用户名: 密码: 验证码:
强约束型微纳光子结构的特性研究及其在生物传感和成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以微纳米尺度下的若干强约束型光子结构为对象,对它们的设计制作以及光学特性进行了研究,并探讨了它们在生物医学传感及成像中的应用。集成光学领域中的平面光波导是一类典型的强约束型光子结构,本文针对它们的小型化和在传感领域的应用做了详细的分析,并结合金属表面等离子体谐振效应,提出了平面波导与金属微纳结构结合的可能性。另一方面,纳米尺度下的光子学由于其给众多领域带来的巨大影响,近年来也越发受到关注,纳米颗粒作为纳米尺度下的强约束光子结构在其中起到了决定性的作用。本文对两类纳米颗粒进行了制作、表征和表面修饰,并研究了它们在生物传感、生物体外及体内成像中的应用。
     在微米尺度下的强约束结构研究中,利用有限差分法对两种导波结构进行了设计和分析。首先,设计了一种基于二氧化硅材料的小型光波导结构,这种波导以空气作为上包层用来提高折射率差从而减小波导的截面尺寸;下包层为深刻蚀型的反谐振反射结构用以减小向硅基底的泄露损耗。根据理论模拟,通过引入三个周期的反谐振反射层的设计,得到了具有很小传输损耗的直波导(<0.01dB/cm)和超小弯曲半径(15μm)的弯曲波导。另外一种波导结构是基于聚合物材料SU-8的小截面强约束型脊形光波导,本文对其单模条件,模式双折射以及弯曲特性进行了系统的分析,通过优化设计得到了75μm的弯曲半径。在此基础上,本文在SU-8波导制作方面也开展了一些工作,对制作的波导结构特性进行了测试及表征,并获得了SU-8波导制作工艺方面的一些研究结果。同时对金属表面等离子谐振效应做了相关的理论和实验研究,提出了进一步增强微米尺度下强约束结构传感灵敏度的几种方式,这些结果为微米尺度下强约束结构在集成光学传感器方面的研究提供了理论和实验基础。
     在纳米尺度强约束光子结构研究方面,本文主要对金属以及半导体纳米颗粒的制作及其在生物医学方面的应用做了相应的研究。介绍了金、银纳米颗粒的合成,通过在合成反应中控制纳米颗粒的大小、形状、组分以及结构得到了不同的光学特性。制作得到的这些纳米颗粒,比如银纳米球、金纳米棒以及金-银核壳结构的纳米棒被进一步用生物分子进行修饰并应用到生物医学体外研究中,包括对肿瘤细胞的探测、靶向标记和多颜色的暗场成像,以及对药物成瘾的基因转染法治疗等等。利用金纳米棒在动物体内的试验结果也显示了它们在小型动物活体实验中具有很好的生物兼容性。本文的研究证明了上述的金属纳米颗粒能够为未来疾病的诊断和治疗提供一个很好的纳米尺度的平台,在生物医学的传感及其它研究中发挥更大的作用。本文还介绍了半导体纳米颗粒在活体肿瘤靶向及成像中的应用。合成了高亮度的CdSe/CdS/ZnS量子棒,用聚乙二醇修饰的磷脂胶束将其包覆,并在其表面修饰了对肿瘤新生血管具有靶向性的生物分子。利用这种纳米材料对两种肿瘤模型小鼠(皮下植入肿瘤以及原位移植肿瘤模型)进行了肿瘤的活体追踪检测及成像研究。对量子棒材料详细的毒性研究没有发现它们在细胞以及组织水平有可见的毒性表现。本文的相关结果表明量子棒能够作为一种具有高荧光亮度、高稳定性并具有高生物兼容性的生物探针,在癌症的早期探测研究中发挥巨大的作用。这些研究结果大大的拓宽了纳米尺度强约束结构在生物传感和生物成像中的应用范围。
This dissertation is mainly about the design and fabrication of the strong confinment elements in micro- and nano- photonics for sensing and imaging applications,especially in biomedical research.As typical strong confinement elements in the micro-scale photonics, planar optical waveguides are studied and designed in a way to be more compact in size and better suited for sensing applications.Metallic structures are proposed to be introduced so as to improve the sensitivity due to the strong enhancement from the surface plasmon resonance.On the othe hand,nano-scale photonics,where nanoparticles as the strong confinement elements play as a key role,have been attracting great attention during the last few years due to the extraordinary opportunities it offered in a variety of research fields.Two kinds of nanoparticles have been synthesized,characterized and engineered for biosensing,in vitro and in vivo bioimaging.
     In micro-scale strong confinement photonics structure studies,two types of waveguides are designed and analized using finite difference method.A minimized silicon dioxide optical waveguide with an etch-through antiresonant reflecting buffer and an air cladding is presented. The air cladding is used to achieve a high refractive index contrast thus to minimize the lateral size of the waveguide,while the antiresonant reflecting buffer is used to reduce the leakage loss due to the silicon substrate.According to the design,by introducing three periods of etch-through antiresonant reflecting strutures,a straight SiO_2 waveguide with a low leakage loss (<0.01 dB/cm) and a bending radius as small as 15μm is obtained.The other waveguide structure is based on a commercially available polymer SU-8,which also has an air cladding.In order to redcue the leakage and bending losses,the SiO_2 buffer layer is etched partially.Systematic analysis on the waveguide including the single-mode condition,birefrigence and especially the bending behavior are performed.The numerical simulations indicate that the transition loss between the straight and bending sections dominants the bending loss and can be greatly reduced by introducing a lateral offset.Following the design,straight and bending waveguides are fabricated and characterized,which set basis for the future development in the integrated sensing applications.
     As for the strong confinement structures in nano-scale photonics,functionalized metallic and semiconductor nanoparticles have been synthesized,characterized and engineered for different biomedical applications.Gold and silver nanoparticles with different optical properties are obtained by manipulating their size,shape,composition and structure during the synthesis. The as-synthesized nanoparticles,such as silver nanospheres,gold nanorods and gold/silver core/shell nanorods are then functionalized with biomolecules for in vitro studies,including detecting,targeted labeling and multi-colored dark field imaing of human cancer cells,and gene delivery for drug addiction therapy.In vivo studies are also carried out with preliminary results showing that the gold nanorods are highly biocompatible to small animals even with an extremely high dosadge.The demonstration of several applications in biomedical research shows that these metallic nanoparticles are able to provide a powerful and promising nanosized platform for the diagnosis and therapy of desease.On the other hand,in vivo tumor targeting and imaging studies with functionalized semiconductor anisotropic nanocrystals are performed. Highly luminescent CdSe/CdS/ZnS quantum rods(QRs) are synthesized and encapsulated with PEGylated phospholipids,followed by conjugation with cyclic RGD peptides which specifically target the tumor vasculature.These functionalized QRs are then used for targeting and imaging the tumors in nude mice bearing pancreatic cancer xenografts(both subcutaneously and orthotopically planted).Detailed cytotoxicity studies are also performed with results indicating that the functionalized QRs have no observable toxic effect in the cellular and tissue levels, which reflects the vast potential of QRs as bright,photostable and biocompatible luminescent probes for the early diagnosis of cancer.These results greatly expanded the sensing and imaging aplicaitons of the nano-scale strong confinement structures in biomedical research.
引文
1.王平,现代生物医学传感技术.浙江大学出版社:杭州,2003.
    2.Hill,K.O.;Fujii,Y.;Johnson,D.C.;Kawasaki,B.S.,Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication.Applied Physics Letters 1978,32,(10),647-649.
    3.Hill,K.O.;Malo,B.;Bilodeau,F.;Johnson,D.C.;Albert,J.,Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask.Applied Physics Letters 1993,62,(10),1035-1037.
    4.Lemaire,P.J.;Atkins,R.M.;Mizrahi,V.;Reed,W.A.,High pressure H_2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO_2 doped optical fibres.Electronics Letters 1993,29,(13),1191-1193.
    5.Chung,K.-W.;Yin,S.,Analysis of a widely tunable long-period grating by use of an ultrathincladding layer and higher-ordercladding mode coupling.Opt.Lett.2004,29,(8),812-814.
    6.DeLisa,M.P.;Zhang,Z.;Shiloach,M.;Pilevar,S.;Davis,C.C.;Sirkis,J.S.;Bentley,W.E.,Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor.Analytical Chemistry 2000,72,(13),2895-2900.
    7.Tong,L.;Gattass,R.R.;Ashcom,J.B.;He,S.;Lou,J.;Shen,M.;Maxwell,I.;Mazur,E.,Subwavelength-diameter silica wires for low-loss optical wave guiding.Nature 2003,426,(6968),816-819.
    8.Gu,F.;Zhang,L.;Yin,X.;Tong,L.,Polymer Single-Nanowire Optical Sensors.Nano Letters 2008,8,(9),2757-2761.
    9.Miller,S.E.,Integrated optics:an introduction.Bell System Tech.J.1969,48,2059-2069.
    10.Pole,R.V.;Miller,S.E.;Harris,J.H.;Tien,P.K.,Integrated Optics and Guided Waves?a Report of the Topical Meeting.Appl.Opt.1972,11,(8),1675-1685.
    11.Eldada,L.,Advances in telecom and datacom optical components.Optical Engineering 2001,40,(7),1165-1178.
    12.Hsiao,C.S.;Wang,L.,Design for beam splitting components employing silicon-on-insulator rib waveguide structures.Optics Letters 2005,30,(23),3153-3155.
    13.Navalakhe,R.K.;DasGupta,N.;Das,B.K.,Fabrication and characterization of straight and compact S-bend optical waveguides on a silicon-on-insulator platform.Applied Optics 2009,48,(31),G125-G130.
    14.Rickman,A.G.;Reed,G.T.,SILICON-ON-INSULATOR OPTICAL RIB WAVE-GUIDES-LOSS,MODE CHARACTERISTICS,BENDS AND Y-JUNCTIONS.lee Proceedings-Optoelectronics 1994,141,(6),391-393.
    15.Yu,J.Z.;Chen,S.W.;Xia,J.S.;Wang,Z.T.;Fan,Z.C.;Li,Y.P.;Liu,J.W.;Yang,D.;Chen,Y.Y.,Research progresses of SOI optical waveguide devices and integrated optical switch matrix.Science in China Series F-Information Sciences 2005,48,(2),234-246.
    16.Wong,S.F.;Pun,E.Y.B.;Chung,P.S.,Er~(3+)-Yb~(3+) codoped phosphate glass waveguide amplifier using Ag~+-Li~+ ion exchange.Photonics Technology Letters,IEEE 2002,14,(1),80-82.
    17.Miya,T.,Silica-based planar iightwave circuits:passive and thermally active devices.Selected Topics in Quantum Electronics,IEEE Journal of 2000,6,(1),38-45.
    18.Ailing,Z.;Kam Tai,C.,Characterization of the optical loss of an integrated silicon oxynitride optical switch structure.Applied Physics Letters 2003,83,(13),2524-2526.
    19.Chelnokov,A.V.;Lourtioz,J.M.;Boucaud,P.;Bernas,H.;Chaumont,J.;Plowman,T.,Deep high-dose erbium implantation of low-loss silicon oxynitride waveguides.Electronics Letters 1994,30,(22),1850-1852.
    20.Veselka,J.J.;Bogert,G.A.,Low-loss TM-pass polariser fabricated by proton exchange for z-cut ti:LiNbO3 waveguides.Electronics Letters 1987,23,(1),29-31.
    21.Schilppert,B.,Reduction of bend losses in Ti:LiNbO3 waveguides through MgO double diffusion.Electronics Letters 1987,23,(15),797-798.
    22.Joyner,C.H.;Dentai,A.G.;Alferness,R.C.;Buhl,L.L.;Divino,M.D.;Dautremont-Smith,W.C.,InGaP/InP waveguides.Applied Physics Letters 1987,50,(21),1509-1511.
    23.Chan,W.K.;Abeles,J.H.;Nguyen,K.C.;Bhat,R.;Koza,M.A.,Integration of high-speed optical taps with InP waveguides.Photonics Technology Letters,IEEE 1989,1,(3),65-67.
    24.Nakamura,S.;Tajima,K.;Hamao,N.;Sugimoto,Y.,High-speed all-optical switching experiment in Mach—Zehnder configuration using GaAs waveguide.Applied Physics Letters 1993,62,(9),925-927.
    25.Nichols,K.H.;Chang,W.S.C.;Wolfe,C.M.;Stillman,G.E.,GaAs waveguide detectors for 1.06 mu m.Applied Physics Letters 1977,31,(9),631-633.
    26.Eldada,L.;Shacklette,L.W.,Advances in polymer integrated optics.Selected Topics in Quantum Electronics,IEEE Journal of 2000,6,(1),54-68.
    27.Porte,H.;Gorel,V.;Kiryenko,S.;Goedgebuer,J.-P.;Daniau,W.;Blind,P.,Imbalanced Mach-Zehnder Interferometer Integrated in Micromachined Silicon Substrate for Pressure Sensor.Journal of Lightwave Technology 1999,17,(2),229.
    28.Dumais,P.;Callender,C.L.;Noad,J.P.;Ledderhof,C.J.,Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer.Optics Express 2008,16,(22),18164-18172.
    29.Nemova,G.;Kabashin,A.V.;Kashyap,R.,Surface plasmon-polariton Mach-Zehnder refractive index sensor.J.Opt.Soc.Am.B 2008,25,(10),1673-1677.
    30.Poon,J.K.S.;Zhu,L.;DeRose,G.A.;Yariv,A.,Polymer Microring Coupled-Resonator Optical Waveguides.Journal of Lightwave Technology 2006,24,(4),1843.
    31.Xiao,S.;Khan,M.H.;Shen,H.;Qi,M.,Silicon-on-Insulator Microring Add-Drop Filters With Free Spectral Ranges Over 30 nm.Journal of Lightwave Technology 2008,26,(2),228-236.
    32.Kwon,M.-S.;Steier,W.H.,Microring-resonator-based sensor measuring both the concentration and temperature of a solution.Optics Express 2008,16,(13),9372-9377.
    33.Chao,C.-Y.;Guo,L.J.,Design and Optimization of Microring Resonators in Biochemical Sensing Applications.Journal of Lightwave Technology 2006,24,(3),1395.
    34.Delage,A.;Dan-Xia,X.;McKinnon,R.W.;Post,E.;Waldron,P.;Lapointe,J.;Storey,C.;Densmore,A.;Janz,S.;Lamontagne,B.;Cheben,P.;Schmid,J.H.,Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler.Lightwave Technology,Journal of 2009,27,(9),1172-1180.
    35.Schmid,J.H.;Sinclair,W.;Garcia,J.;Janz,S.;Lapointe,J.;Poitras,D.;Li,Y.;Mischki,T.;Lopinski,G.;Cheben,P.;Delage,A.;Densmore,A.;Waldron,P.;Xu,D.X.,Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing.Optics Express 2009,17,(20),18371-18380.
    36.Daniel,M.-C.;Astruc,D.,Gold Nanoparticles:Assembly,Supramolecular Chemistry,Quantum-Size-Related Properties,and Applications toward Biology,Catalysis,and Nanotechnology.Chemical Reviews 2003,104,(1),293-346.
    37.El-Sayed,M.A.,Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes.Accounts of Chemical Research 2001,34,(4),257-264.
    38.Jain,P.K.;Huang,X.;El-Sayed,I.H.;El-Sayed,M.A.,Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging,Sensing,Biology,and Medicine.Accounts of Chemical Research 2008,41,(12),1578-1586.
    39.Murphy,C.J.,MATERIALS SCIENCE:Nanocubes and Nanoboxes.Science 2002,298,(5601), 2139-2141.
    40. Wagner, F. E.; Haslbeck, S.; Stievano, L.; Calogero, S.; Pankhurst, Q. A.; Martinek, K. P., Before striking gold in gold-ruby glass. Nature 2000,407, (6805), 691-692.
    
    41. Sun, Y.; Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002,298, (5601),2176-2179.
    
    42. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T.,Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005,109, (29), 13857-13870.
    
    43. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J., One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry 2006,45, (19), 7544-7554.
    
    44. Rosi, N. L.; Mirkin, C. A., Nanostructures in Biodiagnostics. Chemical Reviews 2005, 105, (4),1547-1562.
    
    45. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998,27, (4), 241-250.
    
    46. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997,275, (5303), 1102-1106.
    
    47. Cao, Y. C.; Jin, R.; Mirkin, C. A., Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002,297, (5586), 1536-1540.
    
    48. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.;Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech 2008,26, (1), 83-90.
    
    49. El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer.Nano Letters 2005,5, (5), 829-834.
    
    50. Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Peptide-Conjugated Gold Nanorods for Nuclear Targeting. Bioconjugate Chemistry 2007,18, (5), 1490-1497.
    
    51. Yu, C.; Nakshatri, H.; Irudayaraj, J., Identity Profiling of Cell Surface Markers by Multiplex Gold Nanorod Probes. Nano Letters 2007, 7, (8), 2300-2306.
    
    52. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society 2006, 128,(6), 2115-2120.
    
    53. Dickerson, E. B.; Dreaden, E. C; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.;El-Sayed, M. A., Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters 2008,269, (1), 57-66.
    
    54. Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.;Schwartz, A. G.; Wang, L. V.; Xia, Y., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 2009, advance online publication.
    
    55. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D., Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small 2005,1, (3), 325-327.
    
    56. Brus, L. E., A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of Chemical Physics 1983, 79, (11), 5566-5571.
    
    57. Brus, L. E., Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics 1984, 80, (9),4403-4409.
    
    58. Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.; Brus, L. E., Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. The Journal of Chemical Physics 1988,89, (7), 4001-4011.
    
    59. Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E., Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. The Journal of Physical Chemistry 1986,90, (15), 3393-3399.
    
    60. Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E., Size effects in the excited electronic states of small colloidal CdS crystallites. The Journal of Chemical Physics 1984,80, (9), 4464-4469.
    
    61. Steigerwald, M. L.; Brus, L. E., Synthesis, Stabilization, and Electronic Structure of Quantum Semiconductor Nanoclusters. Annual Review of Materials Science 1989,19, (1), 471-495.
    
    62. Bawendi, M. G; Steigerwald, M. L.; Brus, L. E., The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots"). Annual Review of Physical Chemistry 1990,41, (1), 477-496.
    
    63. Steigerwald, M. L.; Brus, L. E., Semiconductor crystallites: a class of large molecules. Accounts of Chemical Research 1990,23, (6), 183-188.
    
    64. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, (5251),933-937.
    
    65. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.;Bawendi, M. G., (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. The Journal of Physical Chemistry B 1997,101, (46), 9463-9475.
    
    66. Murray, C. B.; Norris, D. J.; Bawendi, M. G, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993,115, (19), 8706-8715.
    
    67. Sukhanova, A.; Devy, J.; Venteo, L.; Kaplan, H.; Artemyev, M.; Oleinikov, V.; Klinov, D.; Pluot, M.;Cohen, J. H. M.; Nabiev, I., Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry 2004,324, (1), 60-67.
    
    68. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G; Wu, A. M.;Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005,307,(5709), 538-544.
    
    69. Chan, W. C. W.; Nie, S., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998,281, (5385), 2016-2018.
    
    70. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998,281, (5385), 2013-2016.
    
    71. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging,labelling and sensing. Nat Mater 2005,4, (6), 435-446.
    
    72. Gerion, D.; Chen, F.; Kannan, B.; Fu, A.; Parak, W. J.; Chen, D. J.; Majumdar, A.; Alivisatos, A. P.,Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays. Analytical Chemistry 2003, 75, (18), 4766-4772.
    
    73. Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G.P., Avidin: A Natural Bridge for Quantum Dot-Antibody Conjugates. Journal of the American Chemical Society 2002,124, (22), 6378-6382.
    
    74. Goldman, E. R.; Clapp, A. R.; Anderson, G. P.; Uyeda, H. T.; Mauro, J. M.; Medintz, I. L.; Mattoussi,H., Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Analytical Chemistry 2003,76, (3), 684-688.
    
    75. Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E., Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization. Journal of the American Chemical Society 2001,123, (17), 4103-4104.
    
    76. Xiao, Y.; Barker, P. E., Semiconductor nanocrystal probes for human metaphase chromosomes. Nucl. Acids Res.2004,32,(3),e28-.
    77.Miyawaki,A.,Visualization of the Spatial and Temporal Dynamics of Intracellular Signaling.Dev.Cell 2003,4,(3),295-305.
    78.Wu,X.;Liu,H.;Liu,J.;Haley,K.N.;Treadway,J.A.;Larson,J.P.;Ge,N.;Peale,F.;Bruchez,M.P.,Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nat Biotech 2003,21,(1),41-46.
    79.Chen,F.;Gerion,D.,Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term,Nontoxic Imaging and Nuclear Targeting in Living Cells.Nano Letters 2004,4,(10),1827-1832.
    80.Derfus,A.M.;Chan,W.C.W.;Bhatia,S.N.,Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking.Advanced Materials 2004,16,(12),961-966.
    81.Jaiswal,J.K.;Mattoussi,H.;Mauro,J.M.;Simon,S.M.,Long-term multiple color imaging of live cells using quantum dot bioconjugates.Nat Biotech 2003,21,(1),47-51.
    82.Kaul,Z.;Yaguchi,T.;Kaul,S.C.;Hirano,T.;Wadhwa,R.;Taira,K.,Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates.Cell Res 2003,13,(6),503-507.
    83.Dahan,M.;Levi,S.;Luccardini,C.;Rostaing,P.;Riveau,B.;Triller,A.,Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking.Science 2003,302,(5644),442-445.
    84.Lidke,D.S.;Nagy,P.;Heintzmann,R.;Arndt-Jovin,D.J.;Post,J.N.;Grecco,H.E.;Jares-Erijman,E.A.;Jovin,T.M.,Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction.Nat Biotech 2004,22,(2),198-203.
    85.Akerman,M.E.;Chan,W.C.W.;Laakkonen,P.;Bhatia,S.N.;Ruoslahti,E.,Nanocrystal targeting in vivo.Proceedings of the National Academy of Sciences of the United States of America 2002,99,(20),12617-12621.
    86.Kim,S.;Lim,Y.T.;Soltesz,E.G.;De Grand,A.M.;Lee,J.;Nakayama,A.;Parker,J.A.;Mihaljevic,T.;Laurence,R.G.;Dor,D.M.;Cohn,L.H.;Bawendi,M.G.;Frangioni,J.V.,Near-infrared fluorescent type Ⅱquantum dots for sentinel lymph node mapping.Nat Biotech 2004,22,(1),93-97.
    87.Gao,X.;Cui,Y.;Levenson,R.M.;Chung,L.W.K.;Nie,S.,In vivo cancer targeting and imaging with semiconductor quantum dots.Nat Biotech 2004,22,(8),969-976.
    88.叶培大;吴彝尊,光波导技术基本理论.人民邮电出版社:北京,1981.
    89.Prasad,P.N.,Nanophotonics.Wiley-Interscience:New York,2004.
    90.Ning-Ning,F.;Gui-Rong,Z.;Chenglin,X.;Wei-Ping,H.,Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers.Lightwave Technology,Journal of 2002,20,(11),1976-1980.
    91.曹庄琪,导波光学中的转移矩阵方法.上海交通大学出版社:上海,2000.
    92.Schlereth,K.H.;Tacke,M.,The complex propagation constant of multilayer waveguides:an algorithm for a personal computer.Quantum Electronics,IEEE Journal of 1990,26,(4),627-630.
    93.Yong,K.-T.;Ding,H.;Roy,I.;Law,W.-C.;Bergey,E.J.;Maitra,A.;Prasad,P.N.,Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots.ACS Nano 2009,3,(3),502-510.
    94.Li,L.;Daou,T.J.;Texier,I.;Kim Chi,T.T.;Liem,N.Q.;Reiss,P.,Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals:Cadmium-Free Quantum Dots for In Vivo Imaging.Chemistry of Materials 2009,21,(12),2422-2429.
    95.Erogbogbo,F.;Yong,K.-T.;Roy,I.;Xu,G.;Prasad,P.N.;Swihart,M.T.,Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells.ACS Nano 2008,2,(5),873-878.
    96.Kubica,J.M.,A rigorous design method for antiresonant reflecting optical waveguides.Photonics Technology Letters,IEEE 1994,6,(12),1460-1462.
    97.Dai,D.;Shi,Y.,Deeply Etched SiO2 Ridge Waveguide for Sharp Bends.Lightwave Technology,Journal of 2006,24,(12),5019-5024.
    98.Law,W.-C.;Markowicz,P.;Yong,K.-T.;Roy,I.;Baev,A.;Patskovsky,S.;Kabashin,A.V.;Ho,H.-P.;Prasad,P.N.,Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics.Biosensors and Bioelectronics 2007,23,(5),627-632.
    99.Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.,Chemistry and Properties of Nanocrystals of Different Shapes.Chemical Reviews 2005,105,(4),1025-1102.
    100.Borsook,H.;Keighley,G.,Oxidation-Reduction Potential of Ascorbic Acid(Vitamin C).Proceedings of the National Academy of Sciences of the United States of America 1933,19,(9),875-878.
    101.Nikoobakht,B.;El-Sayed,M.A.,Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods.Langmuir 2001,17,(20),6368-6374.
    102.Cory,A.H.;Owen,T.C.;Barltrop,J.A.;Cory,J.G.,Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture.Cancer Communications 1991,3,(7),207-212.
    103.Hamilton,A.J.;Baulcombe,D.C.,A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants.Science 1999,286,(5441),950-952.
    104.Elbashir,S.M.;Harborth,J.;Lendeckel,W.;Yalcin,A.;Weber,K.;Tuschl,T.,Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature 2001,411,(6836),494-498.
    105.Bernstein,E.;Caudy,A.A.;Hammond,S.M.;Hannon,G.J.,Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature 2001,409,(6818),363-366.
    106.Gould,T.D.;Manji,H.K.,DARPP-32:A molecular switch at the nexus of reward pathway plasticity.Proceedings of the National Academy of Sciences of the United States of America 2005,102,(2),253-254.
    107.Greengard,P.;Nairn,A.C.;Girault,J.-A.;Ouimet,C.C.;Snyder,G.L.;Fisone,G.;Allen,P.B.;Fienberg,A.;Nishi,A.,The DARPP-32/protein phosphatase-1 cascade:a model for signal integration.Brain Research Reviews 1998,26,(2-3),274-284.
    108.Ding,H.;Yong,K.-T.;Roy,I.;Pudavar,H.E.;Law,W.C.;Bergey,E.J.;Prasad,P.N.,Gold Nanorods Coated with Multilayer Polyelectrolyte as Contrast Agents for Multimodal Imaging.The Journal of Physical Chemistry C 2007,111,(34),12552-12557.
    109.Hu,R.;Yong,K.-T.;Roy,I.;Ding,H.;He,S.;Prasad,P.N.,Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells.The Journal of Physical Chemistry C 2009,113,(7),2676-2684.
    110.Alivisatos,P.,The use of nanocrystals in biological detection.Nat Biotech 2004,22,(1),47-52.
    111.Yong,K.-T.;Qian,J.;Roy,I.;Lee,H.H.;Bergey,E.J.;Tramposch,K.M.;He,S.;Swihart,M.T.;Maitra,A.;Prasad,P.N.,Quantum Rod Bioconjugates as Targeted Probes for Confocal and Two-Photon Fluorescence Imaging of Cancer Cells.Nano Letters 2007,7,(3),761-765.
    112.Manna,L.;Scher,E.C.;Li,L.-S.;Alivisatos,A.P.,Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods.Journal of the American Chemical Society 2002,124,(24),7136-7145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700