chem. C, 2007, 111: 3551-3554.
    [37] Bao N Z, Shen L M, Wang Y, Padhan P, Gupta A, A Facile Thermolysis Route to Monodisperse Ferrite Nanocrystals [J]. J. Am. Chem. Soc., 2007, 129:12374-12375.
    [38] Wei X W, Zhu G X, Liu Y J, Ni Y H, Song Y, Xu Z, Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet Chemistry [J]. Chem.3-phenyl-1-ureidonitrile薄膜的超高密度信息存储[J]物理学报,2001,50:361-364。
    [28]鲍振武,刘钊,刘晶,传感器用特种光纤[J].光线与电缆及其应用技术,2000,1:26-33.
    [29] Lenz J, Anderson C D, Strandjord L K, Magnetic materials characterization using a fiber optic magnetometer [J]. J.Appl.Phys., 1985,57:3820-3822.
    [30] Cushing B L, Kolesnichenko V L, O’Connor C J, Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chem. Rev., 2004, 104: 3893-3946.
    [31] Hu F Q, Wei L, Zhou Z, Ran Y L, Li Z, Gao M Y, Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer [J]. Adv.Mater., 2006, 18:2553-2556.
    [32] K. Woo, H. J. Lee, J.-P. Ahn, Y. S. Park, Sol-Gel Mediated Synthesis of Fe2O3 Nanorods, Adv. Mater., 2003, 15:1761-1764.
    [33] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y, Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed., 2005, 44:2782-2785.
    [34] Liz-Marzn L M, Mulvaney P. The Assembly of Coated Nanocrystals [J] J. Phys. Chem. B, 2003, 107: 7312-7326.
    [35] Baldi G, Bonacchi D, Franchini M C, Gentili D, Lorenzi G, Ricci A, Ravagli C, Synthesis and Coating of Cobalt Ferrite Nanoparticles: A First Step toward the Obtainment of New Magnetic Nanocarrier [J]. Langmuir, 2007, 23: 4026-4028.
    [36] Wang S B, Min Y L, Yu S H, Synthesis and Magnetic Properties of Uniform Hematite Nanocubes [J]. J. Phys. Chem. C, 2007, 111: 3551-3554.
    [37] Bao N Z, Shen L M, Wang Y, Padhan P, Gupta A, A Facile Thermolysis Route to Monodisperse Ferrite Nanocrystals [J]. J. Am. Chem. Soc., 2007, 129:12374-12375.
    [38] Wei X W, Zhu G X, Liu Y J, Ni Y H, Song Y, Xu Z, Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet Chemistry [J]. Chem.Behaviors [J]. J. Phys. Chem. C, 2010, 114: 2903–2908
    [48] Lin X X, Zhu Y F, Shen W Z, Synthesis and Optical and Magnetic Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Hollow Spherical Structures [J].J. Phys. Chem. C, 2009, 113, 1812–1817.
    [49]李维,赵秦生,吴恩熙,硬质合金用金属钴粉的制备及表征[J].粉末冶金材料科学与工程,1997,2(3):234-236.
    [50] Javey A, Dai H, Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanometerials [J]. J.Am.Chem.Soc., 2005,127:11942-11943.
    [51] Sun S H, Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles [J]. Adv.Mater., 2006,18:393-403.
    [52] Jacobsohn L G, Thompson J D, Dickerson R M, Nastasi M, Magnetic properties of cobalt nanoparticles obtained by ion implantation into amorphous silica [J]. Nucl. Instr. Meth. Phys. Res.B, 2007,257:447–450.
    [53] Li J G, Huang J J, Qin Y, Ma F, Magnetic and microwave properties of cobalt nanoplatelets [J]. Mater. Sci. Eng. B, 2007, 138: 199–204.
    [54]王立平,高燕,薛群基,刘惠文,徐洮,晶粒尺寸对纳米晶钴摩擦磨损性能的影响[J].表面技术,2005,34:31-33.
    [55] Hamid Z A, Aal A A, Schmuki P, Nanostructured black cobalt coatings for solar absorbers [J]. Surf. Interface Anal., 2008, 40:1493–1499.
    [56] Qi H L, Zhang W, Wang X, Li H, Chen J, Peng K S, Shao M W, Heck reaction catalyzed by flower-like cobalt nanostructures [J]. Cataly. Commun., 2009,10 : 1178–1183
    [57] Xie Q, Qian Y T, Zhang S Y, Fu S Q, Yu W C, A hydrothermal reduction route to single-crystalline hexagonal cobalt nanowires [J]. Eur.J.Inorg.Chem., 2006,12:2454-2459.
    [58] Hou Y L, Kondoh H, Ohta T, Self-Assembly of Co Nanoplatelets into Spheres: Synthesis and Characterization [J]. Chem.Mater., 2005,17:3994- 3996.
    [59] Zhang Y J, Ma S, Li D, Wang Z H, Zhang Z D, Surfactant-assistedhydrothermal synthesis of chains self-assembled by cobalt microspheres [J]. Mater.Res.Bull., 2008,43:1957-1965.
    [60] Wang X, Yuan F L, Hu P, Yu L J, Bai L Y, Self-assembled growth of hollow spheres with octahedron-like Co nanocrystals via one-pot solution fabrication [J]. J.Phys.Chem.C, 2008,112:8773-8778.
    [61] Guan M Y, Sun J H, Gao C L, Li X, Xu Z, A novle cobalt submicro-wire network and its magnetic properties [J]. ChemPhysChem., 2007,8:2182-2184.
    [62] Leslie-Pelecky D L, Rieke R D, Magnetic Properties of Nanostructured Materials [J]. Chem.Mater., 1996,8:1770-1783.
    [63] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X, Kapteijn F, van Dillen A J, de Jong K P, Cobalt Particle Size Effects in the Fischer?Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts [J]. J.Am.Chem.Soc., 2006,128:3956-3964.
    [64]李维,赵秦生,吴恩熙,纳米钴粉的特性研究[J].中南工业大学学报,1998,29:461-463.
    [65]卓广澜,姜玄珍,钴催化的苯直接羰基化反应研究[J].有机化学,2003,23(1):54-56.
    [66]宋伟红,姜玄珍,钴催化羰基化合成丙二酸二烷基酯[J].工业催化,2003,11(9):26-28.
    [67]裴燕斌,果世驹,孟飞,杨霞, W-Co-纳米碳管反应烧结制备高度取向硬质合金[J].粉末冶金材料科学与工程,2005,10(3):160-165.
    [68] Sellmyer D J, Yu M, Kirby R D, Nanostructured magnetic films for extremely high density recording [J]. Nanostruct. Mater., 1999,12: 1021-1026.
    [69]朱流,金属-陶瓷复合粉体制备与机理及其应用研究[D],杭州,浙江大学材料与化学工程学院, 2006.
    [70] Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W H, Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries [J]. J.Electrochem.Soc., 2003,150: A1102-A1107.
    [71]龚晓钟,杨钦鹏,汤皎宁,陈文苑,陈柏青,用于自组装巨磁阻材料的铁磁性纳米Co粒子的研制[J].化工新型材料,2002,3(9):8-10.
    [72]都有为.纳米技术展望[J].化工进展,1993,(4):21-24.
    [73]张雪峰,李哲男,王威娜,董星龙,磁性Fe、Co、Ni纳米粒子的吸波性能研究[J].粉末冶金工业,2006,16(2):11-16.
    [74]吴琳琳,湛菁,黎昌俊,等,超细钴粉的研究进展[J].四川有色金属,2001,2:30-33.
    [75]张健,硬质合金用钴粉的生产工艺比较[J].有色金属,1998,50(3):109-113.
    [76] Jang H D, Hwang D W, Kim D P, et al. Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase [J]. Mater.Res.Bull., 2004,39:63-70.
    [77]陈祖耀,张国春,朱玉瑞,金属Co超细粉的γ射线辐照制备[J].金属学报,1997,33(10):1110-1114.
    [78] Li Y Y, Liu J P, Huang X T, Li G Y, Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres [J]. Cryst.Growth Des., 2007,7 : 1350-1355.
    [79] Azarian A, Iraji zad A , Dolati A, An optical study of cobalt nanowires dispersed in liquid phase [J]. Opt.Commun., 2007,274:471-476.
    [80] Qiao R, Zhang X L, Qiu R, Kim J C, Kang Y S, Preparation of magnetic hybrid copolymer-cobalt hierarchical hollow spheres by localized ostwald ripening [J]. Chem.Mater., 2007,19:6485-6491.
    [81] Xu R, Xie T, Zhao Y G, Li Y D, Single-crystal metal nanoplates: Cobalt, Nickel,Copper, and Silver [J]. Cryst.Growth Des., 2007,7:1904-1911.
    [82] Salgueirino-Maceira V, Correa-Duarte M A, Farle M, Lopez-Quintela M A, Sieradzki K, Diaz R, Synthesis and characterization of large colloidal cobalt particles [J]. Langmuir, 2006,22:1455-1458.
    [83] Zhu L P, Xiao H M, Zhang W D, Yang Y, Fu S Y, Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route [J]. Cryst.Growth Des., 2008,8(4):1113-1118.
    [84] Zhang D E, Ni X M, Zheng H G, Surfactant-controlled synthesis of Fe nanorod sinsolution [J]. J.Colloid.Interf.Sci., 2005,292:410–412.
    [85] Liu X H, Yi R, Wang Y T, Qiu G Z, Zhang N, Li X G, Highly ordered snowflakelike metallic cobalt microcrystals [J]. J.Phys.Chem.C, 2007,111:163-167.
    [86] An Z G, Pan S L, Zhang J J, Synthesis of tunable assembly of spear-like nickel nanocrystallites: From urchin-like particles to prickly chain [J]. J.Phys.Chem.C, 2009,113:1346-1351.
    [87] Su X D, Zhao J Z, Bala H, Zhu Y C, Gao Y, Ma S S, Wang Z C, Fast synthesis of stable cubic copper nanocages in the aqueous phase [J]. J.Phys.Chem.C, 2007,11:14689-14693.
    [88] Wang Y, Zhao J Z, Zhao X, Tang L Q, Li Y L, Wang Z C, A facile water-based process for preparation of stabilized Bi nanoparticles [J]. Mater.Res. Bull., 2009, 44:220-223.
    [89] Pal A, Shah S, Devi S, Synthesis of Au, Ag and Au–Ag alloy nanoparticles In aqueous polymer solution [J]. Colloid.Surface.A., 2007,302:51-57.
    [90] Zhang W Z, Qiao X L, Chen J G, Formation of silver nanoparticles in SDS inverse microemulsions [J]. Mater.Chem.Phys., 2008,109: 411–416.
    [91]张志琨等.纳米技术与纳米材料[M].北京:国防工业出版社, 2000.
    [92] Jiang C L, Wang Y F, Formation pf cobalt hollow nanospheres via surfactant-assisted hydrothermal progress [J]. Mater.Chem.Phys., 2009,113: 531-533.
    [93] Zhang Y J, Yao Q, Zhang Y, Cui T Y, Li D, Liu W, Lawrence W, Zhang Z D, Solvothermal Synthesis of Magnetic Chains Self-Assembled by Flowerlike Cobalt Submicrospheres [J]. Cryst.Growth Des., 2008,8(9): 3206-3212.
    [94] Guo L, Liang F, Wen X G, Yang S H, He L, Zheng W Z, Chen C P, Zhong Q P, Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution [J]. Adv. Funct. Mater., 2007, 17, 425–430.
    [95] Guo L, Liang F, Wang N, Kong D S, Wang S M, He L, Chen C P, Meng X M, Wu Z Y, Preparation and Characterization of Ring-Shaped Co Nanomaterials [J]. Chem.Mater., 2008,20:5163-5168.
    [96] Wang X, Fu H B, Peng A D, Zhai T Y, Ma Y, Yuan F L, Yao J N, One-Pot Solution Synthesis of Cubic Cobalt Nanoskeletons [J]. Adv. Mater., 2009, 21:1636–1640
    [97] Soumare Y, Cecile G, Thomas M, Gregory C, Frederic O, Fernand F, Jean-Yves P, Guillaume V, Kinetically Controlled Synthesis of Hexagonally Close-Packed Cobalt Nanorods with High Magnetic Coercivity [J]. Adv.Funct.Mater., 2009,19:1-7.
    [98] Cao A M, Hu J S, Liang H P, Song W G, Wan L J, He X L, Gao X G, Xia S H, Hierarchically Structured Cobalt Oxide (Co3O4): The Morphology Control and Its Potential in Sensors [J]. J. Phys. Chem. B, 2006, 110:15858 -15863.
    [99] Jansson J, Palmqvist A E C, Fridell E, Skoglundh M, Osterlund L,Thormahlen P, Langer V, On the Catalytic Activity of Co O in Low-Temperature CO Oxidation [J]. J.Catal., 2002, 211:387–397
    [100] Wolf A, Schüth F, A systematic study of the synthesis conditions for the preparation of highly activegold catalysts [J]. Appl. Catal. A: Gener., 2002, 226: 1–13.
    [101] Makhlouf S A, Magnetic properties of Co3O4 nanoparticles [J]. J.Magn.Magn.Mater., 2002, 246:184–190.
    [102] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J, Low-temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature, 2009,458:746-749.
    [103] Wang Y, Yang C, Schmidt W, Spliethoff B, Bill E, Schuth F, Weakly Ferromagnetic Ordered Mesoporous Co3O4 Synthesized by Nanocasting from Vinyl-Functionalized Cubic Ia3d Mesoporous Silica [J]. Adv.Mater., 2005,17:53-56.
    [104] Arico A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W, Nanostructured materials for advanced energy conversion and storage devices [J]. Nat.Mater.,2005,4(5):366-377.
    [105] Larcher D, Bonnin D, Cortes R, Rivals I, Personaz L, Tarascon J M, Combined XRD, EXAFS, and M?ssbauer Studies of the Reduction by Lithium ofα-Fe2O3 with Various Particle Sizes [J]. J.Electrochem.Soc., 2003,150: A1643-A1650.
    [106] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803):496-499.
    [107] Binni V, Teo C H, Zhu Y W, Mogalahalli V R, Bobba V R C, Andrew T S W, Tan B C V, Chwee L T, Chorng-Haur S, Co3O4 nanostructures with different morphologies and their field-emission properties [J]. Adv.Funct.Mater., 2007,17:1932-1939.
    [108]孙举涛,黄玉东,曹海琳,Co3O4纳米粒子的表面改性及其对复合材料性能的影响[J].复合材料学报,2004,21:33-37.
    [109] Bocca C, Cerisola G, Magnone E, et al. Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution[J]. Int. J. Hydrogen.Energ., 1999,24:645-647.
    [110] Lou X W, Deng D, Lee J Y, Feng J, Archer L A, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-Ion battery electrodes [J]. Adv.Mater., 2008,20(2):258-262.
    [111] Xie X W, Shen W J, Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance [J]. Nanoscale, 2009,1:50-60.
    [112] Jansson J, Palmqvist A E C, Fridell E, Skoglundh M, Osterlund L, Thormahlen P, Langer V, On the catalytic activity of Co3O4 in low-temperature CO oxidation[J]. J. Catal., 2002,211:387-397.
    [113] Li W Y, Xu L N, Chen J, Co3O4 nanomaterials in Lithium-Ion batteries and gas sensors [J]. Adv.Funct.Mater., 2005,15:851-857.
    [114] Makhlouf S A, Magnetic properties of nanoparticles [J]. J.Magn.Magn.Mater., 2002,246:184-190.
    [115] Barrera E, Gonzalez I, Viveros T, A new cobalt oxide electrodeposit bath for solar absorbers [J]. Sol.Energy Mater.Sol.Cells., 1998,51:69-82.
    [116] Da Fonseca C N P, De Paoli M A, Gorenstein A, Electrochromism in cobalt oxide thin films grown by anodic electropercipitation [J]. Sol.Energy.Mater.Sol.Cell., 1994,33:73-81.
    [117] Lai T L, Lai Y L, Lee C C, Shu Y Y, Wang C B, Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol [J]. Catal. Today., 2008, 131:105-110.
    [118] Lakshmi B B, Patrissi C J , Martin C R, Sol?Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures [J]. Chem. Mater., 1997,9:2544-2550.
    [119] Wang R M, Liu C M, Zhang H Z, Chen C P, Guo L, Xu H B, Yang S H, Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties [J]. Appl.Phys.Lett., 2004,85:2080-2082.
    [120] Hu L H, Peng Q, Li Y D, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion [J]. J. Am. Chem. Soc., 2008, 130 (48):16136-16137
    [121] He T, Chen D R, Jiao X L, Wang Y L, Duan Y Z, Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals [J]. Chem. Mater., 2005, 17: 4023-4030.
    [122] Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M, Defect Chemistry and Catalytic Activity of Nanosized Co3O4 [J]. Chem.Mater., 2009,21:1939-1941.
    [123] Tang X F, Li J H, Hao J M, Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {1 1 1} facets [J]. Mater. Res.Bull., 2008, 43 :2912–2918.
    [124] Yu T, Zhu Y W, Xu X J, Shen Z X, Chen P, Lim C T, Thong J T L, Sow C H, Controlled growth and field-emission properties of cobalt oxide nanowalls [J]. Adv.Mater., 2005,17:1595-1599.
    [125] Xu R, Zeng C H, Mechanistic Investigation on Salt-Mediated Formation of Free-Standing Co3O4 Nanocubes at 95°C [J]. J. Phys. Chem. B, 2003, 107:926-930.
    [126] Feng J, Zeng C H, Size-Controlled Growth of Co3O4 Nanocubes [J]. Chem. Mater., 2003, 15:2829-2835.
    [127] He T, Chen D R, Jiao X L, Wang Y L, Co3O4 nanoboxes: surfactant-templated fabrication and microstructure characterization [J]. Adv.Mater., 2006,18:1078-1082.
    [128] Li Y G, Tan B, Wu Y Y, Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays [J]. J.Am.Chem.Soc., 2006,128:14258-14259.
    [1] Park S J, Kim S, Lee S, Khim Z G, Char K, Hyeon T, Synthesis and Magnetic Studies of Uniform IronNanorods and Nanospheres [J]. J. Am. Chem. Soc., 2000, 122, 8581-8582.
    [2] Azarian A, Iraji zad A , Dolati A, An optical study of cobalt nanowires dispersed in liquid phase [J]. Opt. Commun., 2007,274: 471–476
    [3] Liu H J, Guo J H, Yin Y D, Augustsson A, Dong C L, Nordgren J, Chang C L, Alivisatos P, Thornton G, Ogletree D F, Requejo F G, Groot F, Salmeron M, Electronic Structure of Cobalt Nanocrystals Suspended in Liquid [J]. Nano Lett., 2007,7:1919-1922.
    [4] Zhong Z, Yin Y, Gates B, Xia Y, Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads [J]. Adv. Mater., 2000,12: 206-209.
    [5] Puntes V F, Krishnan K M, Alivisatos A P, Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystalε-Co nanoparticles [J]. Appl. Phys. Lett., 2001,78 :2187-2189.
    [6] Sellmyer D J, Yu M, Kirby R D, Nanaostructured magnetic films for extremely high density recording [J]. Nanostruct. Mater., 1999,12: 1021-1026.
    [7] Bish D L, Livingstore A, The crystal chemistry and paralogues of honessite and hydrohonessite: the sulphate analogues of reevesite [J]. Miner.Mag., 1981,44:339-343.
    [8] Oliva P, Leonardi J, Laurent J F, Delmas C, Braconnier J J, Figlarz M, Fievet F, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J.Powder.Sources., 1982,8: 229-255.
    [9] Connolly J, Pierre T G S, Rutnakornpituk M, Riffle J S, Cobalt nanoparticles formed in polysiloxane copolymer micelles: effect of production methods on magnetic properties [J]. J.Phys.D:Appl.Phys., 2004,37:2475-2482.
    [10] Nagaveni K, Gayen A, Subbanna G N, Hegde M S, Pd-coated Ni nanoparticles by the polyol method: an efficient hydrogenation catalyst [J]. J.Mater.Chem., 2002,12:3147-3151.
    [11] Smogunov A, Dal Corso A, Tosatti E, Selective d-state conduction blocking in nickel nanocontacts [J]. Surf. Sci., 2002, 507: 609-614.
    [12] New R M H, Pease R F W, White R L, Lithographically patterned singledomain cobalt islands for high-density magnetic recording [J]. J.Magn. Magn.Mater., 1996,155:140-145.
    [13] Kuroda C S, Maeda M, Nishibiraki H, Matsushita N, Handa H, Abe M, Styrener-coated iron nanobeads for medical use [J]. IEEE.Trans.Magn., 2005,41:4117-4119.
    [14] Hull A W, X-ray analysis of thirteen common metals [J]. Phys.Rev., 1921,17:571-588.
    [15] Dinega D P, Bawendi M G, A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt [J]. Angewa.Chem.Int.Ed.Engl., 1999,38:1788- 1791.
    [16] Respaud M, Broto J M, Rakoto H, Fert A R, Thomas L, Barbara B, Verelst M, Snoeck E, Lecante P, Mosset A, Osuna J, Ould Ely T, Amiens C, Chaudret B, Surface effects on the magnetic properties of ultrafine cobalt particles [J]. Phys.Rev.B, 1998,57:2925-3935.
    [17] Yang H T, Shen C M, Wang Y G, Su Y K, Yang T Z, Gao H J, Stable cobalt nanoparticles passivated with oleic acid and triphenylphosphine [J]. Nanotechnology, 2004,15:70-74.
    [18] Sun S, Murray C B, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) [J]. J.Appl.Phys., 1999,85 : 4325-4330.
    [19] Shoemaker C B, Shoemaker D P, Hopkins T E, Yindepit S, Refinement of the structure ofβ-manganese and of a related phase in the Mn-Ni-Si system [J]. Acta Crystallogr.B., 1978,34: 3573-3576.
    [20] Cao H Q, Xu Z, Sang H, Sheng D, Tie C Y, Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules [J]. Adv.Mater., 2001,13: 121-123.
    [21] Whitney T M, Jiang J S, Searson P C, Chien C L, Fabrication and Magnetic Properties of Arrays of Metallic Nanowires [J]. Science., 1993, 261: 1316-1319.
    [22] Shao H P, Huang Y Q, Lee H S, Suh Y J, Kim C O, Cobalt nanoparticlessynthesis from Co(CH3COO)2 by thermal decomposition [J]. J.Mag.Mater., 2006,304: e28-e30.
    [23] Sanz R, Vazquez M, Pirota K R, Hernandez-Velez M, Radially distributed Ni and Co nanowire arrays [J]. J.Appl.Phys., 2007,101: 114325.
    [24] Maye M M, Lim I-Im S, Luo J, Rab Z, Rabinovich D, Liu T B, Zhong C J, Mediator?Template Assembly of Nanoparticles [J]. J.Am.Chem.Soc., 2005,127: 1519-1529.
    [25] Li Y Y, Liu J P, Huang X T, Li G Y, Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres [J]. Cryst.Growth Des., 2007,7: 1350-1355.
    [26] Xu R, Xie T, Zhao Y G, Li Y D, Single-Crystal Metal Nanoplatelets: Cobalt, Nickel, Copper, and Silver [J]. Cryst. Growth Des., 2007, 7 : 1904-1911.
    [27] Huang X H, Li L, Luo X, Zhu X G, Li G H, Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays [J]. J. Phys. Chem. C, 2008, 112 :1468–1472.
    [28] Guo L, Liang F, Wang N, Kong D S, Wang S M, He L, Chen C, Meng X M, Wu Z Y, Preparation and Characterization of Ring-Shaped Co Nanomaterials [J]. Chem.Mater., 2008,20: 5163-5168.
    [29] Zhang Y J, Yao Q, Zhang Y, Cui T Y, Li D, Liu W, Lawrence W, Zhang Z D, Solvotheral Synthesis of Magnetic Chain Self-Assembled by Flowerlike Cobalt Submicrospheres [J]. Cryst.Growth Des., 2008,8: 3206-3212.
    [30] Xie Q, Qain Y T, Zhang S Y, Fu S Q, Yu W C, A hydrothermal reduction route to single-crystalline hexagonal cobalt nanowires [J]. Eur.J.Inorg.Chem., 2006,2454-2459.
    [31] Hou Y, Kondoh H, Ohta T, Self-assembly of Co nanoplates into spheres: synthesis and characterization [J]. Chem. Mater., 2005,17: 3994-3996.
    [32] Zhu Y C, Zheng H G, Yang Q, Pan A L, Yang Z P, Qian Y T, Growth of dendritic cobalt nanocrystals at room temperature [J]. J. Cryst. Growth., 2004, 260:427-434.
    [33] Guo L, Yang S, Chen C, Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution [J]. Adv.Funct.Mater., 2007,17: 425-430.
    [34] Guan M Y, Sun J H, Gao C L, Li X, Zheng X, A Novel Cobalt Submicro-Wire Network and Its Magnetic Properties [J]. ChemPhysChem., 2007, 8 :2182-2184.
    [35] Wu C Z, Xie Y, Controlling phase and morphology of inorganic nanostructures originated from the internal crystal structure [J]. Chem.Commun., 2009,5943–5957.
    [36] Dumpich G, Krome T P, Hausmans B, Magnetoresistance of single Co nanowires [J]. J.Magn.Magn.Mater., 2002, 248: 241-247.
    [37] Xie Q, Dai Z, Huang W W, Liang J B, Liang C L, Qian Y T, Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process [J]. Nanotechnology, 2005, 16: 2958-2962.
    [38] Lu P Z, Xiao H M, Zhang W D, Yang Y, Fu S Y, Synthesis and Characterization of Novel Three-Dimensional Metallic Co Dendritic Superstructures by a Simple Hydrothermal Reduction Route [J]. Cryst. Growth Des., 2008, 8:1113–1118.
    [39] Matzapetakis M, Dakanali M, Raptopoulou C P, Tangoulis V, Terzis A, Moon N, Giapintzakis J, Salifoglou A, Synthesis, spectroscopic, and structural characterization of the first aqueous cobalt(II)-citrate complex: toward a potentially bioavailable form of cobalt in biologically relevant fluids [J]. J.Biol.Inorg.Chem., 2000, 5 :469-474.
    [40] Hou Y L, Kondoh H, Shimojo M, Kogure T, Ohta T, High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterization [J]. J.Phys.Chem.B, 2005, 109:19094-19098.
    [1] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes [J]. Acc. Chem. Res., 2001, 34: 257-264.
    [2] Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallitesinto three-dimensional quantum dot superlattice [J]. Science, 1995, 270: 1335-1338.
    [3] Shenton W S, Pum D, Sleytr U B, et al. Synthesis of cadmium sulphidesuperlattices using self-assembled bacterial S-layers [J]. Nature, 1997, 389: 585-587.
    [4] Firestone M A, Williams D E, Seifert S, et al. Nanoparticle Arrays Formed by Spatial Compartmentalization in a Complex Fluid [J]. Nano Lett., 2001, 1: 129-135.
    [5] Zhu J, Peng H, Chan C K, Jarausch K, Zhang X F, Cui Y, Hyperbranched Lead Selenide Nanowire Networks [J]. Nano. Lett., 2007, 7:1095-1099.
    [6] Sukhanova A, Baraov A V, Perova T S, Cohen J H M, Nabiev I, Controlled Self-Assembly of Nanocrystals into Polycrystalline Fluorescent Dendrites with Energy-Transfer Properties [J]. Angew. Chem. Int. Ed., 2006, 45:2048-2052.
    [7] Yan H, He R, Johnson J, Law M, Saykally R J, Yang P, Dendritic Nanowire Ultraviolet Laser Array [J]. J. Am. Chem. Soc., 2003, 125: 4728-4729.
    [8] Tian Z G R, Liu J, Voigt J A, Xu H F, Mcdermott M J, Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly [J]. Nano. Lett., 2003, 3 :89-92.
    [9] Parfenov A, Grycznski L, Malicka J, Geddes C D, Lakowicz J R, Enhanced Fluorescence from Fluorophores on Fractal Silver Surface [J]. J.Phys.Chem.B, 2003, 107:8829-8833.
    [10] Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A, Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods [J]. Langmuir, 2000, 16 : 6396-6399.
    [11] Guo S J, Wang E K, Simple Electrochemical Route to Nanofiber Junctions and Dendrites of Conducting Polymer [J]. Langmuir, 2008, 24: 2128-2132.
    [12] Rashid M H, Mandal T K, Synthesis and Catalytic Application of Nanostructured Silver Dendrites [J]. J.Phys.Chem.C, 2007,111: 16750-16760.
    [13] Qiu R, Zhang X L, Qiao R, Li Y, Kim Y I, Kang Y S, CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor [J]. Chem.Mater., 2007,19:4174-4180.
    [14] Fan L, Guo R, Growth of dendritic silver crystals in CTAB/SDBS mixed- 303surfactant solutions [J]. Cryst. Growth Des., 2008, 8 : 2150–2156.
    [15] Hu X L, Yu J C, Gong J M, Fast Production of Self-Assembled Hierarchicalα-Fe2O3 Nanoarchitectures [J]. J.Phys.Chem.C, 2007,111:11180-11185.
    [16] Chen M H, Kim Y N, Li C C, Cho S O, Controlled Synthesis of Hyperbranched Cadmium Sulfide Micro/Nanocrystals [J]. Cryst. Growth .Des., 2008, 8 :629-634.
    [17] Puntes V F, Kirshnan K M, Alivisatos A P, Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt [J]. Science, 2001, 291:2115-2117.
    [18] Bao Y, Beerman M, Pakhomov A B, Krishnan K M, Controlled Crystalline Structure and Surface Stability of Cobalt Nanocrystals [J]. J. Phys. Chem B, 2005, 109:7220-7222.
    [19] Huang X H, Li L, Luo X, Zhu X G, Li G H, Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays [J]. J.Phys.Chem.C, 2008, 112:1468-1472.
    [20] Soumare Y, Garcia C, Maurer T, Chaboussant G, Ott F, Fievet F, Piquemal J Y, Viau G, Kinetically Controlled Synthesis of Hexagonally Close-Packed Cobalt Nanorods with High Magnetic Coercivity [J]. Adv.Funct.Mater., 2009, 19:1971-1977.
    [21] Wang X, Fu H B, Peng A D, Zhai T Y, Ma Y, Yuan F l, Yao J N, One-Pot Solution Synthesis of Cubic Cobalt Nanoskeletons [J]. Adv.Mater., 2009, 21:1636-1640.
    [22] Gvrler C, Feyen M, Behrens S, Matoussevitch N, Schmidt A M, One-step synthesis of functional Co nanoparticles for surface-initiated polymerization [J]. Polymer, 2008, 49:2211-2216.
    [23] Cao H, Wang L, Qiu Y, Wu Q, Wang G, Zhang L, Liu X, Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays [J]. ChemPhysChem., 2006, 7:1500-1504.
    [24] Srivastava K, Madhavi S, White T J, Ramanujan R V, Template assisted assembly of cobalt nanobowl arrays [J]. J.Mater.Chem., 2005,15 : 4424-4428.
    [25] Athanassiou E K, Grossmann P, Grass R N, Stark W J, Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment [J]. Nanotechnology, 2007, 18 :165606.
    [26] Wang X, Yuan F L, Hu P, Yu L J, Bai L Y, Self-Assembled Growth of Hollow Spheres with Octahedron-like Co Nanocrystals via One-Pot Solution Fabrication [J]. J.Phys.Chem.C, 2008, 112:8773-8778.
    [27] Liu Z T, Li X, Liu Z W, Lu J, Synthesis and catalytic behaviors of cobalt nanocrystals with special morphologies [J]. Powder Technol., 2009, 189 : 514-519.
    [28] Zhu Y C, Zheng H G, Yang Q, Pan A L, Yang Z P, Qian Y T, Growth of dendritic cobalt nanocrystals at room temperature [J]. J. Cryst. Growth., 2004, 260 :427-434.
    [29] Liu X, Yi R, Wang Y, Qiu G, Zhang N, Li X, Highly Ordered Snowflakelike Metallic Cobalt Microcrystals [J]. J.Phys.Chem.C, 2007, 111:163-167.
    [30] Zhu L P, Xiao H M, Zhang W D, Yang Y, Fu S Y, Synthesis and Characterization of Novel Three-Dimensional Metallic Co Dendritic Superstructures by a Simple Hydrothermal Reduction Route [J]. Cryst. Growth. Des., 2008, 8 :1113-1118.
    [31] Liu X, Yi R, Wang Y, Qiu G, Zhang N, Li X, Highly Ordered Snowflake like Metallic Cobalt Microcrystals [J]. J.Phys.Chem.C, 2007, 111:163-167.
    [32] Xie Q, Qian Y T, Zhang S Y, Fu S Q, Yu W C, A Hydrothermal Reduction Route to Single-Crystalline Hexagonal CobaltNanowires [J]. Eur. J. Inorg. Chem., 2006,12: 2454-2459.
    [33]龚晓钟,汤皎宁等.联氨还原法制备金属Co纳米微粒[J].广州化工,2004, 32 :28-32.
    [34] Metin O, Ozkar S, Hydrogen Generation from the Hydrolysis of Ammonia- borane and Sodium Borohydride Using Water-soluble Polymer- stabilized Cobalt(0) Nanoclusters Catalyst [J]. Energ. Fuel., 2009, 23: 3517-3526;
    [35] Hasik M, Kurkowska I, Bernasik A, Polyaniline incorporating cobalt ions fromCoCl2 solutions [J].Reac. Funct. Polym., 2006, 66:1703-1710
    [36] Kotsakis N, Raptopoulou C P, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T, Kiss T, Salifoglou A, Correlations of Synthetic, Spectroscopic, Structural, and Speciation Studies in the Biologically Relevant Cobalt(II)-Citrate System: The Tale of the First Aqueous Dinuclear Cobalt(II)-Citrate Complex [J]. Inorg. Chem., 2003, 42 : 22-31.
    [37] Dumpich G, Krome T P, Hausmans B, Magnetoresistance of single Co Nanowires [J]. J. Magn. Magn. Mater., 2002, 248: 241–247.
    [38] Ye J, Chen Q W, Qi H P, Tao N, Formation of nickel dendritic crystals with peculiar orientations by magnetic-induced aggregation and limited diffusion [J]. Cryst. Growth Des., 2008, 8 : 2464–2468.
    [39] Du J, Gao Y Q, Chai L L, Zou G F, Li Y, Qian Y T, Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties [J]. Nanotechnology, 2006, 17:4923–4928.
    [40] Zhou X F, Zhang D Y, Zhu Y, Shen Y Q, Guo X F, Ding W P, Chen Y, Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures [J]. J. Phys. Chem. B, 2006, 110 : 25734–25739.
    [1] Seney C S, Gutzman B M, Goddard R H, Correlation of size and surface-enhanced raman scattering activity of optical and spectroscopic properties for silver nanoparticles [J]. J.Phys.Chem.C, 2009,113:74-80.
    [2] Long J, Chamoreau L M, Mathoniere C, Marvaud V, Photoswitchable heterotrimetallic chain based on octacyanomolybdate Copper, and Nickel: synthesis, characterization, and photomagnetic properties [J]. Inorg.Chem., 2009,48:22-24.
    [3] Kumar B, Raj C R,Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity [J]. Chem.Mater., 2008,20:3546-3548.
    [4] Bi Y P, Lu G X, Facile synthesis of platinum nanofiber/nanotube junction structures at room temperature [J]. Chem.Mater., 2008,20:1224-1226.
    [5] Han Y C, Cha H G, Kim C W, Kim Y H, Kang Y S, Synthesis of highly magnetized iron nanoparticels by a solventless thermal decomposition method[J]. J.Phys.Chem.C, 2007,111:6275-6280.
    [6] Dumstre F, Chaudret B, Amiens C, Renaud P, Fejes P, Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe3)2]2 [J]. Science, 2004,303:821-823.
    [7] Shankar S S, Rai A, Ahmad A, Sastry M, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in Infrared-Absorbing optical coatings [J]. Chem.Mater., 2005,17:566-572.
    [8] Zhu Y G, Dou X C, Huang X H, Li L, Li G H, Thermal properties of Bi nanowire arrays with different orientations and diameters [J]. J.Phys.Chem.B, 2006,110:26189-26193.
    [9] Chen H M, Liu R S, Tsai D P, A versatile route to the controlled synthesis of gold nanostructures [J]. Cryst.Growth Des., 2009,9:2079-2087.
    [10] Wu C W, Mosher B P, Zeng T F, Rapid synthesis of gold and platinum nanoparticles using metal displacement reduction with sonomechanical assistance [J]. Chem.Mater., 2006,18:2925-2928.
    [11] Zhang W J, Chen P, Gao Q S, Zhang Y H, Tang Y, High-concentration preparation of Silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method [J]. Chem.Mater., 2008,20:1699-1704.
    [12] Zhou Z H, Liu G J, Han D H, Coating and structural locking of dipolar chains of cobalt nanoparticles [J]. ACS.Nao., 2009,3:165-172.
    [13] O’Shea V P, Piscina P R, Homs N, Aromi G, Fierro J L G., Development of hexagonal closed-packed cobalt nanoparticles stable at high temperature [J]. Chem.Mater., 2009,21:5637-5643.
    [14] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photo-reduction technique for preparation of single crystal Ag nanorods and Ag dendrites [J]. Adv. Mater., 1999, 11: 850-852.
    [15]Liaffa D, Dragos T. Electrochemical preparation of standard-quality copper powders [J]. Rev.Chem., 2000, 518: 600-606.
    [16] Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T, Synthesis of single-crystal gold nanosheets of large size in ionic liquids [J]. J.Phys.Chem.B,2005,109:14445-14448.
    [17] Liang H Y, Yang H X, Wang W Z, Li J Q, Xu H X, High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals [J]. J.Am.Chem.Soc., 2009,131:6068-6069.
    [18] Fan L, Guo R, Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions [J] Cryst.Growth Des., 2008,8:2150-2156.
    [19] Qiao R, Zhang X L, Qiu R, Kim J C, Kang Y S, Preparation of magnetic hybrid copolymer-cobalt hierarchical hollow spheres by localized Ostwald ripening [J]. Chem.Mater., 2007,19:6485-6491.
    [20] Wang Y W, Kim J S, Lee J Y, Kim G H, Kim K S, Diameter and length-dependent volume plasmon excitation of bismuth nanorods investigated by electron energy loss spectroscopy [J]. Chem.Mater., 2007,19:3912-3916.
    [21] Ye J, Chen Q W, Qi H P, Tao N, Formation of nickel dendritic crystals with peculiar orientations by magnetic-induced aggregation and limited diffusion [J]. Cryst.Growth Des., 2008,8:2464-2468.
    [22] Zhu Y C, Zheng H G, Yang Q, Pan A L, Yang Z P, Qian Y T, Growth of dendritic cobalt nanocrystals at room temperature [J]. J. Cryst. Growth., 2004,260: 427-434.
    [23] Li H, Jin Z, Song H Y, Liao S J, Synthesis of Co submicrospheres self-assembled by Co nanosheets via a complexant-assisted hydrothermal approach [J]. J.Magn.Magn.Mater., 2010,322:30-35.
    [24] Zhu L P, Xiao H M, Zhang W D, Yang Y, Fu S Y, Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route [J]. Cryst.Growth Des.2008,8:1113-1118.
    [25] Guo F, Zheng H G, Yang Z P, Qian Y T, Synthesis of cobalt nanoparticles in ethanol hydrazine alkine system (EHAS) at room temperature [J]. Mater.Lett., 2002,56:906-909.
    [26] Grzelczak M, Perez-Juste J, Rodriguez-Gonzalez B, Spasova M, Barsukov I, Farle M, Liz-Marzan L M, Pt-catalyzed growth of Ni nanoparticles in aqueousCTAB solution [J]. Chem.Mater., 2008,20:5399-5405.
    [27] Sanders P G. Elastic and tensile behavior of nanocrysta coper and palladium [J]. Acta Mater., 1997, 45: 4019-4023.
    [1] Rao C N R, Cheetham A K, Science and technology of nanomaterials: current status and future prospects [J]. J.Mater.Chem., 2001,11:2887-2894.
    [2] Lakshmi B B, Dorhout P K, Martin C R, Sol?Gel Template Synthesis of Semiconductor Nanostructures [J]. Chem.Mater., 1997,9:857-862.
    [3] Li Y D, Sui M, Ding Y, Zhang G H, Zhuang J, Wang C, Preparation of Mg(OH)2 Nanorods [J]. Adv.Mater., 2000,12:818-821.
    [4] Chen S W, Sommers J M, Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution [J]. J.Phys.Chem.B, 2001,105:8816-8820.
    [5] Xu R, Zeng H C, Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close- and non-close-packed organizations [J]. Langmuir, 2004,20:9780-9790.
    [6] Pileni M P, Nanocrystal Self-Assemblies: Fabrication and Collective Properties [J]. J.Phys.Chem.B, 2001,105:3358-3371.
    [7] He T, Chen D R, Jiao X L,Controlled synthesis of Co3O4 nanoparticles through oriented aggregation [J]. Chem.Mater., 2004,16:737-743.
    [8] Xu R, Zeng H C,Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95oC [J]. J.Phys.Chem.B, 2003,107:926-930.
    [9] Furlanetto G, Formaro L, Precitation of spherical Co3O4 particles [J]. J.Colloid Interface Sci., 1995,170:169-175.
    [10] Tripathy S K, Christy M, Park N H, Suh E K, Anand S, Yu Y T, Hydrothermal synthesis of single-crystalline nanocubes of Co3O4 [J]. Mater.Lett., 2008,62:1006-1009.
    [11] Kratohvil S, Matijevic E,Preparation of copper compounds of different compositions and particle morphologies [J]. J.Mater.Res., 1991, 6(4): 766-777.
    [12] Hu L H, Peng Q, Li Y D, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion [J]. J. Am. Chem. Soc., 2008, 130 (48):16136-16137
    [13] He L, Li Z C, Zhang Z J, Rapid, low-temperature synthesis of single-crystalline Co3O4 nanorods on silicon substrates on a large scale [J]. Nanotechnology, 2008, 19: 155606.
    [14] Cao A M, Hu J S, Liang H P, Song W G, Wan L J, He X L, Gao X G, Xia S H, Hierarchically Structured Cobalt Oxide (Co3O4): The Morphology Control and Its Potential in Sensors [J]. J. Phys. Chem. B, 2006, 110 (32):15858-15863.
    [15]Dong Y M, He K, Yin L, Zhang A M, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties [J]. Nanotechnology, 2007, 18:435602.
    [16]He T, Chen D R, Jiao X L, Wang Y L, Duan Y Z, Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals [J]. Chem. Mater., 2005, 17 (15):4023-4030.
    [17]He T, Chen D R, Jiao X L, Xu Y Y, Gu Y X, Surfactant-Assisted Solvothermal Synthesis of Co3O4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size [J]. Langmuir, 2004, 20 (19): 8404-8408
    [18]He T, Chen D R, Jiao X L, Wang Y L, Co3O4 Nanoboxes: Surfactant-Templated Fabrication and Microstructure Characterization [J]. Adv. Mater., 2006, 18:1078–1082
    [19]Meng Y D, Chen D R, Jiao X L, Fabrication and Characterization of Mesoporous Co3O4 Core/Mesoporous Silica Shell Nanocomposites [J]. J. Phys. Chem. B, 2006, 110 (31): 15212-15217
    [20]Li W Y, Xu L N, Chen J, Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors [J]. Adv. Funct. Mater., 2005, 15(5):851-857
    [21] Lou X W, Deng D, Lee J Y, Feng J, Archer L A, Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes [J]. Adv. Mater., 2008, 20: 1205–1209
    [22] Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M, Defect Chemistry and Catalytic Activity of Nanosized Co3O4 [J]. Chem. Mater., 2009, 21: 1939–1947
    [23]Tuysuz H, Liu Y, Weidenthaler C, Schuth F, Pseudomorphic Transformation of Highly Ordered Mesoporous Co3O4 to CoO via Reduction with Glycerol [J]. J. Am. Chem. Soc., 2008, 130: 14108–14110
    [24]Soumare Y, Garcia C, Maurer T, Chaboussant G, Ott F, Fie′vet F, Piquemal J Y, Guillaume ViauKinetically, Controlled Synthesis of Hexagonally Close-Packed Cobalt Nanorods with High Magnetic Coercivity [J]. Adv. Funct. Mater., 2009, 19: 1–7
    [25] Meng Y D, Chen D R, Jiao X L, Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites [J]. J.Phys.Chem.B, 2006,110:15212-15217.
    [26] Xu R, Zeng H C, Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close- and non-close-packed organizations [J]. Langmuir, 2004,20:9780-9790.
    [27] Jiang J, Li L C, Synthesis of sphere-like nanocrystals via a simple polyol route [J]. Mater.Lett., 2007,61:4894-4896.
    [28]Y.C.Chen, Y.G.Zhang, S.Q.Fu, Synthesis and characterization of Co3O4 hollow spheres[J]. Mater.Lett., 2007,61:701-705.
    [29] Zhu Y C, Zheng H G, Yang Q, Pan A L, Yang Z P, Qian Y T, Growth of dendritic cobalt nanocrystals at room temperature [J]. J. Cryst. Growth., 2004,260:427-434.
    [30] Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, Tondello E, Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition [J]. Chem.Mater., 2001,13:588-593.
    [1] He J H, Wu T H, Hsin C L, Li K M, Chen L J, Chueh Y L, Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties [J]. Small, 2006,2:116-120.
    [2] Xu L P, Sithambaram S, Zhang Y S, Chen C H, Jin L, Joesten R, Suib S L, Novel Urchin-like CuO Synthesized by a Facile Reflux Method with Efficient Olefin Epoxidation Catalytic Performance [J]. Chem.Mater., 2009, 21 (7): 1253–1259.
    [3] Hu C C, Wu Y T, Chang K H, Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant Influence of Oxidants [J]. Chem.Mater., 2008,20:2890-2894.
    [4] Zhou J, Ding Y, Deng S Z, Gong L, Xu N S, Wang Z L, Three-dimensional tungsten oxide nanowire networks [J]. Adv.Mater., 2005,17:2107-2110.
    [5] Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M, Defect Chemistry and Catalytic Activity of Nanosized Co3O4 [J]. Chem.Mater., 2009,21(9) :1939-1947.
    [6] Li W Y, Xu L N, Chen J, Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors [J]. Adv.Funct.Mater., 2005,15: 851-857.
    [7] Li Y G, Tan B, Wu Y Y, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability [J]. Nano.Lett., 2008,8(1):265-270.
    [8] Lou X W, Deng D, Lee J Y, Archer L A, Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes [J]. Adv.Mater., 2008,20(2):258-262.
    [9] Ramachandram K, Oriakhi C O, Lemer M M, Koch V R, Intercalation chemistry of cobalt and nickel dioxides: a facile route to new compounds containing organocations [J]. Mater.Res.Bull., 1996,31:767-772.
    [10] Salabas E L, Rumplecker A, Kleitz F, Radu F, Schuth F, Exchange Anisotropy in Nanocasted Co3O4 Nanowires [J]. Nano.Lett., 2006,6(12):2977-2981.
    [11] Kim D Y, Ju S H, Koo H Y, Hong S K, Kang Y C, Synthesis of nanosized Co3O4 particles by spray pyrolysis [J]. J.Alloy.Compounds., 2006,417:254-258.
    [12] Mane A U, Shalini K, Wohlfart A, Devi A, Shivashankar S A, Strongly oriented thin films of Co3O4 deposited on single-crystal MgO(100) by low-pressure, low-temperature MOCVD [J]. J.Cryst.Growth., 2002,240:157-163.
    [13] Baydi M E, Poillerat G, Rehspringer J L, Gautier J L, Koenig J F, Chartier P, A sol-gel rounte for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium [J]. J.Solid.State.Chem., 1994,109 :281-288.
    [14] Li L L, Chu Y, Liu Y, Song J L, Wang D, Du X W, A facile hydrothermal route to synthesize novel Co3O4 nanoplates [J]. Mater.Lett., 2008,62,1507-1510.
    [15] Xu R, Zeng H C, Mechanistic investigation on Salt-mediated formation of free-standing Co3O4 nanocubes [J]. J.Phys.Chem.B, 2003,107:926-930.
    [16] Lon X W, Deng D, Lee J Y, Feng J, Archer L A, Self-supported formation of needlelike Co3O4 nanotubes and their application as Lithium-Ion battery electrodes [J]. Adv.Mater., 2008,20:258-262.
    [17] Ding Y S, Xu L P, Chen C H, Shen X F, Suib S L, Syntheses of nanostructure of cobalt hydrotalcite like compounds and Co3O4 via microwave-assisted reflux method [J]. J.Phys.Chem.C, 2008,112:8177-8183.
    [18] Varghese B, Hoong T C, Zhu Y W, Reddy M V, Chowdari B V R, Wee A T S, Vincent T B C , Lim C T, Sow C H, Co3O4 nanostructures with different morphologies and their field-emission properties [J]. Adv.Funct.Mater., 2007,17:1932-1939.
    [19] Li Y G, Tan B, Wu Y Y, Freestanding mesoporous quasi-single-crystalline Co3O4 nanowires arrays [J]. J.Am.Chem.Soc., 2006,128:14258-14259.
    [20] Li Y G, Tan B, Wu Y Y, Mesoporous Co3O4 nanowires arrays for Lithium Ion batteries with high capacity and rate capacity [J]. Nano.Lett., 2008,8:265-270.
    [21] Meng Y D, Chen D R, Jiao X L, Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites [J]. J.Phys.Chem.B, 2006,110:15212-15217.
    [22] Xu R, Zeng H C, Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close- and non-close-packed organizations [J]. Langmuir, 2004,20:9780-9790.
    [23] Jiang J, Li L C, Synthesis of sphere-like nanocrystals via a simple polyol route [J]. Mater.Lett., 2007,61:4894-4896.
    [24] Chen Y C, Zhang Y G, Fu S Q, Synthesis and characterization of Co3O4 hollow spheres [J]. Mater.Lett., 2007,61:701-705.
    [25] Wang G X, Shen X P, Horvat J, Wang B, Liu H, Wexler D, Yao J, Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods [J]. J. Phys. Chem. C, 2009, 113: 4357–4361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700