用户名: 密码: 验证码:
生物反应器填埋场中PAEs的迁移转化及其生物降解机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯(Phthalic acid esters,PAEs),主要用于塑料的增塑剂,被视作内分泌干扰素或环境激素,美国环保总局和我国均将其列为优先控制污染物。废弃塑料通常与其他生活垃圾一起填埋处理,因此,渗滤液的排放是PAEs进入环境的重要途径。随着生活垃圾污染问题日益突出,了解PAEs在垃圾填埋体中的降解条件和迁移转化规律,分析加速PAEs矿化的填埋控制条件,成为减少其通过渗滤液二次污染的关键。以往为数不多的关于填埋场PAEs的降解研究很少涉及生物反应器填埋场,本研究以传统卫生填埋场为对照,将填埋垃圾和渗滤液作为一个整体系统,选用列入我国水体中优先控制污染物的PAEs作为目标物,研究生物反应器填埋场中PAEs迁移转化行为,分析生物反应器填埋场稳定化进程中生态环境的理化、生化和微生物特性对PAEs生物降解的影响,解析PAEs生物降解的生物反应器填埋场作用机制,主要结论如下:
     (1)实际垃圾填埋的传统卫生填埋场(CL)、回灌型生物反应器填埋场(RL)和两相型生物反应器填埋场(BL)的垃圾及渗滤液均检测到了邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二辛酯(DOP),其中DBP含量最高。各填埋场的稳定化进程顺序为BL>RL>CL,填埋场的稳定化进程影响着PAEs在垃圾中的降解行为,相比于填埋场产酸期,填埋场产甲烷期时的环境条件更有利于PAEs的降解。垃圾中DMP及DBP降解较快,其中DMP至实验结束已降解完全,而DOP降解较慢。CL、RL和BL中PAEs残留总量变化符合指数衰减模型,不同运行工艺的填埋场中PAEs残留总量差异显著,渗滤液回流明显加速了PAEs的生物降解,而产甲烷反应器的引入更能促进PAEs在填埋场中的去除。
     (2)按实际生活垃圾的组分比例自配模拟垃圾,构建了模拟回灌型生物反应器填埋场。分析填埋初始、产酸期和产甲烷期垃圾中普通和耐受DBP三大类微生物数量的动态变化发现,细菌数量最多,真菌次之,放线菌最少。DBP对初始垃圾各微生物的抑制不明显,但产酸期垃圾和产甲烷期垃圾真菌和放线菌均不同程度地受到了抑制,且放线菌受到的抑制率普遍高于真菌,而产酸期垃圾和产甲烷期垃圾细菌受DBP影响不明显,DBP对垃圾微生物的不良影响程度表现为放线菌>真菌>细菌。细菌、真菌、放线菌与脱氢酶存在极显著的相关性,而与VSS、BDM等存在显著的负相关性(P<0.01)。
     (3)从模拟回灌型生物反应器填埋场产甲烷期垃圾中分离到了两株DBP高效降解菌T1和T5。根据形态学观察、生理生化鉴定及16s rDNA序列测定,菌株T1和T5同归入肠杆菌属,分别命名为Enterobacter sp.T1和Enterobacrersp.T5。Enterobacter sp.T1降解DBP的最佳pH值为7,最佳温度为35℃;Enterobacter sp.T5降解DBP的最佳pH值为7,最佳温度为30-35℃。当DBP初始浓度小于1000mg/L时,Enterobacter sp.T1对DBP的生物降解反应符合一级动力学模型1n C=-0.0359t+A,DBP降解半衰期为19.32h;Enterobacter sp.T5对DBP的生物降解反应符合一级动力学模型1n C=-0.0332t+A,DBP降解半衰期为20.88h。分析Enterobacter sp.T5降解DBP的代谢色谱图,初步判定其主要降解产物为MBP和PA。此外,两菌株均能不同程度利用DMP、DEP或DOP为唯一碳源和能源,说明其对PAEs的代谢具有广谱性。
     (4)不同时期垃圾中DBP的降解符合一级动力学模型,速率常数在0.0140-0.0187 d~(-1)之间,半衰期在37.1-49.5d之间。垃圾中DBP的浓度变化对其自身的生物降解影响不明显。产甲烷期垃圾中DBP的降解快于初始垃圾和产酸期垃圾,而产酸期垃圾中DBP的降解相对最慢,pH是影响DBP降解速率的关键因素。回接DBP降解优势菌后,各垃圾中DBP降解速率均有不同程度提高,其中接种后产甲烷期垃圾DBP降解速率常数显著高于未接种垃圾(p<0.05)。混合菌对DBP的降解能力明显高于单株菌,其协同作用可有效促进垃圾中DBP的降解。至50d时,接种T1、T5和混合菌的产甲烷期垃圾中DBP的去除率从未接种时的60.3%分别上升为74.5%、72.4%和87.3%。
Phthalic acid diesters (PAEs), used primarily in polyvinylchloride (PVC) as plasticicers and known as endocrine-disrupting chemicals or environmental hormones, has been listed as priority pollutants by US EPA and China. Generally, discarded plastic are co-landfilled with other municipal solid waste (MSW). Therefore, landfill leachate is an important way of PAEs entering the environment. With respect to the increasingly pollution arisen by MSW, investigating the PAEs transformation and degradation in landfill and analyzing the landfill condition for accelerating their mineralization are important for controlling PAEs secondary pollution by leachate. There are few studies conducted to evaluate the behavior of PAEs in bioreactor landfills. In this study, PAEs listed as priority pollutants in water by Environmental Monitoring of China were chosen as target pollutants. Considering the refuse and leachate as one whole system, the behavior of PAEs in two simulated landfill bioreactors were investigated. A conventional landfill was set as a control. In addition, effect of general physicochemical, biochemical and microbial characterization of the landfill on PAEs biodegradation were evaluated. Finally, mechanism of bioreactor landfill on the PAEs biodegradation was also analyzed. The main conclusions of this study are list below.
     (1) Dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP) were all detected in both leachate and refuse from conventional landfill (CL), recirculated landfill (RL) and bioreactor landfill (BL). Among the three PAEs, the DBP concentration was observed with the highest level. The stabilization process of landfill, with sequences of BL>RL>CL, play an important role on the biodegradation of PAEs in refuse. Compared to the acidic environment, the methanogenic environment is beneficial for PAEs degradation. DMP and DBP degraded rapidly, and DMP was completely degraded in landfill conditions, while the concentration of DOP decreased slowly. The residual amounts of PAEs with significant differences are well fit exponential decay models in CL, RL and BL. The operation of leachate recirculation can obviously accelerate PAEs biodegradation than conventional operation, and the introduction of methanogenic reactor can further promote the removal of PAEs in landfill.
     (2) Based on the real proportional characteristics of MSW, simulated MSW were loaded into the simulated leachate recirculation bioreactor landfill. The abundance of the common and the tolerant microbe of the three kinds of anaerobic microorganisms in refuse were investigated at initial phase, acidic phase and methanogenic phase, respectively. It showed that the number of bacteria was the largest while the number of actinomycetes was the smallest. The growth of microorganisms was not significantly inhibited by DBP at initial phases. However, the growth of actinomycetes and fungi was inhibited both at acidic phase and methanogenic phase, and the inhibition of actinomycetes was stronger than that of fungi. The toxicity effect of DBP on microorganisms in refuse has the ranking of actinomycetes>fungi>bacteria. In addition, the numbers of bacteria, fungi and actinomycetes significant positivly corrected with dehydrogenase activity, but negative corrected with VSS, BDM of refuse (P<0.01).
     (3) Two bacterial strains including T1 and T5 capable of utilizing DBP as their sole source of carbon and energy were isolated from refuse of simulated recirculated landfill. Based on their morphology, physio-biochemical characteristics, and 16S rDNA sequence, the strains were identified as Enterobacter sp. and named as Enterobacter sp. T1 and Enterobacter sp. T5, respectively. The optimal pH and temperature for their biodegradation activities were 7.0, 35℃and 7.0, 30-35℃,respectively. The degradation kinetics of DBP by Enterobacter sp. T1 fit a first-order kinetic model of ln C= -0.0359t+A with the degradation half-life of 19.32h. when the DBP concentration was lower than 1000mg/L. Similarly, degradation of DBP by Enterobacter sp. T5 fit a first-order kinetic model of ln C= -0.0332t+A with the degradation half-life of 20.88h. The degradation productions of two major metabolites were identified as phthalic acid and monobutyl phthalate. In addition, those two strains also grew in conditions of DMP, diethyl phthalate (DEP) or DOP solution as the sole source of carbon and energy, respectively. It suggested that the range of their metabolism objects was wide.
     (4) The degradation of DBP fit first-order kinetic models in refuse of different phases, the rate constants were 0.0140-0.0187 d~(-1) and the degradation half-lives were of 37.1-49.5d. The effect of DBP concentration on its degradation in refuse was not obvious. DBP was degraded fastest in the refuse of methanogenic phase, while slowest in the refuse of acidic phase. pH is the key factor of DBP biodegradation. In addition, the degradation rate of DBP obviously increased after inoculating the dominant DBP degradation bacteria in the refuse. The rate constant of inoculation was significant higher than the nonvaccinated in the refuse of methanogenic phase (p<0.05). The degradation ability of mixed bacteria was obviously higher than single strain, it suggested that the synergistic effect can promote the DBP degradation effectively in the refuse. Till day 50, the removal rate of DBP in the refuse of methanogenic phase increased from 60.3% to 74.5%, 72.4% and 87.3% when T1, T5 and mixed bacterial were inoculated, respectively.
引文
蔡全英,莫测辉,李云辉.广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯(PAEs)研究[J].生态学报,2005,25(2):283-288.
    蔡晓布,钱成,张元.西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004,15(3):463-468.
    蔡玉祺,钱晓睛.邻苯二甲酸酯对蔬菜幼苗的影响[J].农业环境保护,1994,13(4):162-166.
    陈英旭,沈东升,胡志强.酞酸酯类有机毒物在土壤中的降解规律研究[J].环境科学学报,1997,17(3):340-345.
    迟杰,董林林,李金娟.铜绿微囊藻对DBP和DEHP的富集和降解特性[J].天津大学学报,2006,39(12):1395-1398.
    迟杰,刘华,郎铁柱.普通小球藻与DBP的相互作用[J].环境科学与技术,2005,28(2):26-28.
    邓舟,蒋建国,杨国栋.渗滤液回灌量对其特性及填埋场稳定化的影响[J].环境科学,2006,27(1):184-188.
    董路,王琪,李姮.填埋场场址加速稳定技术的初步研究[J].中国环境科学,2000.4:461-464.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    方程冉,陈川龙,项硕.邻苯二甲酸酯类增塑剂降解研究进展[J].浙江科技学院学报,2006,18(4):286-290.
    方程冉,吴征宇,龙於洋,李岚,沈东升.UASB反应器处理垃圾渗滤液的启动研究[J].浙江科技学院学报,2007,19(2):125-128.
    冯健,张健.巨桉人工林地土壤微生物类群的生态分布规律[J].应用生态学报,2005,16(8):1422-1426.
    顾宗濂,谢恩琴,周德智.城市生活垃圾中的酞酸酯的微生物降解[J].应用与环境生物学报,1995,1(3):244-251.
    关卉,王金生,万洪富.雷州半岛典型区域土壤邻苯二甲酸酯类(PAEs)污染研究[J].农业环境科学学报,2007,26(2):622-628.
    关松荫.土壤酶及其研究法[M].北京:中国农业出版社,1986.
    国伟林,王西奎.城区大气和塑料大棚空气中酞酸酯的分析[J].环境化学,1997,16(4):382-385.
    何若,沈东升,方程冉.生物反应器填埋场系统的特性研究[J].环境科学学 报,2001a,21(6):763-767.
    何若,沈东升.生物反应器填埋场处理渗滤液的试验[J].环境科学,2001b,22(6):99-102.
    何若,沈东升,朱荫湄.生物反应器填埋场处理生活垃圾的研究进展[J].浙江大学学报(农业与生命科学版),2004,30(3):252-258.
    胡雄星,韩中豪,周亚康.黄浦江表层水体中邻苯二甲酸酯分布特征及风险评价[J].环境化学,2007,26(2):258-259.
    贾传兴,彭绪亚,袁荣焕,蔡华帅,廖丽莎,曹彦龙.生物可降解度判定生活垃圾堆肥处理的稳定性[J].中国给水排水,2006;5:68-70.
    蒋建国,张群芳,邓舟.生物反应器填埋场中重金属固定和释放规律实验研究[J].清华大学学报(自然科学版),2007,47(9):1466-1468.
    姜远光,费学宁,张天永.邻苯二甲酸酯类环境激素降解研究[J].城市环境与城市生态,2003,16(5):7-9.
    金朝晖,黄国兰,柴英涛.水体表面微层中酞酸酯的光降解研究[J].环境化学,1999,18(2):109-114.
    金相灿.有机化合物污染化学--有毒有机物污染化学[M].北京:清华大学出版社,1990.
    金子,李善日,安胜姬.GC/MS法分析不同采样期松花江水中有机污染物[J].质谱学报,1999,Z1:155-156.
    李国刚.固体废物试验与监测分析方法[M].北京:化学工业出版社,2003.
    李佳喜,顾继东.邻苯二甲酸二甲酯及其异构体的好氧微生物降解[J].应用与环境生物学报,2004,10:782-785.
    李魁晓,顾继东.环境激素邻苯二甲酸二丁酯的好氧微生物降解[J].海洋环境科学,2006,25:7-9.
    李立忠,刘子元,孙杰.土壤对酞酸酯类化合物(PAEs)的吸附作用[J].中南民族大学学报(自然科学版),2006,25(1):15-17.
    林抗美,官雪芳,鲁国东,王宗华,张秋芳,谢恩,马丽娜,刘波.阴沟肠杆菌(Enterobacter closcae)对乐果降解特性的研究[J].农业环境科学学报,2009.28(2):398-405.
    林抗美,官雪芳,马丽娜,王宗华,鲁国东,刘波.有机磷农药降解菌-阴沟肠杆菌的生物学特性[J].中国农学通报,2008,24(9):382-386.
    刘宏远,沈东升,朱荫湄.渗滤液回灌型填埋场的水质变化规律[J].浙江工业大学学报,2005,33(1):1-3.
    刘华,沈新天,孙丽娜,陈锡剑.普通小球藻对邻苯二甲酸二丁酯的富集与降 解研究[J].农业环境科学学报,2008,27(6):2391-2395.
    刘莉莉,林匡飞,苏爱华,杨莎莎,张梅.四溴双酚A对土壤酶活性的影响[J].环境污染与防治,2008,30(6):13-16,30.
    刘敏,林玉君,曾锋.城区湖泊表层沉积物中邻苯二甲酸酯的组成与分布特征[J].环境科学学报,2007,27(8):137-138.
    龙焰.生活垃圾快速降解并原位脱氮的生物反应器填埋技术及机理研究[D].浙江大学博士学位论文,2008.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    庞金梅,池宝亮,杜荣平,俞寅,樊修武.DEHP在土壤中的降解[J].农业环境保护,1993,12(4):185-186.
    邱东茹,吴振斌,贺锋。内分泌扰乱化学品对动物的影响和作用机制[J].环境科学研究,2000,13:52-55
    沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征[J].中国环境科学,2006,26(1):120-124.
    沈东升.生活垃圾填埋生物处理理论与技术[M].北京:化学工业出版社,2003.
    沈幸,刘云,鲜殷鸣.太湖水源地水体中半挥发性有机物的监测[J].环境污染与防治,2006,28(5):396-398.
    司俊杰.在2005年度中国苯酐行业协会和中国增塑剂行业协会年会上的工作报告[Z].2005.
    孙英杰,楚贤峰,孙晓杰.回灌运行参数对新鲜垃圾渗滤液的影响研究[J]。环境工程,2007,25(1):24-27.
    田怀军,舒为群,张学奎.长江、嘉陵江(重庆段)源水有机污染物的研究[J].长江流域资源与环境,2003,12(2):118-124.
    仝青,乌兰,冯沈迎.大气环境中气相和颗粒相上酞酸酯的分析[J].环境化学,1992,13(5):78-81.
    王春,李晓东,史玉坤.南通市地表水中邻苯二甲酸酯类污染状况研究[J].南通大学学报(医学版),2007,27(3):167-170.
    王君琴,沈东升.生物反应器填埋场的试验研究[J].应用生态学报,2003,14(11):2077-2078.
    王君琴,徐炎华,贺永华.生物反应器填埋场臭气中微量氨气和挥发性脂肪酸的特征研究[J].农业环境科学学报,2005,24(6):1212-1216.
    王明林,寇立娟,张玉倩.基质固相分散气相色谱-质谱法测定蔬菜中的邻苯二甲酸酯[J].色谱,2007,25(4):577-580.
    王晓娟,金梁,陈家宽.环境激素DBP对拟南芥试管形态发生的影响[J].西北植物学报,2003,23(11):1889-1893.
    王振坤.邻苯二甲酸酯类化合物在海河河口水环境中行为研究[D].天津大学硕士学位论文,2006.
    吴辉,郑师章.肠杆菌属一降酚菌株的降酚效果及其机理[J].复旦学报(自然科学版),1992,31(4):361-368.
    吴平谷,韩关根,王惠华.饮用水中邻苯二甲酸酯类的调查[J].环境与健康杂志,1999,16(6):338-339.
    奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,1995.
    夏凤毅,郑平,周琪,冯孝善.邻苯二甲酸酯的摇瓶生物降解规律研究[J].环境科学学报,2002,22(3):379-384.
    夏凤毅,郑平,周琪,冯孝善.邻苯二甲酸酯鼓泡生物降解[J].太阳能学报,2002,23(4):472-477.
    许川,舒为群,罗财红.三峡库区水环境多环芳烃和邻苯二甲酸酯类有机污染物健康风险评价[J].环境科学研究,2007,20(5):57-60.
    许光辉,郑元洪.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    徐圆圆,刘永民.阴沟肠杆菌对石油烃污染物[J].化工文摘,2008,3:40-42.
    杨国栋,蒋建国,黄云峰.渗滤液回灌负荷对填埋场垃圾产气效能的影响[J].环境科学,2006,27(10):2129-2134.
    杨军,黄涛,张西华.温度对填埋垃圾渗滤液特征的影响[J].生态环境,2007,16(2):799-801.
    杨燕红,闵育顺.珠江三角洲一些城市水体中微量有机污染物的初步研究[J].环境科学学报,1998,18(3):27-29.
    叶常明.环境中的邻苯二甲酸酯[J].环境科学进展,1993,1(2):36-47.
    尹睿,林先责,王曙光.土壤中DBP/DEHP污染对几种蔬菜品质的影响[J].农业环境科学学报,2004,23(1):1-5.
    曾凡刚.大气中邻苯二甲酸酯类环境激素的定性定量研究[J].中央民族大学学报(自然科学版),2003,12(2):151-154.
    曾锋,傅家谟,盛国英,杨惠芳.不同菌源微生物对邻苯二甲酸二甲酯生物降解性的比较研究[J].应用与环境生物学报,1999,5:102-104.
    曾锋,康跃惠,傅家谟.邻苯二甲酸(2-乙基己基)酯酶促降解性研究[J].环境科学学报,2001,21:13-17.
    曾巧云,莫测辉,蔡全英.菜心对邻苯二甲酸酯(PAEs)吸收途径的初步研究[J].农 业工程学报,2005,21(8):137-141.
    中国科学院南京土壤所微生物室.土壤微生物研究法[M],北京:科学出版社,1985.
    中华人民共和国环境保护总局.2006年中国环境状况公报[Z].2007.
    周洪波,胡培磊,刘飞飞,谢英剑,李莹,任洪强.DBP降解菌株XJ1的分离鉴定及其降解特性[J].生物技术,2008,18(2):64-67.
    朱青山,赵由才,赵爱华.添加物对填埋场稳定化的影响[J].城市环境与生态,1996,9(2):19-21.
    Admas WJ,Biddinger GR,Robillard KA.A summary of the acute toxicity of 14phthalate ester to representative aquatic organisms[J].Environmental Toxicology & Chemistry,1995,14:1569-1574.
    Aleshchenkova ZM,Smsonova AS,Semochkina NF,Baikova SV,Tolstolutskaya LI,Begelman MM.Utilization of isophthalic acid esters by Rhodococci[J].Microbiology,1997,66:515-518.
    Amir S,Hafidi M,Merlina M.Fate of phthalic acid esters during composting of both lagooning and activated sludges[J].Process Biochemistry,2005,40:2183-2190.
    Archer DB,Peck MW.In microbiology of extreme environments and its potential for biotechnology[M].New York:Elsevier Applied Science,1989.
    Asakura H,Matsuto T,Tanaka N.Behavior of endocrine-disrupting chemicals in leachate from MSW landfill sites in Japan[J].Waste Management,2004,24:613-622.
    Bait O,Mailhot G,Bolte M.Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(Ⅲ) in aqueous solution[J].Applied Catalysis B:Environmental,2001,33:239-248.
    Banat FA,Prechtl S.Experimental assessment of bio-reduction of di-2-thylhexyl phthalate(DEHP) under aerobic thermophilic conditions[J].Chemosphere,1999,39:2097-2106.
    Barkaz MA,Ham RK,Schaerer D M.Microbial chemical and methane production characteristics anaerobically decomposed refuse with and without leachate recycling[J].Wate Management and Technology,1992,10:57-267.
    Barlaz MA,Milke M,Ham RK.Gas production parameters in sanitary landfill[J].Waste Management and Research,1987,5:27-39.
    Bauer MJ,Herrmann R.Estimation of the environmental contamination by phthalic acid esters leaching from household wastes[J].Science of the Total Environment, 1997,208:49-57.
    
    Bauer MJ, Herrmann R, Martin A. Chemodynamics, transport behaviour and treatment of phthalic acid esters in municipal landfill leachates [J]. Water Science and Technology, 1998, 38(2): 185-192.
    
    Benson CH, Barlaz MA, Lane DT, Rawe JM. Practice review of five bioreactor recirculation landfills [J]. Waste Management, 2007, 27(1): 13-29.
    
    Blount BC, Milgram KE, Silva MJ. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS [J]. Analytical Chemistry,2000, 72(17): 4127-4134.
    
    Buselli G, Kanglin L. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods [J]. Journal of Applied Geophysics, 2001,48:11-23.
    
    Cai QY, Mo CH, Wu QT, Zeng QY, Katsoyiannis A. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China [J]. Chemosphere, 2007, 68: 1751-1762.
    
    Calli B, Mertoglu B, Roest K, manc B. Comparison of long term performances and final microbial compositions of anaerobic reactors treating landfill leachate [J].Bioresource Technology, 2006,97: 641-647.
    
    Chang BV, Liao CS, Yuan SY. anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-2-ethylhexyl phthalate from river sediment in Taiwan [J].Chemosphere, 2005, 58: 1601-1607.
    
    Chang BV, Yang CM, Cheng CH. Biodegradation of phthalate esters by two bacteria strains [J]. Chemosphere, 2004, 55: 533-538.
    
    Chang BV, Wang TH, Yuan SY. Biodegradation of four phthalate esters in sludge [J].Chemosphere, 2007, 69: 1116-1123.
    
    Chang HK, Zylstra GJ. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBOI [J]. Journal of Bacteriology, 1998, 180:6529-6537.
    
    Chatterjee S, Dutta TK. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818 [J]. Biochemical and Biophysical Research Communications, 2003,309:36-43.
    Chauret C, Innis WE. Biotransformation at 10℃ of di-n-butyl phthalate in subsurface microcosms [J]. Ground Water, 1996, 34: 791-794.
    Chen JA, Li X, Li J, Cao J, Qiu ZQ, Zhao Q, Xu C, Shu WQ. Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, microbacterium sp. strain CQ0110Y [J]. Applied Microbiology and Biotechnology, 2007, 74: 676-682.
    
    Cheung JKH, Lam RKW, Shi MY, Gu JD. Environmental fate of the endocrine disruptors, dimethyl phthalate esters (DMPE), under anoxic sulfate-reducing conditions [J]. Science of the Total Environment, 2007, 381: 126-133.
    
    Christensen TH, Kjeldsen P. Basic biochemical processes in landfills [M]. London: Academic Press, 1989.
    
    Debra R, Reinhart T, Mccreanor TT. The bioreactor landfill: it s status and future [J].Waste Management and Research, 2002, 20: 172-186.
    
    Ding AZ, Zhang ZH, Fu JM. Biological control of leachate from municipal landfills [J]. Chemosphere, 2001, 44: 1-8.
    
    Duan XC, Yi XY, Yang XW, Dang Z, Lu GN, Yang C. Isolation and characterization of two di-n-butyl phthalate degrading bacteria [J]. Journal of Agro-Environment Science, 2007, 26: 1937-1941.
    
    Eaton RW. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B [J]. Journal of Bacteriology, 2001, 383: 3689-3703.
    
    Ejlertsson J, Alnervik M, Jonsson S, Svensson BH. Influence of water solubility,side-chain degradability and side-chain structure on the degradation of phthalic acid esters under methanogenic conditions [J]. Environmental Science &Technology, 1997, 3: 2761-2764.
    
    Ejlertsson J, Meyerson U, Svensson BH. Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions [J].Biodegradation, 1996, 7: 345-352.
    
    Ejlertsson J, Svensson B. A review of the possible degradation of polyvinyl chloride plastics and its components phthalic acid esters and vinyl chloride under anaerobic conditions prevailing in landfills [Z]. Dept. of Water and Environmental Studies,Linkoping University, Sweden, 1995.
    
    Elfadel M, Findikakis AN, Leckie JO. Environmental impacts of solid waste landfilling [J]. Journal of Environmental Management, 1997, 50: 1-25.
    
    Emiko K, Eisuke FS, Mami M, Ryusei KO, Keiichi H, Junzo S, Masaaki T, Yoshihisa N, Masayasu I. Role of oxidative stress in germ cell apoptosis by di(2-ethylhexyl) phthalate [JJ. Biochemical Journal, 2002, 365: 849-856.
    
    Engelhardt G, Wallnofer PR, Hutzinger O. The microbial metabolism of di-n-butyl phthalate and related dialkyl phthalates [J]. Bulletin of Environmental Contamination and Toxicology, 1975,13(3): 342-347.
    Fairbanks BC, O'Connor GA. Toxic organic behavior in sludge-amended soil [J].Municipal and Industrial Waste, 1984, 161-165.
    
    Fajardo C, Guyot JP, Macarie H, Monroy 0. Inhibition of anaerobic digestion by terephthalic acid and its aromatic by products [J]. Water Science & Technology,1997,36:83-90.
    
    Fang CR, Long YY, Lu YY, Shen DS. Behavior of dimethyl phthalate (DMP) in simulated landfill bioreactors with different operation modes [J].International Biodeterioration & Biodegradation, 2009a, 63: 732-738.
    
    Fang CR, Long YY, Shen DS. Comparison on the removal of phthalic acid diesters in a bioreactor landfill and a conventional landfill [J]. Bioresource Technology, 2009,100: 5664-5670.
    
    Fang CR, Long YY, Wang W, Feng HJ, Shen DS. Behavior of dibutyl phthalate in a simulated landfill bioreactor [J]. Journal of Hazardous Materials, 2009c, 167:186-192.
    
    Fang HHP, Liang D, Zhang T. Aerobic degradation of diethyl phthalate by Sphingomonas sp. [J]. Bioresource Technology, 2007, 98: 717-720.
    
    Fan Y, Wang Y, Qian PY, Gu JD. Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modeling degradation [J].International Biodeterioration and Biodegradation, 2004, 53: 57-63.
    
    Fawell JK, Sheahan D, James HA, Hurst M, Scott S. Oestrogens and oestrogenic activity in raw and treated water in Severn trent water [J]. Water Research, 2001,35: 1240-1244.
    
    Filip Z, Kuster E. Microbial activity and the turnover of organic matter in a municipal refuse disposed in a landfill. European [J]. Journal of Applied Microbiology Biotechnology, 2002, 7: 371-379.
    
    Filip Z, Pecher W, Berthelin J. Microbial utilization and transformation of humic acid-like substances extracted from a mixture of municipal refuse and sewage sludge disposed of in a landfill [J]. Environmental Pollution, 2000,109: 83-89.
    
    Fukuoka M, Niimi S, Kobayashi T, Zhou Y, Hayakawa T. Possible origin of testicular damage by phthalic acid esters [J]. Journal of Toxicology and Environmental Health, 1997,43:21-28.
    
    Gavala HN, Mondragon F, Iranpour R. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge [J]. Chemosphere, 2003, 52: 673-682.
    
    Giuseppe L, Antonio DV, Marika M, Alberto V, Claudio DF. Phthalate exposure and male infertility [J]. Toxicology, 2006,226: 90-98
    Gou B, Guzzone B. State survey on leachate recirculation and landfill bioreactors solid waste association of North America [M]. Maryland: Silver Springs, 1997.
    
    Hariklia NG, Felipe AM, Reza I. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge [J]. Chemosphere, 2003, 52: 673-682.
    
    Hashizume K, Nanya J, Toda C, Yasui T, Nagano H, Kojima N. Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water [J]. Biological & Pharmaceutical Bulletin,2002, 25: 209-214.
    
    Hemming I, Ann MH, Johan M. Effect of di-n-butyl phthalate on the carrotenoid synthesis in green plants [JJ. Physiology, 1981, 53: 158-163.
    
    He R, Liu XW, Zhang ZJ, Shen DS. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal [J]. Bioresource Technology, 2007, 98: 2526-2532.
    
    He R, Shen DS, Wang JQ, He YH, Zhu YM. Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation [J]. Process Biochemistry, 2005, 40: 3660-3666.
    
    Iglesias JR, Pelaez LC, Maison EM. Biomethanization of municipal solid waste in a pilot plant [J]. Water Research, 2000, 34: 447-454.
    
    Irvine RL, Earley JP. Bioremediation of soils contaminated with bis-(2-ethylhexyl) phthalate (BEHP) in a soil slurry-sepuencing batch reactor [J]. Environment Program, 1993, 12:39-41.
    
    Jiunn J, Li YY, Tatsuya N. Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor [J]. Water Research, 1998, 30(12):3672-3679.
    
    Johns KL, Grainger JM. The application of enzyme activity measurements to a study of factors affecting protein,starchand cellulose fermentation in domestic refuse [J].Europe Journal of Applied Microbiology Technology, 1983, 18: 181-185.
    
    Jonsson S, Ejlertsson J, Svensson BH. Behaviour of mono- and diesters of o-phthalic acid in leachates released during digestion of municipal solid waste under landfill conditions [J]. Advances in Environmental Research, 2003a, 7: 429-440.
    
    Jonsson S, Ejlertsson J, Svensson BH. Transformation of phthalates in young landfill cells [J]. Waste Management, 2003b, 23: 641-645.
    
    Juneson C, Ward OP, Singh A. Biodegradation of dimethyl phthalate with high removal rates in a packed-bed reactor [J]. World Journal of Microbiology and Biotechnology, 2002,18: 7-10.
    Kamura K. Relationships between electrochemical properties of leachate and resistivity of strata in the landfill site consisting mainly of combustion residuals [J]. Envronmental Geology, 2002, 41: 537-546.
    
    Katherine DM, Peter GS, Roderick IM. Anaerobic codigestion of municipal solid waste and biosolid under various conditions: microbial population dynamics [J].Water Research, 2001, 35(7): 1817-1827.
    
    Kleerebezem R, Pol LWH, Lettinga G. Anaerobic biodegradability of phtalic acid isomers and related compounds [J]. Biodegradation, 1999, 10: 63-73.
    
    Liang DW, Zhang T, Fang HHP, He J. Phthalates biodegradation in the environment [J]. Applied Microbiology and Biotechnology, 2008, 80: 183-198.
    
    Liao CS, Yen JH, Wang YS. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate [J]. Journal of Hazardous Materials, 2009,163:625-631.
    
    Li JX. Gu JD. Biodegradation of dimethyl terephthalate by Pasteurella multocida Sa follows an alternative biochemical pathway [J]. Ecotoxicology, 2006, 15:391-397.
    
    Li JX, Gu JD, Pan L. Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processed using the modified Gompertz model [J]. International Biodeterioration & Biodegradation, 2005, 55: 223-232.
    
    Li XM, Yang JK, Xian L, Gu W, Huang JW, Zhang KQ. The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root [J]. Process Biochemistry, 43, 2008: 1132-1137.
    
    Lottrup G, Andersson AM, Leffers H, Mortensen GK, Toppari J, Skakkebaeek NE,Main KM. Possible impact of phthalates on infant reproductive health [J].International Journal of Andrology, 2006,29: 172-180.
    
    Lu Y, Tang F, Wang Y, Zhao JH, Zeng X, Luo QF, Wang L. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp.L4 isolated from activated sludge [J]. Journal of Hazardous Materials, 2009, 168:938-943.
    
    Mariko M, Mutsuko HK, Makoto E. Potential adverse effects of phthalic acid esters on human health, A review of recent studies on reproduction [J]. Regulatory Toxicology and Pharmacology, 2008, 50: 37-49.
    
    Martha LR, Jorge Q, Bertvan B, Bo M. A toxaphene-degrading bacterium related to Enterobacter cloacae, strain D1 isolated from aged contaminated soil in Nicaragua [J]. Systematic and Applied Microbiology, 2005,28: 632-639.
    
    Martienssen M, Schops R. Biological treatment of leachate from solid waste landfill site-alterations in the bacterial community during the denitrification process [J].Water Research, 1997, 31(5): 1164-1170.
    
    Mashetty SB, Manohar S, Karegoudar TB. Degradation of 3-hydroxybenzoic acid by Bacillus species [J]. Indian Journal of Biochemistry & Biophysics, 1996, 33:145-148.
    
    Ma Y, Zhang JY, Wong MH. Effect of leachate recycle and inoculation on microbial characteristics of municipal refuse in landfill bioreactors [J]. Journal of Environmental Sciences, 2001, 107: 402-405.
    
    Mersiowsky I, Weller M, Ejlertsson J. Fate of plasticised PVC products under landfill conditions a laboratory scale landfill simulation reactor study [J]. Water Research,2001,35:3063-3070.
    
    Meylan WM, Howard PH. Computer estimation of the atmospheric gas phase reaction rate of organic compounds with hydroxyl radicals and ozone [J]. Chemophere,1993, 26: 2693-2699.
    
    Mo CH, Cai QY, Li YH, Zeng QY. Occurrence of priority organic pollutants in the fertilizers, China [J]. Journal of Hazardous Material, 2008, 152: 1208-1213.
    
    Mondragon F, Iranpour R, Ahring BK. Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge [J]. Water Research, 2003, 37:1260-1269.
    
    Morris JWF, Vasuki NC, Baker JA, Pendleton CH. Findings from long term monitoring studies at MSW landfill facilities with leachate recirculation [J]. Waste Management, 2003,23: 53-66.
    
    Nakal M, Tabira Y, Asai D, Yakabe Y, Shimyozu T, Noguchi M, Takatsuki M,Shimohjgashi Y. Binding characteristics of dialkyl phthalates for the estrogen rcceptor [J]. Biochemical and Biophysical Research Communications, 1999, 254:311-314.
    
    Nalli S, Cooper DG, Nicell JA. Metabolites from the biodegradation of de-ester plasticizers by Rhodococcus rhodochrous [J]. Science of the Total Environment,2005, 366: 286-294.
    
    Narayanan B, Suidan MT, Gelderloos AB, Brenner RC. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor [J]. Water Research, 1993,27: 171-180.
    
    Niazi JH, Prasad DT, Karegoudar TB. Initial degradation of dimethy phthalate by esterases from Bacillus species [J]. FEMS Microbiology Letters, 2001, 196:201-205.
    
    Palmisa AC, Maruscik DA, Schwab BS. Enumeration of fermentative and hydrolytic microorganisms from three sanitary landfills [J]. Journal of General Microbiology,1993, 139: 387-391.
    
    Patel DS, Desai AJ, Desai JD. Biodegradation of dimethylterephthalate by Comamonas acidovorans D-4 [J]. Indian Journal of Experimental Biology, 1998,36: 321-324.
    
    Paxcus N. Organic compounds in municipal landfill leachates [J]. Water Science &Technology, 2000,42: 323-333.
    
    Peter R, Katrin V, Jakob A, Klavs F, Per HN. Degradation of phthalate esters in an activated sludge wastewater treatment plant [J]. Water Research, 2007, 41:969-976.
    
    Peterson JC, Freeman DH. Phthalate ester concentration variations in dated sediment cores from Chesapeake Bay [J]. Environmental Science & Technology, 1982, 16:464-469.
    
    Petersen JH, Breindahl T. Plasticizers in total diet samples, baby food and infant formulae [J]. Food Additives & Contaminants, 2000,17: 133-141.
    
    Piersma AH, Verhoefa A, Biesebeeka J, Pietersa MN, Sloba W. Developmental toxjcity of butyl benzyl phthalate in the rat using a mulliple dose study design [J]. Reproductive Toxicology, 2000,14: 417-425.
    
    Pohland FG. Critical review and summary of leachate and gas production from landfill [M]. U. S. Environmental Protection Agency: Cincinnati, OH. 1986.
    
    Pohland EG. Leachate recycle as landfill management option [J]. Journal of Environmental Engineering, 1980, 106(6): 1057-1069.
    
    Poon R, Lecavalier P, Mueller R. Subchronic oral toxicity of di-n-octyl phthalate and di (2-ethylhexyl) phthalate in the rate [J]. Food and Chemical Toxicology, 1997,35(2): 225-239.
    
    Pourcher AM, Sutra L, Hebe I. Enumeration and characterization of celluolytic bacteria from refuse of a landfill [J]. FEMS Microbiology Ecology, 2001, 34:229-241.
    
    Qian XD, Barlaz MA. Enumeration of anaerobic refuse decomposing microorganisms on refuse constituents [J]. Waste Management and Research, 1996, 14: 151-156.
    
    Rao IF, Reddy KR. Autoradiographic study of orally administered di-(2-ethylhexyl) phthalate in the mouse [J]. Food and Cosmetics Toxicology, 2002, 20: 215-217.
    Raynal J, Delfenes JP, Moletta R. Two-phase anaerobic digestion of solid wastes by a municipal liquefaction reactors process [J]. Bioresouce Technology, 2002, 22(1):7-17.
    
    Reinhart DR, Pohland FG. The assimilation of organic hazardous wastes by municipal solid waste landfills [J]. Jouma of Industrial microbiology & Biotechnology, 1991,8: 193-200.
    
    Reinhart D, Townsend T. Landfill Bioreactor Design and Operation [M]. New York:Lewis Publisher, 1997.
    
    Rinav CM. Refuse decomposition in the presence and absence of leachate recirculation [J]. Journal of Environmental Engineering, 2002, 128(3): 1-10.
    
    Robinson HD, Gronow JR. Leachate composition from different landfills,CISA-Sanitary Environmental Engineering Centre, Management and Treatment of MSW Landfill Leachate [D]. Cini Foundation, San Giorgio, Venice, Italy: 1998.
    
    Ruttapol L, Satoshi S, Kazunari S, Michihiko I, Masanori F. Biodegradability of four phthalic acid esters under anaerobic condition assessed using natural sediment [J].Journal of Environmental Sciences, 2006, 18(4): 793-796
    
    Shelton DR, Boyd SA, Tiedje JM. Anaerobic biodegradation of phthalic acid esters in sludge [J]. Environmental Science & Technology, 1997, 18: 93-97.
    
    Shen DS, He R, Traore I. Effect of leachate recycle and inoculation on microbial characteristics of municipal refuse in landfill bioreactors [J]. Journal of Environmental Sciences, 2001,4(13): 508-513.
    
    Staples CA, Peterson DR, Parkerton TF, Adams WJ. The environmental fate of phlhalate esters: A litcrature review [J]. Chemosphere, 1997,35:667-749.
    
    Stingley RL, Brezna B, Khan AA, Cerniglia CE. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1 [J]. Microbiology, 2004, 150: 2749-3761.
    
    Sung HH, Kao WY. Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, macrobrachium rosenbergii [J]. Aquatic Toxicology, 2003, 64:5-37.
    
    Taborda AV, Brusa MA, Grela MA. Photocatalytic degradation of phthalic acid on TiO_2 nanoparticles [J]. Appiled Catalysis A: General, 2001, 208: 419-426.
    
    Tada C, Yang Y, Hanaoka T, Sonoda A, Ooi K, Sawayama S. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge [J]. Bioresource Technology, 2005,96:459-464.
    
    Tanaka A, Oritant T, Uehara F, Saito A, Kishita H, Niizeki Y, Yokota H, Fuchigami
    K. Biodegradation of a musty odour component, 2-methylisoborneol [J]. Water Research, 1996, 30:759-761.
    
    Tatsi AA, Zouboulis AI. A field investigation of the quantity and quality of leachate from a municipal waste landfill in a Mediterranean climate (Thessaloniki, Greece) [J]. Advances in Environmental Research, 2002, 6: 207-219.
    
    US EPA, National Primary Drinking Water Regulations, Federal Register, 40 CFR Chapter I, Part141 [M]. Washington DC: US Environmental Protection Agency,1991.
    
    Veeranagouda Y, Vijaykumar MH, Patil NK, Nayak AS, Karegoudar TB.Degradation of 1-butanol by solvent-tolerant Enterobacter sp. VKGH12 [J].International Biodeterioration and Biodegradation, 2006, 57: 186-189.
    
    Vega D, Bastide J. Dimethylphthalate hydrolysis by specific microbial esterase [J].Chemosphere, 2003, 51: 663-668.
    
    Wandry C. Aivasidis.Reaction kinetics of anaerobicfermentation [J]. Chemie Ingenieur Technic, 1983, 55(7): 516-524.
    
    Wang F, Xia XH, Sha YJ. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China [J]. Journal of Hazardous Materials, 2008,154: 317-324.
    
    Wang JL, Chen LJ, Shi HC. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge [J]. Chemosphere, 2000,41: 1245-1248.
    
    Wang JL, Liu P, Qian Y. Microbial metabolism of di-n-butyl phthalate (DBP) by a denitrifying bacterium [J]. Process Biochemistry, 1999, 34: 745-749.
    
    Wang JL, Zhao X, Wu WZ. Biodegradation of phthalic acid esters (PAE) in soil bioaugmented with acclimated activated sludge [J]. Process Biochemistry, 2004,39:1837-1841.
    
    Wang L, Luo QF. Screening and characterization of dominant bacteria for the degradation of endocrine disruptor di-n-butyl phthalate [J]. Journal of Hygiene Research, 2004, 33:137-139.
    
    Wang Y, Fan Y, Gu JD. Aerobic degradation of phthalic acid by Comamonas acidovoran Fy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations [J]. World Journal of Microbiology and Biotechnology, 2003,19: 811-815.
    
    Wang YL, Yin B, Hong YG, Yan Y, Gu JD. Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea [J]. Ecotoxicology, 2008,17: 845-852.
    
    Wang YP, Gu JD. Degradation of dimethyl isophthalate by Viarovorax paradoxus strain T4 isolated from deep-ocean sediment of the South China Sea [J]. Human and Ecological Risk Assessment, 2006a, 12: 236-247.
    
    Wang YP, Gu JD. Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomanas yanoikuyae DOS01 isolated from deep-ocean sediments [J].Exotoxicology, 2006b, 15: 549-557.
    
    Warith M. Bioreactor landfills: experimental and field results [J]. Waste Management,2002, 22(1): 7-17.
    
    Williams SE, Woolridge EM, Ransom SC, Landro JA, Babbitt PC, Kozarich JW.3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: A new reaction in the evolution of a mechanistic motif [J]. Biochemistry, 1992, 31: 9776-9786.
    
    Wolfe NL, Steen WC, Burns LA. Phthalate ester hydrolysis linear free energy relationships [J]. Chemosphere, 1980, 9: 403-408.
    
    Xu G, Li FS, Wang QH. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China [J]. Science of the Total Environment, 2008, 393: 333-340.
    
    Xu XR, Li HB, Gu JD, Li XY. Degradation of n-butyl benzyl phthalate by a pure bacterial culture from mangrove sediment [J]. Journal of Hazardous Materials,2007, 140: 194-199.
    
    Xu XR, Li HB, Gu JD. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1 [J]. International Biodeterioration and Biodegradation, 2005, 55: 9-15.
    
    Xu XR, Li XY. Adsorption behaviour of dibutyl phthalate on marine sediments [J].Marine Pollution Bulletin, 2008, 57: 403-408.
    
    Yu HW, Samani Z, Hanson A. Energy recovery from grass using two-phase anaerobic digestion [J]. Waste Management, 2002, 22: 1-5.
    
    Zeng F, Cui K, Li XD, Fu J, Sheng G. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1 [J]. Process Biochemistry, 2004, 39: 1125-1129.
    
    Zeng F, Cui KY, Xie ZY, Wu LN, Luo DL, Chen LX, Lin YJ, Liu M, Sun GX.Distribution of phthalate esters in urban soils of subtropical city, Guangzhou,China [J]. Journal of Hazardous Materials, 2009, 164: 1171-1178.
    
    Zeng F, Wen JX, Cui KY, Wu LN, Liu M, Li YJ, Lin YJ, Zhu F, Ma ZL, Zeng ZX.Seasonal Distribution of phthalate esters in surface water of the urban lakes in the subtropical city, Guangzhou, China [J]. Journal of Hazardous Materials, 2009, 169:719-725.
    Zhong Z, He PJ, Shao LM, Lee DJ. phthalic acid esters in dissolved fractions of landfill leachates [J]. Water Research, 2007, 41: 4696-4702.
    
    Zhou QH, Wu ZB, Cheng SP, He F, Fu GP. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation [J]. Soil Biology &Biochemistry, 2005, 37: 1454-1459.
    
    Zwart KB, Gokzen HJ. Anaerobic digestion of a cellulosic fraction of domestic refuse by a two-phase rumenderibed process [J]. Biotechnology and Bioengineering,1988,32:719-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700