用户名: 密码: 验证码:
功能化纳米材料的生物效应与分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料已愈来愈多地应用于人类生活的方方面面,例如能源、环境、电子及生物医学。纳米材料的广泛应用使其在人类与自然环境中迅速渗透,而人们对其生物效应却知之甚少。随着越来越多有关纳米毒性的报道,人们对纳米材料安全性的关注也逐渐被提上日程,其中的关键问题是了解纳米材料的基本生物行为及其分子机制。本文立足于对几种重要功能纳米材料生物效应的研究,通过多种物理、化学与生物学手段发现了功能纳米材料的蛋白质结合、细胞摄取和对细胞信号传导通路影响的若干规律。这些规律的发现为纳米材料的生物效应提供了理论解释,阐明了纳米材料生物行为的可能的机制和调控机理。这些发现同时也具有重要的应用价值:它为有效降低纳米材料毒性、提高生物相容性提供方法学参考,并为纳米材料作为治疗试剂提供了可能性。
     本文首先研究了纳米颗粒与蛋白质的结合。纳米颗粒趋于结合蛋白质的性质决定了它在人类和动物体内的毒性以及自身被免疫系统调理和清除的命运。在该项工作中,通过改变多壁碳纳米管(MWCNT)的直径、表面化学以及蛋白质种类,借助稳态荧光光谱、时间分辨荧光光谱和圆二色光谱等分析方法,研究了MWCNT与蛋白质结合的机制。在对不同直径(40 nm与10 nm)MWCNT的研究中发现,直径较大的具有更强的结合蛋白质的能力。这个现象说明纳米颗粒的表面曲率在其与蛋白质结合过程中起到了关键作用。此外,碳纳米管(CNT)的表面电荷和空间位阻也参与调节其与蛋白质的结合,说明了CNT与蛋白质双方的电荷和立体化学性质都对它们之间的结合产生了影响。另外,尽管蛋白质的自身荧光由于与CNT的结合而发生了淬灭,而其荧光寿命并没有改变,说明这种荧光淬灭是由于形成复合物而发生的稳态淬灭。通过圆二色谱法研究蛋白质二级结构时发现,蛋白质的高级结构受到了其与CNT结合的影响,因此可能会影响蛋白质的生物功能。
     当CNT与细胞表面受体或细胞内蛋白相互作用时,将会影响细胞的信号传导通路。因此评估其细胞摄取和细胞内定位对了解其生物效应的机制是必不可少的。目前已知CNT可以非常容易地穿过各种各样的生物学屏障而进入多种有机体,包括动物、植物及微生物,然而对其细胞摄取的机制和进入细胞后的转运并不完全清楚。目前对CNT的细胞摄取、细胞内定位和转移机制尚存争议。为了阐明细胞摄取的机制,我们利用透射电子显微镜对表面带电荷的MWCNT的细胞摄取进行了超微结构的观察,发现了MWCNT的直接穿膜、内吞、内吞体泄露和细胞核定位等现象。我们结合文献报道和自己的实验观察,推出了一个细胞摄取模型。在该模型中,将MWCNT分为两组,一组是凝聚态的CNT团簇,另一组是单个分散的CNT。团簇通过能量依赖性的内吞过程进入细胞并首先进入内吞体;内吞体内的团簇随后变得疏松,使单根CNT释放出来,释放出来的单根CNT穿过内吞体膜进入细胞质;高度分散的单个CNT通过直接穿膜进入细胞质;短CNT有可能进入细胞核;最后,所有种类的CNT都进入溶酶体并排出细胞。该模型将会对CNT的药物传递和毒性研究产生重要影响。例如,基于此模型,细胞内的CNT都有可能进入细胞质并与其中的功能性分子发生未知的作用,从而造成某些细胞机能的缺失。
     CNT进入细胞后,将不可避免地与细胞内组分发生相互作用并产生时间和剂量依赖性的细胞反应。我们利用一个新型实时细胞电子传感技术动态地监控了CNT的细胞反应。这项技术利用整合在96孔细胞培养板底部的电子传感器对贴附在其上的细胞进行电阻测量,并通过换算得出反应细胞多项指标的参数(细胞指数),细胞指数反应了细胞增殖、细胞形态、贴附及延展。这种技术无须生物标记、实时并且可以高通量的进行测试,克服了目前对于CNT细胞效应研究中基于光度测量的诸多缺点,并使CNT细胞反应的动态监控成为可能。利用该手段我们获得了动态细胞反应曲线、时间依赖性ICs0及细胞生长曲线的斜率等参数。这些参数是无法用传统方法获得的,为CNT及多种纳米材料的生物效应研究提供了重要信息。
     由于CNT自身可以与蛋白发生相互作用、进入细胞并造成动态的细胞反应,因此,了解其细胞内行为的分子机制是亟待解决的问题。这些问题包括哪些信号通路受到了影响、哪些基因的表达发生了改变及其后续的生理效应是怎样的。我们通过对羧基化单壁碳纳米管(SWCNT-COOH)的动态细胞反应的监控、全基因组表达分析和其他细胞生物学手段,发现它可以通过一种非凋亡的机制抑制细胞增殖。该机制与目前研究报道中未修饰碳管的效应是截然不同的。基于SWCNT-COOH对细胞增殖、基因和蛋白质表达及蛋白质磷酸化的影响,我们得出结论:该CNT抑制了Smad依赖性的骨形态发生蛋白信号传导通路并下调Id蛋白的表达。这些分子行为造成了细胞周期G1/S过渡期的停滞和细胞增殖的抑制。SWCNT-COOH对该信号通路及基因表达的抑制表明了功能化CNT对人类细胞具有非凋亡效应。这个发现同样对人类疾病的治疗具有潜在的价值,例如与骨形态发生蛋白信号通路相关(骨科疾病)或与Id蛋白相关(乳腺癌)的疾病。
     尽管目前对纳米颗粒/蛋白质结合以及纳米颗粒的细胞毒性研究都有分别报道,却没有关于纳米颗粒/蛋白质团簇形成与纳米颗粒细胞摄取和动态细胞效应之间关系的研究。本课题研究并发现不同粒径和表面化学修饰的磁性纳米颗粒可以结合不同种类和数量的蛋白质而不影响蛋白质二级结构。羧基化磁性纳米颗粒具有较高的细胞毒性,而PEG的修饰则降低了它们的细胞摄取和毒性。与较大粒径材料相比,小粒径磁性纳米颗粒(羧基尤为严重)能够结合更多的血清蛋白,进入细胞较少,但是却造成更强的动态细胞反应。因而我们得出结论:对于水溶性磁性纳米颗粒,除了其自身粒径和表面电荷的影响外,纳米/蛋白团簇的细胞效应还受吸附蛋白种类和数量的影响,并且与蛋白质构象变化无关。
     纳米技术的迅速发展,尤其是新型纳米结构的不断涌现,需要我们首先对其生物学效应进行评估。在论文的最后一部分,我们研究了一种新型功能化纳米材料—核/壳-铁/碳纳米颗粒的细胞效应。该材料是最新开发的具有磁共振成像、磁热治疗和药物传递应用前景的复合纳米材料。但是目前对该材料与生物系统的相互作用并不清楚。为了阐明该材料潜在毒性及表面化学-生物相容性的关系,我们选择几种不同化学修饰的核/壳-铁/碳纳米颗粒,研究了它们的动态细胞反应、细胞摄取、氧化应激和对细胞凋亡及细胞周期的影响。结果表明该新型材料的细胞生物相容性同时具有表面化学和细胞种类的依赖性,并且除羧基修饰外,其他材料基本不造成细胞毒性。我们的研究表明该类新型功能纳米材料可以进行进一步地功能化修饰并在多个领域广泛应用。
Nanotechnology and nanomaterials are increasingly applied in various aspects of human life, such as energy, environment, electronics and biomedicine. However, people know little about their biological effects. With more and more studies on nanotoxicities have been reported, nanomaterials'safety has caused wide public concern. The key problem is to understand basic biological behavior and mechanisms of nanomaterials. Here, we selected several important types of nanomaterials to study their biological activities. Using multiple physical, chemical and biological approaches, we found important rules on nanoparticles'protein binding, cell uptake and effects on cellular signaling transductions. These findings offer theoretical explanations to nanomaterials biological effects and help elucidate novel interaction and regulation mechanisms. These findings also provide methodological reference to effectively reduce nanotoxicity and improve biocompatibility, and make functional nanomaterials to be probably used as therapeutic agents.
     We firstly studied nanoparticles'protein binding. The protein binding propensity of nanoparticles determines their in vivo toxicity and their fate to be opsonized and cleared by human defense systems. In this work, protein binding mechanisms of pristine and functionalized multi-walled carbon nanotubes (MWCNT) were investigated by varying MWCNT's diameters, nanotube surface chemistry, and proteins using steady-state and time-resolved fluorescence, and circular dichroism (CD) spectroscopies. The MWCNT with a larger diameter (~40 nm) generally exhibited stronger protein binding compared with those with a smaller diameter (~10 nm), demonstrating that the curvature of nanoparticles plays a key role in determining the protein binding affinity. Negative charges or steric properties on MWCNT enhanced binding for some proteins, but not others, indicating that the electrostatic and stereochemical nature of both nanotubes and proteins govern nanotube/protein binding. Protein fluorescence lifetime was not altered by the binding while the intensity was quenched indicating a static quenching through complex formation. The binding-induced conformational changes were further confirmed by CD studies.
     Effects on cellular signaling pathways can occur when nanotubes interact with cell surface receptors or with intracellular proteins. The evaluation of cell uptake and intracellular location of SWCNT-COOH are crucial for understanding its biological impact mechanism. CNT can readily penetrate various biological barriers in mammals, plants, and microorganisms. However, the mechanism of cell uptake and cellular transfer of CNT is not fully understood. The current explanations on cell uptake of CNT, their intracellular translocation, and subcellular localization are still controversial. To fill this gap, we examined cell uptake of surface charged MWCNT using TEM. We observed direct membrance penetration, endocytosis, endosomal leakage and nuclear translocation of MWCNT. Previous reports and our own experimental results are consistent with a working model for the cell uptake of CNT. CNT clusters are taken up by cells through energy-dependent endocytosis process. The CNT bundles become unpacked in the endosomes and generate single nanotubes that escape endosomes by penetrating endosome membrane and entering the cytoplasm. Alternatively, the highly dispersed single CNT cross cell membrane and enter cells directly by penetrating cellular membranes. All CNT are finally recruited into lysosomes for excretion. The model will have major impacts on both drug delivery and toxicity studies of CNT. For example, all cellular CNT may be exposed to cytoplasm so that the unexpected interactions with cellular functional molecules are likely to happen.
     After nanoparticles enter cells, they will inevitably interact with cellular components and time-and dose-dependent cellular responses are likely to occur. We use a novel real-time cell-based electronic sensing (RT-CES) technology to dynamically monitor cellular responses to carbon nanotubes. This approach is based on the parallel impedance measurement of attached cells using electronic sensors integrated in wells of 96-well E-plate. It measures the real-time multi-parameter index of cell growth named cell index (CI), which reflects the cell proliferation, morphology, attachment and spreading. The label-free, real-time and high-throughput assay overcomes many drawbacks in current optical based cytotoxicity assays in carbon nanotubes research, and enables dynamic monitoring of cellular responses to carbon nanotubes. Using this assay, we obtained dynamic cellular response curves, time-dependent IC50s and cell growth slopes which can not be obtained by conventional assays.
     Since nanoparticles intrinsically interact with proteins and enter cells and cause dynamic cellular responses, it's urgent to elucidate the underlying molecular mechanisms of a nanoparticle's cellular behavior, including what signaling pathway is affected, what genes are changed and what are the consequences. Through our dynamic monitoring of cellular responses and evaluation of genome expression, as well as other cellular biological approaches, we discovered that SWCNT-COOH inhibited cell proliferation via a non-apoptotic mechanism, which is different from effects caused by pristine CNT. On the basis of SWCNT-COOH's perturbations on cells, expression of genes and protein, and protein phosphorylations, we conclude that SWCNT-COOH suppresses Smad-dependent bone morphogenetic protein (BMP) signaling pathway and down-regulates Id proteins. These molecular actions cause cell cycle arrest at G1/S transition and inhibit cell proliferation. The specific suppression of BMP signaling and Id proteins by SWCNT-COOH demonstrates non-apoptotic effects of functionalized CNT on human cells. This finding may have potential therapeutic value to treat human diseases related to Id proteins or BMP signaling such as breast cancer and bone diseases.
     Although nanoparticle/protein binding and the cytotoxicity of nanoparticles have been separately reported, there has been no study linking the nature of nanoparticle/protein clusters to cell uptake and the dynamic cellular responses. We report here that water soluble iron oxide based magnetic nanoparticles (MNPs) with different sizes and surface chemistry bind different serum proteins in terms of protein identity and quantity without changing the protein secondary structures. Carboxylated MNPs resulted in higher cytotoxicity and PEG-coating reduced both cell uptake and the cytotoxicity. Smaller MNPs (especially the carboxylated one) bind more serum proteins, are much less taken up by cells compared to larger particles, yet elicit more dynamic cytotoxic responses. Besides the intrinsic effects of size and surface charge of the water soluble MNPs, the cellular effects of MNPs/protein clusters were also attributed to the identity and quantity of the adsorbed proteins rather than the binding-induced new epitopes on the proteins.
     The rapid development of nanotechnology, especially the increasingly emerging nanostructures requires prerequisite bio-activity evaluations. Core/shell iron/carbon nanoparticles (Fe@CNPs) are novel nanomaterials which have potential applications in magnetic resonance imaging (MRI), magnetic hyperthermia and drug delivery, etc. However, their interactions with biological systems are totally unknown at present. To elucidate their potential cytotoxicity and explore the relationship of biocompatibility with their surface chemistry, we synthesized different types of polymer grafted Fe@CNPs and studied their dynamic cellular responses, cell uptake, oxidative stress and their effects on cell apoptosis and cell cycle. The results show that cellular biocompatibility of Fe@CNPs is both surface chemistry dependent and cell type specific and generally non-toxic except for the carboxyl modified Fe@CNPs. Our study indicates that these novel materials can be used for further functionalizations and widely applied in many fields.
引文
[1]Feynmann RP. There's Plenty of Room at the Bottom. Eng Sci.1960;23:22-36.
    [2]Zhao QQ, Boxman A, Chowdhry U. Nanotechnology in the chemical industry-opportunities and challenges. J Nanopart Res.2003;5:567-72.
    [3]Johnson DR, Methner MM, Kennedy AJ, Steevens JA. Potential for Occupational Exposure to Engineered Carbon-Based Nanomaterials in Environmental Laboratory Studies. Environ Health Perspect.2010; 118:49-54.
    [4]Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science.1998;281:2016-8.
    [5]Balogh L, Tomalia DA. Poly(amidoamine) dendrimer-templated nanocomposites.1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc.1998;120:7355-6.
    [6]Cao G Nanostructures & Nanomaterials:Synthesis, Properties & Applications. Imperial College Press.2004.
    [7]C; H, JK G Elastic and Plastic Properties of Very Small Metal Specimens. Physical Review.1952;85:1060-1.
    [8]Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM. Preparation of Ultra-Low Thermal Conductivity W/Al2O3 Nanolaminates. Science.2004;303:989-90.
    [9]Kang D, Kim D, Sim E. Size-dependent quantum dynamical influence of metal nanoparticles on surface plasmon resonance-art. no.64791Q. In:Razeghi M, Brown GJ, editors. Quantum Sensing and Nanophotonic Devices IV. Bellingham:Spie-Int Soc Optical Engineering; 2007. p. Q4791-Q.
    [10]Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun. 2006:1182-4.
    [11]Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem-Int Edit.2005;44:6358-62.
    [12]Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun.2008:459-61.
    [13]Kam NWS, Jessop TC, Wender PA, Dai HJ. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc.2004; 126:6850-1.
    [14]Kam NWS, Dai HJ. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc.2005;127:6021-6.
    [15]Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia.2001;17:1-18.
    [16]Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol.2002;3:487-97.
    [17]Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology. 2001;19:316-7.
    [18]Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer.2007; 110:2654-65.
    [19]O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science. 2002;297:593-6.
    [20]Liu ZA, Li XL, Tabakman SM, Jiang KL, Fan SS, Dai HJ. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc.2008;130:13540-+.
    [21]Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A.2008;105:5844-9.
    [22]Jeng ES, Moll AE, Roy AC, Gastala JB, Strano MS. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett.2006;6:371-5.
    [23]Barone PW, Parker RS, Strano MS. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor:Design, fluorophore properties, advantages, and disadvantages. Anal Chem.2005;77:7556-62.
    [24]Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells:Towards long-term labels and optical sensors. Adv Mater. 2005;17:2793-+.
    [25]Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang XR, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnology.2008;26:1285-92.
    [26]Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Homes E, Ugelstad J, et al. Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev.1994;7:43-54.
    [27]Yeh TC, Zhang W, S.T. L, Ho C. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med.1993;30:617-25.
    [28]Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, et al. Isolation and transplantation of autologous peripheral CD34+progenitor cells highly purified by magnetic-activated cell sorting. Bone Marrow Transplant.1998;21:987-93.
    [29]Schoepf U, Marecos E, Jain R, Weissleder R. Intracellular magnetic labelling of lymphocytes for in vivo trafficking studies. BioTechniques.1998;24:642-51.
    [30]Cuatrecasas P, Roth TF. Receptor-mediated endocytosis. Kluwer Academic Publishers.1983.
    [31]Weissleder R, Cheng HC, Bogdanova A, Bogdanov A. Magnetically labelled cells can be detected by MR imaging. J Magn Reson Imaging 1997;7:258-63.
    [32]Xu HHK, Smith DT, Simon CG. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials.2004;25:4615-26.
    [33]Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res.2003;63:1999-2004.
    [34]Chouly C, Pouliquen D, Lucet I, Jeune P, Pellet JJ. Development of superparamagnetic nanoparticles for MRI:effect of particles size, charge and surface nature on biodistribution. J Microencapsul.1996;13:245-55.
    [35]Johnson GA. Histology by magnetic resonance microscopy. Mag Reson. 1993;Q9:1-30.
    [36]Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, et al. Magnetofection:enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther.2002;9:102-9.
    [37]Liang YC, Hwang KC, Lo SC. Solid-state microwave-arcing-induced formation and surface functionalization of core/shell metal/carbon nanoparticles. Small. 2008;4:405-9.
    [38]Hsin YL, Lin CF, Liang YC, Hwang KC, Horng JC, Ho JAA, et al. Microwave arcing induced formation and growth mechanisms of core/shell metal/carbon nanoparticles in organic solutions. Adv Funct Mater.2008; 18:2048-56.
    [39]Liu Z, Robinson JT, Sun XM, Dai HJ. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc.2008;130:10876-+.
    [40]Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, et al. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem.2006;7:239-42.
    [41]Schaller MD. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta-Mol Cell Res.2001;1540:1-21.
    [42]Crean JKQ Finlay D, Murphy M, Moss C, Godson C, Martin F, et al. The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. J Biol Chem.2002;277:44187-94.
    [43]Allen LT, Tosetto M, Miller IS, O'Connor DP, Penney SC, Lynch I, et al. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials.2006;27:3096-108.
    [44]Allen LT, Fox EJP, Blute I, Kelly ZD, Rochev Y, Keenan AK, et al. Interaction of soft condensed materials with living cells:Phenotype/transcriptome correlations for the hydrophobic effect. Proc Natl Acad Sci U S A.2003; 100:6331-6.
    [45]Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB, Systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science.2005;310:1646-53.
    [46]Berggard T, Szczepankiewicz O, Thulin E, Linse S. Myo-inositol monophosphatase is an activated target of calbindin D-28k J Biol Chem.2002;277:41954-9.
    [47]De Gregorio P, Lawlor A, Bradley P, Dawson KA. Exact solution of a jamming transition:Closed equations for a bootstrap percolation problem. Proc Natl Acad Sci U S A.2005;102:5669-73.
    [48]Dewez J-L, Doren A, Schneider Y-J, Rouxhet PG Competitive adsorption of proteins:Key of the relationship between substratum surface properties and adhesion of epithelial cells. Biomaterials.1999;20:547-59.
    [49]Rechsteiner M, Hill CP. Mobilizing the proteolytic machine:cell biological roles of proteasome activators and inhibitors. Trends Cell Biol.2005;15:27-33.
    [50]Baugh JA, Donnelly SC. Macrophage migration inhibitory factor:a neuroendocrine modulator of chronic inflammation. J Endocrinol.2003; 179:15-23.
    [51]Madema P, Godson C. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta-Mol Basis Dis.2003;1639:141-51.
    [52]Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL. Effect of titanium dioxide on the oxidative metabolism of alveolar macrophages:An experimental study in rats. J Biomed Mater Res Part A.2005;73A:142-9.
    [53]Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature.1997;385:787-93.
    [54]Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103:3357-62.
    [55]Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir.2004;20:6800-7.
    [56]Shang W, Nuffer JH, Dordick JS, Siegel RW. Unfolding of Ribonuclease A on Silica Nanoparticle Surfaces. Nano Lett.2007;7:1991-5.
    [57]Salvador-Morales C, Flahaut E, Sim E, Sloan J, H. Green ML, Sim RB. Complement activation and protein adsorption by carbon nanotubes. Molecular Immunology.2006;43:193-201.
    [58]Hyun Ryoung K, Karine A, Claudine D, Helene C, Martine A, Didier D, et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods:2-DE, CE and Protein Lab-on-chip system. ELECTROPHORESIS. 2007;28:2252-61.
    [59]Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M, Iijima S. Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chemical Physics Letters.2006;429:497-502.
    [60]Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir.2004;20:11594-9.
    [61]Shen J-W, Wu T, Wang Q, Kang Y. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials.2008;29:3847-55.
    [62]White MA, Anderson RGW. Signaling networks in living cells. Ann Rev Pharmacol Toxicol.2005;45:587-603.
    [63]Massague J, Blain SW, Lo RS. TGF beta signaling in growth control, cancer, and heritable disorders. Cell.2000; 103:295-309.
    [64]Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, et al. Uptake of Noncytotoxic Acid-Treated Single-Walled Carbon Nanotubes into the Cytoplasm of Human Macrophage Cells. ACS Nano.2009;3:1485.
    [65]Qu GB, Bai YH, Zhang Y, Jia Q, Zhang WD, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon.2009;47:2060-9.
    [66]Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, et al. Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. Nano Lett.2009;9:1007-10.
    [67]Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes:Size does matter. Langmuir.2008;24:6409-13.
    [68]Chin SF, Baughman RH, Dalton AB, Dieckmann GR, Draper RK, Mikoryak C, et al. Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp Biol Med.2007;232:1236-44.
    [69]Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway. Angew Chem-Int Edit.2006;45:577-81.
    [70]Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol.2007;2:108-13.
    [71]Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K. Cell-penetrating CNT for delivery of therapeutics. Nano Today.2007;2:38-43.
    [72]Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun.2004:16-7.
    [73]Zhu Y, Li WX, Li QN, Li YG, Li YF, Zhang XY, et al. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon.2009;47:1351-8.
    [74]Mooney E, Dockery P, Greiser U, Murphy M, Barron V. Carbon nanotubes and mesenchymal stem cells:Biocompatibility, proliferation and differentiation. Nano Lett. 2008;8:2137-43.
    [75]Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol.2007;2:713-7.
    [76]Lacerda L, Pastorin G, Gathercole D, Buddle J, Prato M, Bianco A, et al. Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv.Mater.2007; 19:1480-4.
    [77]Cheng JP, Fernando KAS, Veca LM, Sun YP, Lamond AI, Lam YW, et al. Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus. ACS Nano.2008;2:2085-94.
    [78]Zhang DW, Yi CQ, Zhang JC, Chen Y, Yao XS, Yang MS. The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts. Nanotechnology.2007; 18:9.
    [79]Kang B, Yu DC, Chang SQ, Chen D, Dai YD, Ding YT. Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology.2008;19:8.
    [80]Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of Carbon Nanomaterials:Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environmental Science & Technology.2005;39:1378-83.
    [81]Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicology in Vitro.2006;20:1202-12.
    [82]Pulskamp K, Diabat S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters.2007;168:58-74.
    [83]Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology Letters.2005; 155:73-85.
    [84]Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett.2005;5:1676-84.
    [85]Chou C-C, Hsiao H-Y, Hong Q-S, Chen C-H, Peng Y-W, Chen H-W, et al. Single-Walled Carbon Nanotubes Can Induce Pulmonary Injury in Mouse Model. Nano Lett.2008;8:437-45.
    [86]Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material:Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Env Health Pt A. 2003;66:1909-26.
    [87]Liu L, Sakai T, Tran NH, Mukai-Sakai R, Kaji R, Fukui K. Nucling interacts with nuclear factor-kappa B, regulating its cellular distribution. Febs J.2009;276:1459-70.
    [88]Baeuerle PA, Baichwal VR, Frank JD. NF-[kappa]B as a Frequent Target for Immunosuppressive and. Advances in Immunology:Academic Press; 1997. p.111-37.
    [89]Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nano. 2009;4:451-6.
    [90]Hoodless PA, Haerry T, Abdollah S, Stapleton M, O'Connor MB, Attisano L, et al. MADR1, a MAD-Related Protein That Functions in BMP2 Signaling Pathways. Cell. 1996;85:489-500.
    [91]Urist MR. Bone:formation by autoinduction. Science.1965;150:893-9.
    [92]Hogan BL. Bone morphogenetic proteins:multifunctional regulators of vertebrate development. Genes Dev.1996;10:1580.
    [93]Kawabata M, Chytil A, Moses HL. Cloning of a Novel Type II Serine/Threonine Kinase Receptor through Interaction with the Type I Transforming Growth Factor-Receptor. J Biol Chem.1995;270:5625-30.
    [94]Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A.1995;92:7632-6.
    [95]Yamashita H, ten Dijke P, Franzn P, Miyazono K, Heldin CH. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem.1994;269:20172-8.
    [96]Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-[beta] receptor. Nature.1994;370:341-7.
    [97]Souchelnytskyi S, Nakayama T, Nakao A, Mor 茅 n A, Heldin C-H, Christian JL, et al. Physical and Functional Interaction of Murine andXenopus Smad7 with Bone Morphogenetic Protein Receptors and Transforming Growth Factor-尾 Receptors. J Biol Chem.1998;273:25364-70.
    [98]Massague J. TGF-b SIGNAL TRANSDUCTION. Annual Review of Biochemistry. 1998;67:753-91.
    [99]Cristina B, Ivan IP, Kevin R. Nanomaterials and nanoparticles:Sources and toxicity. Biointerphases.2007;2:MR17-MR71.
    [100]Yu P, Sabine N, Annika L, Monika F, Fei W, Ulrich S, et al. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small.2007;3:1941-9.
    [101]Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, et al. Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Lett. 2007;7:3452-61.
    [102]Chen M, von Mikecz A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Experimental Cell Research. 2005;305:51-62.
    [103]Jones CF, Grainger DW. In vitro assessments of nanomaterial toxicity. Advanced Drug Delivery Reviews.2009;61:438-56.
    [104]Fadeel B, Garcia-Bennett AE. Better safe than sorry:Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews.62:362-74.
    [105]Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. Correlating Nanoscale Titania Structure with Toxicity:A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells. Toxicol Sci. 2006;92:174-85.
    [106]Lehn JM. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem-Eur J.1999;5:2455-63.
    [107]Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, et al. Sidewall functionalization of carbon nanotubes. Angewandte Chemie, International Edition in English.2001;40:4002-5.
    [108]Hu H, Ni YC, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett.2004;4:507-11.
    [109]Hudson JL, Jian HH, Leonard AD, Stephenson JJ, Tour JM. Triazenes as a stable diazonium source for use in functionalizing carbon nanotubes in aqueous suspensions. Chemistry of Materials.2006; 18:2766-70.
    [110]Isobe H, Tanaka T, Maeda R, Noiri E, Solin N, Yudasaka M, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed. 2006;45:6676-80.
    [111]Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu ZN, Hauge RH, et al. A convenient route to functionalized carbon nanotubes. Nano Lett.2004;4:1257-60.
    [112]Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP. Functionalizing multiple-walled carbon nanotubes with aminopolymers. Journal of Physical Chemistry B.2002;106:1294-8.
    [113]Stevens JL, Huang AY, Peng HQ, Chiang LW, Khabashesku VN, Margrave JL. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett.2003;3:331-6.
    [114]Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M. Substituted carborane-appended water-soluble single-wall carbon nanotubes:New approach to boron neutron capture therapy drug delivery. Journal of American Chemical Society.2005;127:9875-80.
    [115]Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. ChemBioChem.2004;5:275-9.
    [116]Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology. 2005;23:1418-23.
    [117]Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, et al. A Nano-Combinatorial Library Strategy for the Discovery of Nanotubes with Reduced Protein-Binding, Cytotoxicity, and Immune Response. Nano Lett.2008;8:859-65.
    [1]Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol.2005;9:674-9.
    [2]Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol.2003;21:1166-70.
    [3]Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, et al. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem.2006;7:239-42.
    [4]Kam NWS, Liu Z, Dai HJ. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc.2005;127:12492-3.
    [5]Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta-Biomembr.2006;1758:404-12.
    [6]Lin Y, Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem.2004; 14:527-41.
    [7]Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol.2007;2:47-52.
    [8]Lynch I, Dawson KA, Linse S. Detecting Cryptic Epitopes Created by Nanoparticles. Sci STKE.2006:14.
    [9]Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci.2000;14:175-82.
    [10]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622-7.
    [11]Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes-the route toward applications. Science.2002;297:787-92.
    [12]Fiorito S, Serafino A, Andreola F, Togna A, Togna G Toxicity and biocompatibility of carbon nanoparticies. J Nanosci Nanotechnol.2006;6:591-9.
    [13]Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol.2006;36:189-217.
    [14]Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material:Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Env Health Pt A. 2003;66:1909-26.
    [15]Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc. 2004;126:15638-9.
    [16]Kam NWS, Jessop TC, Wender PA, Dai HJ. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc.2004;126:6850-1.
    [17]Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway. Angew Chem-Int Edit.2006;45:577-81.
    [18]Kam NWS, O'Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A.2005; 102:11600-5.
    [19]Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun.2004:16-7.
    [20]Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem-Int Edit. 2004;43:5242-6.
    [21]Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A.2006;103:3357-62.
    [22]Wang HF, Wang J, Deng XY, Sun HF, Shi ZJ, Gu ZN, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol.2004;4:1019-24.
    [23]Lundqvist M, Sethson I, Jonsson BH. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles'curvature and the protein stability. Langmuir.2004;20:10639-47.
    [24]Shang W, Nuffer JH, Dordick JS, Siegel RW. Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett.2007;7:1991-5.
    [25]Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir.2004;20:6800-7.
    [26]Erlanger BF, Chen BX, Zhu M, Brus L. Binding of an anti-fullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Lett.2001; 1:465-7.
    [27]Lin Y, Allard LF, Sun YP. Protein-affinity of single-walled carbon nanotubes in water. J Phys Chem B.2004;108:3760-4.
    [28]Su ZD, Leung T, Honek JF. Conformational selectivity of peptides for single-walled carbon nanotubes. J Phys Chem B.2006;110:23623-7.
    [29]Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, et al. Peptides with selective affinity for carbon nanotubes. Nat Mater.2003;2:196-200.
    [30]Zorbas V, Ortiz-Acevedo A, Dalton AB, Yoshida MM, Dieckmann GR, Draper RK, et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J Am Chem Soc.2004; 126:7222-7.
    [31]Chen RJ, Zhang YG, Wang DW, Dai HJ. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001;123:3838-9.
    [32]Li XJ, Chen W, Zhan QW, Dai LM, Sowards L, Pender M, et al. Direct measurements of interactions between polypeptides and carbon nanotubes. J Phys Chem B.2006;110:12621-5.
    [33]Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB, Dieckmann GR, et al. Importance of Aromatic Content for Peptide/Single-Walled Carbon Nanotube Interactions. J Am Chem Soc.2005;127:12323-8.
    [34]Bradley K, Briman M, Star A, Gruner G. Charge transfer from adsorbed proteins. Nano Lett.2004;4:253-6.
    [35]Nepal D, Geckeler KE. pH-sensitive dispersion and debundling of single-walled carbon nanotubes:Lysozyme as a tool. Small.2006;2:406-12.
    [36]Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir.2004;20:11594-9.
    [37]Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M, Iijima S. Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett. 2006;429:497-502.
    [38]Azamian BR, Coleman KS, Davis JJ, Hanson N, Green MLH. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun. 2002:366-7.
    [39]Doskocilova D. Narrowing of proton NMR lines by magic angle rotation. Chem Phys Lett.1970;6:381-4.
    [40]Drain LE. Broadening of magnetic resonance lines due to field inhomogeneities in powdered samples. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON. 1962;88:1380.
    [41]Gratton E, Jameson DM, Hall RD. Multifrequency Phase and Modulation Fluorometry. Annual Review of Biophysics and Bioengineering.1984;13:105-24.
    [42]Anderson CM. Sequencing a protein by X-ray crystallography.2. refinement of yeast hexokinase-B coordinates and sequence at 2.1-A resolution. J Mol Biol. 1978;123:15-33.
    [43]Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005;353:38-52.
    [44]Kim CY, Chang JS, Doyon JB, Baird TT, Fierke CA, Jain A, et al. Contribution of fluorine to protein-ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. J Am Chem Soc.2000;122:12125-34.
    [45]Paoli M, Liddington R, Tame J, Wilkinson A, Dodson G Crystal Structure of T State Haemoglobin with Oxygen Bound At All Four Haems. J Mol Biol. 1996;256:775-92.
    [46]Stein PE, Leslie AGW, Finch JT, Carrell RW. Crystal structure of uncleaved ovalbumin at 1.5 A resolution. J Mol Biol.1991;221:941-59.
    [47]Lakowicz JR. Principles of Fluorescence Spectroscopy, The third edition, Springer, Berlin, Germany.2006.
    [48]Eftink MR, Ghiron CA. Fluorescence quenching studies with proteins. Anal Biochem.1981; 114:199-227.
    [49]Yang JT, Wu CS, Martinez HM. Calculation of protein conformation from circular dichroism. Methods Enzymol.1986;130:208-69.
    [50]Karlsson M, Carlsson U. Protein adsorption orientation in the light of fluorescent probes:Mapping of the interaction between site-directly labeled human carbonic anhydrase Ⅱ and silica nanoparticles. Biophys J.2005;88:3536-44.
    [51]Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci U S A. 2002;99:5018-23.
    [52]You CC, De M, Han G, Rotello VM. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. J Am Chem Soc. 2005;127:12873-81.
    [53]Aubin-Tam ME, Hamad-Schifferli K. Gold nanoparticle cytochrome c complexes: The effect of nanoparticle ligand charge on protein structure. Langmuir. 2005;21:12080-4.
    [54]Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc.2004; 126:739-43.
    [55]Rezwan K, Meier LP, Gauckler LJ. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles:the influence of positively and negatively charged oxide surface coatings. Biomaterials.2005;26:4351-7.
    [56]Verma A, Simard JM, Rotello VM. Effect of ionic strength on the binding of alpha-chymotrypsin to nanoparticle receptors. Langmuir.2004;20:4178-81.
    [57]Peng ZG, Hidajat K, Uddin MS. Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci.2004;271:277-83.
    [58]Karlsson M, Martensson LG, Jonsson BH, Carlsson U. Adsorption of human carbonic anhydrase Ⅱ variants to silica nanoparticles occur stepwise:Binding is followed by successive conformational changes to a molten-globule-like state. Langmuir.2000;16:8470-9.
    [59]Karajanagi SS, Yang HC, Asuri P, Sellitto E, Dordick JS, Kane RS. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir.2006;22:1392-5.
    [1]Collins PC, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science.2001;292:706-9.
    [2]Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature.1997;386:377-9.
    [3]Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology.2005;9:674-9.
    [4]Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Letters.2008;8:2800-5.
    [5]Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, et al. Protein Binding by Functionalized Multiwalled Carbon Nanotubes Is Governed by the Surface Chemistry of Both Parties and the Nanotube Diameter. J Phys Chem C.2008; 112:3300-7.
    [6]Mu Q, Du G, Chen T, Zhang B, Yan B. Suppression of Human Bone Morphogenetic Protein Signaling by Carboxylated Single-Walled Carbon Nanotubes. ACS Nano. 2009;3:1139-44.
    [7]Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters.2007;168:121-31.
    [8]Zhou HY, Mu QX, Gao NN, Liu AF, Xing YH, Gao SL, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Letters.2008;8:859-65.
    [9]Qu GB, Bai YH, Zhang Y, Jia Q, Zhang WD, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon.2009;47:2060-9.
    [10]Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, et al. Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. Nano Letters.2009;9:1007-10.
    [11]Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes:Size does matter. Langmuir.2008;24:6409-13.
    [12]Li X, Peng YH, Ren JS, Qu XG. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proceedings of the National Academy of Sciences of the United States of America.2006; 103:19658-63.
    [13]Chin SF, Baughman RH, Dalton AB, Dieckmann GR, Draper RK, Mikoryak C, et al. Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Experimental Biology and Medicine.2007;232:1236-44.
    [14]Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway. Angewandte Chemie-International Edition.2006;45:577-81.
    [15]Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology.2007;2:108-13.
    [16]Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K. Cell-penetrating CNT for delivery of therapeutics. Nano Today.2007;2:38-43.
    [17]Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications.2004:16-7.
    [18]Zhu Y, Li WX, Li QN, Li YG, Li YF, Zhang XY, et al. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon.2009;47:1351-8.
    [19]Cheng JP, Fernando KAS, Veca LM, Sun YP, Lamond AI, Lam YW, et al. Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus. ACS Nano.2008;2:2085-94.
    [20]Lacerda L, Pastorin G, Gathercole D, Buddle J, Prato M, Bianco A, et al. Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Advanced Materials.2007;19:1480-4.
    [21]Mooney E, Dockery P, Greiser U, Murphy M, Barron V. Carbon nanotubes and mesenchymal stem cells:Biocompatibility, proliferation and differentiation. Nano Letters.2008;8:2137-43.
    [22]Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, et al. Uptake of Noncytotoxic Acid-Treated Single-Walled Carbon Nanotubes into the Cytoplasm of Human Macrophage Cells. ACS Nano.2009;3:1485.
    [23]Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotechnology. 2007;2:713-7.
    [24]Kang B, Yu DC, Chang SQ, Chen D, Dai YD, Ding YT. Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology.2008; 19:8.
    [25]Zhang DW, Yi CQ, Zhang JC, Chen Y, Yao XS, Yang MS. The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts. Nanotechnology.2007; 18:9.
    [26]Weigel PH, Oka JA. Temperature-dependence of endocytosis mediated by the asialogycoprotein receptor in isolated rat hepatocytes-evidence for 2 potenially rate-limiting steps. Journal of Biological Chemistry.1981;256:2615-7.
    [27]Mellman I. Endocytosis and molecular sorting. Annual Review of Cell and Developmental Biology.1996;12:575-625.
    [28]Terry LJ, Shows EB, Wente SR. Crossing the nuclear envelope:Hierarchical regulation of nucleocytoplasmic transport. Science.2007;318:1412-6.
    [1]Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials.2007;28:344-53.
    [2]Son YW, Ihm J, Cohen ML, Louie SQ Choi HJ. Electrical switching in metallic carbon nanotubes. Phys Rev Lett.2005;95:4.
    [3]Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem-Int Edit.2005;44:6358-62.
    [4]Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett.2008;8:2800-5.
    [5]Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett.2005;5:2448-64.
    [6]Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Comm. 1991;3:207-12.
    [7]Guntherberg H, Rost J. The true oxidized glutathione content of red blood cells obtained by new enzymic and paper chromatographic methods. Anal Biochem. 1966; 15:205-10.
    [8]Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K, et al. Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produces a water-soluble formazan dye. In Vitro Toxicol.1995;8:187-90.
    [9]Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immun Methods.1983;64:313-20.
    [10]Mosmann T. Rapid colorimetric assay for cellular growth and survival:Application to proliferation and cytotoxicity assays. J Immun Methods.1983;65:55-63.
    [11]Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. Journal of Immunological Methods.1991;139:271-9.
    [12]Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, et al. Intracellular Heterogeneity in Mitochondrial Membrane Potentials Revealed by a J-Aggregate-Forming Lipophilic Cation JC-1. Proc Nati Acad Sci USA. 1991;88:3671-5.
    [13]Worle-Knirsch JM, Pulskamp K, Krug HF. Oops They Did It Againl Carbon Nanotubes Hoax Scientists in Viability Assays. Nano Lett.2006;6:1261-8.
    [14]Giaever I, Keese CR. A MORPHOLOGICAL BIOSENSOR FOR MAMMALIAN-CELLS. Nature.1993;366:591-2.
    [15]Solly K, Wang XB, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Tech. 2004;2:363-72.
    [16]Abassi YA, Jackson JA, Zhu J, O'Connell J, Wang XB, Xu X. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immun Methods.2004;292:195-205.
    [17]Atienza JM, Zhu J, Wang XB, Xu X, Abassi Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen. 2005; 10:795-805.
    [18]Xing JZ, Zhu LJ, Jackson JA, Gabos S, Sun XJ, Wang XB, et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol. 2005; 18:154-61.
    [19]Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, et al. Real-Time Monitoring of Morphological Changes in Living Cells by Electronic Cell Sensor Arrays:An Approach To Study G Protein-Coupled Receptors. Anal Chem.2006;78:35-43.
    [20]Zhu J, Wang XB, Xu X, Abassi YA. Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods. 2006;309:25-33.
    [21]Huang L, Xie L, Boyd JM, Li X-F. Cell-electronic sensing of particle-induced cellular responses. The Analyst.2008; 133:643-8.
    [22]Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, et al. A Nano-Combinatorial Library Strategy for the Discovery of Nanotubes with Reduced Protein-Binding, Cytotoxicity, and Immune Response. Nano Lett.2008;8:859-65.
    [23]Mu Q, Du G, Chen T, Zhang B, Yan B. Suppression of Human Bone Morphogenetic Protein Signaling by Carboxylated Single-Walled Carbon Nanotubes. ACS Nano.2009;3:1139-44.
    [24]Qu GB, Bai YH, Zhang Y, Jia Q, Zhang WD, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon.2009;47:2060-9.
    [1]Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, et al. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008;8:437-45.
    [2]Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett.2005;5:2448-64.
    [3]Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett.2005;5:1676-84.
    [4]Mu Q, Li Z, Li X, Mishra SR, Zhang B, Si Z, et al. Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells. J Phys Chem C.2009;113:5390-5.
    [5]Zhang TT, Stilwell JL, Gerion D, Ding LH, Elboudwarej O, Cooke PA, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 2006;6:800-8.
    [6]Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, et al. A Nano-Combinatorial Library Strategy for the Discovery of Nanotubes with Reduced Protein-Binding, Cytotoxicity, and Immune Response. Nano Lett.2008;8:859-65.
    [7]Zhu L, Chang DW, Dai LM, Hong YL. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett.2007;7:3592-7.
    [8]Chakravarty P, Marches R, Zimmerman NS, Swafford ADE, Bajaj P, Musselman IH, et al. Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci U S A.2008;105:8697-702. [9] Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res.2008;68:6652-60.
    [10]Huang XJ, Im HS, Yarimaga O, Kim JH, Lee DH, Kim HS, et al. Direct electrochemistry of uric acid at chemically assembled carboxylated single-walled carbon nanotubes netlike electrode. J Phys Chem B.2006; 110:21850-6.
    [11]Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway. Angew Chem-Int Edit.2006;45:577-81.
    [12]Massague J, Blain SW, Lo RS. TGF beta signaling in growth control, cancer, and heritable disorders. Cell.2000; 103:295-309.
    [13]White MA, Anderson RGW. Signaling networks in living cells. Ann Rev Pharmacol Toxicol.2005;45:587-603.
    [14]Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci U S A.2006; 103:18882-6.
    [15]Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A.2006; 103:3357-62.
    [16]Solly K, Wang XB, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2:363-72.
    [17]Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol.1998;8:58-65.
    [18]Hara E, Uzman JA, Dimri GP, Nehlin JO, Testori A, Campisi J. The helix-loop-helix protein Id-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Dev Genet.1996;18:161-72.
    [19]Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem. 1999;274:19838-45.
    [20]Korchynskyi O, ten Dijke P. Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Idl Promoter. J Biol Chem.2002;277:4883-91.
    [21]Kang YB, Chen CR, Massague J. A self-enabling TGF beta response coupled to stress signaling:Smad engages stress response factor ATF3 for Idl repression in epithelial cells. Mol Cell.2003;11:915-26.
    [22]Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A.2003;100:13543-8.
    [23]Sulzbacher I, Birner P, Trieb K, Pichlbauer E, Lang S. The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter. J Clin Pathol.2002;55:381-5.
    [1]Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science.2005;307:538-44.
    [2]Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature.1997;386:474-7.
    [3]Vogel EM. Technology and metrology of new electronic materials and devices. Nat Nanotechnol.2007;2:25-32.
    [4]Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. Safe handling of nanotechnology. Nature.2006;444:267-9.
    [5]Nel A, Xia T, Madler L, Li N. Toxic Potential of Materials at the Nanolevel. Science. 2006;311:622-7.
    [6]Service RF. NANOTOXICOLOGY:Nanotechnology Grows Up. Science. 2004;304:1732-4.
    [7]Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126-34.
    [8]Lin DH, Xing BS. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol.2008;42:5580-5.
    [9]Kloepfer JA, Mielke RE, Nadeau JL. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol. 2005;71:2548-57.
    [10]Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology.2008;17:372-86.
    [11]Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther.2008; 13:253-62.
    [12]Lee JH, Huh YM, Jun Y, Seo J, Jang J, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med.2007; 13:95-9.
    [13]Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater.2006;5:118-22.
    [14]Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neill CP, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol.2007;25:1159-64.
    [15]Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, et al. Protein Binding by Functionalized Multiwalled Carbon Nanotubes Is Governed by the Surface Chemistry of Both Parties and the Nanotube Diameter. J Phys Chem C.2008; 112:3300-7.
    [16]Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, et al. A Nano-Combinatorial Library Strategy for the Discovery of Nanotubes with Reduced Protein-Binding, Cytotoxicity, and Immune Response. Nano Lett.2008;8:859-65.
    [17]Li X, Peng YH, Ren JS, Qu XG. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Natl Acad Sci U S A.2006;103:19658-63.
    [18]Lundqvist M, Sethson I, Jonsson BH. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles'curvature and the protein stability. Langmuir.2004;20:10639-47.
    [19]Shang W, Nuffer JH, Dordick JS, Siegel RW. Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett.2007;7:1991-5.
    [20]Lynch I, Dawson KA, Linse S. Detecting Cryptic Epitopes Created by Nanoparticles. Sci Signal.2006;2006:pel4-.
    [21]Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm.2006;307:93-102.
    [22]Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm.2008;5:316-27.
    [23]Solly K, Wang XB, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2:363-72.
    [24]Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007; 104:2050-5.
    [25]Macaroff PP, Simioni AR, Lacava ZGM, Lima ECD, Morais PC, Tedesco AC. Studies of cell toxicity and binding of magnetic nanoparticles with blood stream macromolecules. J Appl Phys.2006;99:3.
    [26]Peng ZG, Hidajat K, Uddin MS. Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci.2004;271:277-83.
    [27]Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol.2008;3:145-50.
    [28]Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett.2006;6:1794-807.
    [29]Gratton E, Jameson DM, Hall RD. Multifrequency phase and modulation of fluorometry. Ann Rev Biophys Bioeng.1984; 13:105-24.
    [30]Yang JT, Wu CSC, Martinez HM. CALCULATION OF PROTEIN CONFORMATION FROM CIRCULAR-DICHROISM. Method Enzymol. 1986; 130:208-69.
    [31]Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M, et al. Cell tagging with clinically approved iron oxides:Feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology.2005;235:155-61.
    [32]Thorek DLJ, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials.2008;29:3583-90.
    [33]Hu FX, Neoh KG, Cen L, Kang ET. Cellular Response to Magnetic Nanoparticles "PEGylated" via Surface-Initiated Atom Transfer Radical Polymerization. Biomacromolecules.2006;7:809-16.
    [34]Xing JZ, Zhu LJ, Jackson JA, Gabos S, Sun XJ, Wang XB, et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol. 2005;18:154-61.
    [35]Zhu J, Wang XB, Xu X, Abassi YA. Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods. 2006;309:25-33.
    [36]Huang L, Xie L, Boyd JM, Li XF. Cell-electronic sensing of particle-induced cellular responses. Analyst.2008; 133:643-8.
    [37]Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell-proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods.1991; 142:257-65.
    [38]Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials. 2004;25:5405-13.
    [39]Muller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, et al. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyie-macrophages in vitro. Biomaterials.2007;28:1629-42.
    [40]Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway. Angew Chem Int Ed.2006;45:577-81.
    [41]Li YP, Pei YY, Zhang XY, Gu ZH, Zhou ZH, Yuan WF, et al. PEGylated PLGA nanoparticles as protein carriers:synthesis, preparation and biodistribution in rats. J Control Release.2001;71:203-11.
    [1]Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. Safe handling of nanotechnology. Nature.2006;444:267-9.
    [2]Hsin YL, Lin CF, Liang YC, Hwang KC, Horng JC, Ho JAA, et al. Microwave arcing induced formation and growth mechanisms of core/shell metal/carbon nanoparticles in organic solutions. Adv Funct Mater.2008; 18:2048-56.
    [3]Liang YC, Hwang KC, Lo SC. Solid-state microwave-arcing-induced formation and surface functionalization of core/shell metal/carbon nanoparticles. Small.2008;4:405-9.
    [4]Liu Z, Robinson JT, Sun XM, Dai HJ. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc.2008; 130:10876-+.
    [5]Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, et al. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem.2006;7:239-42.
    [6]Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett.2005;5:2448-64.
    [7]Mu Q, Du G, Chen T, Zhang B, Yan B. Suppression of Human Bone Morphogenetic Protein Signaling by Carboxylated Single-Walled Carbon Nanotubes. ACS Nano. 2009;3:1139-44.
    [8]Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol.2006;36:189-217.
    [9]Qu GB, Bai YH, Zhang Y, Jia Q, Zhang WD, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon.2009;47:2060-9.
    [10]Usenko CY, Harper SL, Tanguay RL. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon.2007;45:1891-8.
    [11]Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett.2006;6:1121-5.
    [12]Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett.2005;5:1676-84.
    [13]Mu QX, Broughton DL, Yan B. Endosomal Leakage and Nuclear Translocation of Multiwalled Carbon Nanotubes:Developing a Model for Cell Uptake. Nano Lett. 2009;9:4370-5.
    [14]Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Nano-C-60 cytotoxicity is due to lipid peroxidation. Biomaterials.2005;26:7587-95.
    [15]Mu QX, Liu W, Xing YH, Zhou HY, Li ZW, Zhang Y, et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C.2008;112:3300-7.
    [16]Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett.2006;161:135-42.
    [17]Zhang B, Xing YH, Li ZW, Zhou HY, Mu QX, Yan B. Functionalized Carbon Nanotubes Specifically Bind to alpha-Chymotrypsin's Catalytic Site and Regulate Its Enzymatic Function. Nano Lett.2009;9:2280-4.
    [18]Zhou HY, Mu QX, Gao NN, Liu AF, Xing YH, Gao SL, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett.2008;8:859-65.
    [19]Mu QX, Li ZW, Li X, Mishra SR, Zhang B, Si ZK, et al. Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells. Journal of Physical Chemistry C.2009;113:5390-5.
    [20]Berciaud S, Cognet L, Poulin P, Weisman RB, Lounis B. Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano Lett.2007;7:1203-7.
    [21]Guldi DM, Prato M. Excited-State Properties of C60 Fullerene Derivatives. Acc Chem Res.2000;33:695-703.
    [22]Worle-Knirsch JM, Pulskamp K, Krug HF. Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays. Nano Lett.2006;6:1261-8.
    [23]Abassi YA, Jackson JA, Zhu J, O'Connell J, Wang XB, Xu X. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immunol Methods.2004;292:195-205.
    [24]Solly K, Wang XB, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2:363-72.
    [25]Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials.2007;28:2915-22.
    [26]Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology.2008;233:404-10.
    [27]Schins RPF, Duffin R, Hohr D, Knaapen AM, Shi T, Weishaupt C, et al. Surface Modification of Quartz Inhibits Toxicity, Particle Uptake, and Oxidative DNA Damage in Human Lung Epithelial Cells. Chemical Research in Toxicology.2002; 15:1166-73.
    [28]Albright CD, Salganik RI, Craciunescu CN, Mar MH, Zeisel SH. Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta 1 in immortalized rat hepatocytes. J Cell Biochem. 2003;89:254-61.
    [29]Wang F, Gao F, Lan MB, Yuan HH, Huang YP, Liu JW. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol Vitro.2009;23:808-15.
    [30]Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials.2009;30:3645-51.
    [31]Yang H, Wu QY, Tang M, Kong L, Xia T, Yin HR, et al. Cytotoxicity and DNA-damage in Mouse Macrophage Exposed to Silica Nanoparticles. In:Ding JY, Wang XY, Hong Q, Guo WW, Xin XP, editors.8th National Postgraduate Symposium on Environmental and Occupational Medicine, Proceedings. Shanghai:Shanghai Ctr Dis Control & Prevention; 2009. p.100-5.
    [1]Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. Safe handling of nanotechnology. Nature.2006;444:267-9.
    [2]Hsin YL, Lin CF, Liang YC, Hwang KC, Horng JC, Ho JAA, et al. Microwave arcing induced formation and growth mechanisms of core/shell metal/carbon nanoparticles in organic solutions. Adv Funct Mater.2008; 18:2048-56.
    [3]Liang YC, Hwang KC, Lo SC. Solid-state microwave-arcing-induced formation and surface functionalization of core/shell metal/carbon nanoparticles. Small.2008;4:405-9.
    [4]Liu Z, Robinson JT, Sun XM, Dai HJ. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc.2008; 130:10876-+.
    [5]Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, et al. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem.2006;7:239-42.
    [6]Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett.2005;5:2448-64.
    [7]Mu Q, Du G, Chen T, Zhang B, Yan B. Suppression of Human Bone Morphogenetic Protein Signaling by Carboxylated Single-Walled Carbon Nanotubes. ACS Nano. 2009;3:1139-44.
    [8]Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol.2006;36:189-217.
    [9]Qu GB, Bai YH, Zhang Y, Jia Q, Zhang WD, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon.2009;47:2060-9.
    [10]Usenko CY, Harper SL, Tanguay RL. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon.2007;45:1891-8.
    [11]Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett.2006;6:1121-5.
    [12]Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett.2005;5:1676-84.
    [13]Mu QX, Broughton DL, Yan B. Endosomal Leakage and Nuclear Translocation of Multiwalled Carbon Nanotubes:Developing a Model for Cell Uptake. Nano Lett. 2009;9:4370-5.
    [14]Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Nano-C-60 cytotoxicity is due to lipid peroxidation. Biomaterials.2005;26:7587-95.
    [15]Mu QX, Liu W, Xing YH, Zhou HY, Li ZW, Zhang Y, et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C.2008;112:3300-7.
    [16]Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett.2006;161:135-42.
    [17]Zhang B, Xing YH, Li ZW, Zhou HY, Mu QX, Yan B. Functionalized Carbon Nanotubes Specifically Bind to alpha-Chymotrypsin's Catalytic Site and Regulate Its Enzymatic Function. Nano Lett.2009;9:2280-4.
    [18]Zhou HY, Mu QX, Gao NN, Liu AF, Xing YH, Gao SL, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett.2008;8:859-65.
    [19]Mu QX, Li ZW, Li X, Mishra SR, Zhang B, Si ZK, et al. Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells. Journal of Physical Chemistry C.2009;113:5390-5.
    [20]Berciaud S, Cognet L, Poulin P, Weisman RB, Lounis B. Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano Lett.2007;7:1203-7.
    [21]Guldi DM, Prato M. Excited-State Properties of C60 Fullerene Derivatives. Acc Chem Res.2000;33:695-703.
    [22]Worle-Knirsch JM, Pulskamp K, Krug HF. Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays. Nano Lett.2006;6:1261-8.
    [23]Abassi YA, Jackson JA, Zhu J, O'Connell J, Wang XB, Xu X. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immunol Methods.2004;292:195-205.
    [24]Solly K, Wang XB, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2:363-72.
    [25]Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials.2007;28:2915-22.
    [26]Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology.2008;233:404-10.
    [27]Schins RPF, Duffin R, Hohr D, Knaapen AM, Shi T, Weishaupt C, et al. Surface Modification of Quartz Inhibits Toxicity, Particle Uptake, and Oxidative DNA Damage in Human Lung Epithelial Cells. Chemical Research in Toxicology.2002; 15:1166-73.
    [28]Albright CD, Salganik RI, Craciunescu CN, Mar MH, Zeisel SH. Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta 1 in immortalized rat hepatocytes. J Cell Biochem. 2003;89:254-61.
    [29]Wang F, Gao F, Lan MB, Yuan HH, Huang YP, Liu JW. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol Vitro.2009;23:808-15.
    [30]Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials.2009;30:3645-51.
    [31]Yang H, Wu QY, Tang M, Kong L, Xia T, Yin HR, et al. Cytotoxicity and DNA-damage in Mouse Macrophage Exposed to Silica Nanoparticles. In:Ding JY, Wang XY, Hong Q, Guo WW, Xin XP, editors.8th National Postgraduate Symposium on Environmental and Occupational Medicine, Proceedings. Shanghai:Shanghai Ctr Dis Control & Prevention; 2009. p.100-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700