用户名: 密码: 验证码:
高压高温下环境因素对柯石英形成条件影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柯石英作为石英常见的第一个高压相,通常都是由石英通过静高压实验得到的。人们为了解释地表中发现的天然柯石英,提出了地球板块折返假说,一直把柯石英的研究看做认识地球的“窗口”,柯石英实验室研究和天然形成机制分析成为了人们关注的热点。但关于地表柯石英形成机制存在着较多的争议,争论的焦点在于解释地表柯石英的形成条件和深度。不同作者因为不同的具体实验条件,所得的柯石英最小静态形成压力Pcos,min有很大的不同。此外,环境因素对柯石英的形成也有着重要影响。
     本文根据课题组提出的高能机械球磨和高温高压实验相结合模拟地表柯石英合成的方法,开展了一系列关于环境因素对柯石英形成条件影响的研究。实验结果表明,在强键脆性物质硬环境中(SiO_2–Si体系),在高能机械球磨下Si晶粒的细化活化了表面原子,由于Si原子的强结合键性质,在高压高温密封环境缺乏自由氧的情况下,与α-石英晶粒表面的Si与氧原子有较强的亲合力,阻碍了近邻原子位移,从而制约了从六方α-石英到单斜柯石英的马氏体型同质异构变化;在弱键流体物质软环境中(SiO_2–C体系),石墨含量大,环境更软,消耗了表观压力,此环境又具有流动性,使实际上作用在α–石英上的有效压力减小,延缓其达到柯石英的真正的最小形成压力;在强-弱键混合物质环境中(SiO_2–C–Si体系),质量比SiO_2:C:Si=3:1:9和SiO_2:C:Si=1:3:3的样品在3.8GPa、1273K的温压条件下都没有合成柯石英,说明尽管小尺度不均匀局域压力微区形成地表柯石英,是一种可能性很大的产生地表柯石英的新机制,但由于柯石英的合成条件和环境因素都紧密相关,特别在局域高压和局域高温的小尺度不均匀非平衡区域,即使P > Pcos.min,但是由于局域环境不同,作用时间长短不同,原料组成等复杂因素的影响,仍然不一定能形成柯石英,因此,至今在地壳中还没有发现大尺度大面积地表柯石英存在的事实。
Silicon dioxide (SiO_2) is one of the abundant chemical materials on earth. It extensively exists in the form of quartz minerals and silicate minerals in the crust and upper mantle. From the point of view of crystal chemistry, silicon atom has the high valence and small radius, high bond energy of Si-O and the characteristics of both covalency and ionicity, which make it occur difficultly that the phase transition of SiO_2 related to Si-O bond destruction and reconstruction. This is the reason why a variety of mutual crystals of SiO_2 coexist under different pressure and temperature, and most of them exist in the form of meta-stable state under normal temperature and pressure. Therefore, studying on the phase transition of SiO_2 and the effect of environmental factors on it is of great significance in geology, materials science and crystallography.
     Coesite is the first high-pressure phase of quartz, which was firstly synthesized by Cos in the lab. Coesite got to be widely concerned after Chopin and Smith found the surface coesite in metamorphic rocks in western Alps and high pressure eclogite in Norway western gneiss area in 1984, respectively. In order to explain the existence of coesite in high-pressure metamorphic belts, subduction-exhumation hypothesis is proposed, of which it is considered that coesite was formed in 90 km or deeper upper mantle, and then returns to the surface of earth. The basis of calculating the depth of plate exhumation is synthetic conditions of coesite under high pressure and high temperature (HPHT). Recent research has shown that the synthetic conditions of coesite are closely related to transit path, environmental factors and initial state of initial materials, and obviously different synthetic conditions of coesite have been gained by using the different initial materials.
     So far the reported synthesis of coesite in the laboratory has been done under static pressure, while the existence of local high-pressure micro-area as well as its influence on the formation of coesite was not taken into consideration. The previous study show that the material composition of the solid earth is quite complicated and not well- distributed, therefore, to study the formation of coesite inside the earth, it’s necessary to take into account the heterogeneity of the material composition and the nonuniformity of its stress state in the earth instead of regarding the earth as a static even fluid system. In this work, we have done experiments to study the formation of coesite under different conditions, such as uneven pressure condition, hard condition of brittle phase with strong-bond (SiO_2-Si system), soft condition of fluid phase with weak-bond (SiO_2-C system) and mixed condition of phase with strong-soft bond (SiO_2-C-Si system), which provided new thinking for explaining the formation of coesite on the surface of the earth.
     In the nature, coesite and diamond are often associated minerals, it is not reported whether the content of silicon or carbon has impact on the formation conditions of coesite. In the formation process of coesite, Besides should considered the static pressure action of force, the effect of local shearing in the small-scale uniform micro-distinct produced by earthquake wave or large local stress can not be ignored. Considering the process of mechanical ball milling, both a normal and shear stress can be produced by high speed collision of the steel balls. Comparing the collision between local shear stress and mechanical ball millingthe similarity between locality and shearing produced by the collision and the high-energy mechanical milling, two means of high-energy mechanical milling and HPHT is combined, We investigated the influences of environmental factors on the formation conditions of coesite under high pressure and high temperature.
     Firstly,In consideration of the heterogeneity of the inner substances of the earth, 10wt% hard Fe fillings are added to and mixed evenly withα-SiO_2 milled for 20h. Then, the mixture is treated under 2.0, 2.5, 3.0 and 3.5 GPa and 973k for 40min. The XRD spectrum of the synthetic samples is shown a small amount of coesite under 2.5 GPa. There exist minerals of high hardness inside the earth. When these high hardness minerals are arranged like diamond anvil cell (DAC), local high-pressure micro-area can appear. It will be possible for small-sized coesite to form in small local high pressure micro-area, the corresponding pressure of which is 2.5 GPa.
     Different ratio ofα-SiO_2, and silicon powder mixtures were pretreated by high energy ball-milling and XRD spectra showed that the ball-milling method and addition of silicon were conducive to the formation of amorphousα-quartz. SiO_2–Si system samples(SiO_2 : Si=6:1、SiO_2 : Si= 3:1、SiO_2 : Si= 1:1、SiO_2 : Si=1:3、SiO_2 : Si=1:6)dealt after 10h by the high-energy mechanical milling and HPHT condition of 3.8GPa, 1273K, coesite crystals existed in that one with mass ratio of 1:6. Andα-quartz and silicon crystals appeared in the other samples. Samples with the mass ratio of 1:6 ball-milled after different time were dealt by HPHT. We found that coesite crystals did not appear in any samples (ball-milling after 5h, 20h) besides the one ball-milling after 10h. This shows that under the hard and brittle covalent environment supplied by Si-Si covalent bond-type material in unique diamond structure of silicon, it is conducive to the formation of more uneven small-scale high-pressure region and amorphization ofα–quartz. Especially if combined with the ball-milling method during which there is intermediate metastable phase, both of them are conducive to the formation of coesite. On the other hand, the surface atoms were activated by the refining of amorphous Si under high-energy mechanical milling. Due to the strong bonding adhesion between Si atoms, Si atom onα- quartz grain surface have a strong affinity for oxygen atom under sealing environment with high pressure high temperature where free oxygen is in the lack, will prevent displacement from neighbor atomic and thereby constrain the Markov-type homogeneous change from hexagonalα- quartz to monoclinic coesite. The role of these two factors became the reason that coesite formed only under the condition of 3.8GPa, 1273K and 10h milling, with the ratio ofα-quartz and silicon mixed powders 1:6.
     Graphite as the single phase of carbon atom, the electronegativity of which is 2.5, soft and compression rate is of 40% -52%, with the layered structure and molecular interaction between layers is of weak, easy to slide, and very small hardness which is only 1. According to these properties of graphite, we looked the SiO_2-C system (SiO_2: C = 6:1, SiO_2: C = 3:1, SiO_2: C = 1:1, SiO_2: C = 1:3, SiO_2: C = 1:6) as the soft condition of fluid phase with weak-bond. Through a series of high temperature high pressure experiments, it is found that the time of amorphous SiO_2 was prolonged due to buffer resulted from the formation of carbon layer in the sample ball milling after 60h.Under the condition of 3.8GPa and 1273K, coesite crystals were contained in all samples in addition to only one with mass ratio of 1:6 of which crystallized product isα-quartz, carbon and iron silicate. The number of diffraction peaks of coesite increased and peak intensity also grew with the decreasing carbon content in the mixture.
     In order to verify the relationship between the presence of carbon and the formation condition of coesite, we have dealt five samples with different ratio under different HPHT conditions for 40 min. Results showed that coesite formation did not appear in any samples below 3.0 GPa pressure. Under 3.4 GPa pressure, single phase of α-quartz appeared in all samples besides the one with ratio of SiO_2: C = 6:1 in whichα-quartz and coesite existed as mixing phase.
     Under 3.8GPa pressure, the sample with ratio of SiO_2: C = 6:1 transited into single-phase coesite, and those with ratio of SiO_2: C = 3:1, SiO_2: C = 1:1, SiO_2: C = 1:3 transited intoα-quartz crystal. As for the sample with ratio of SiO_2: C = 1:6 single phaseα-quartz appeared in it. It can be concluded that within the range of 3.0-3.8GPa pressure, the less carbon content, the lower pressure for the formation of coesite: When carbon content in the mixture is less than14%, synthesized condition of coesite is at 3.4GPa pressure and 3.8GPa pressure for the formation of single-phase coesite; When carbon content is more than 25% less than 75%, coesite could form up to 3.8 GPa pressure but not under 3.4GPa pressure; When carbon content is greater than 86%, coesite could not form until 3.8GPa. For the SiO_2-C system, it is not conducive to form coesite by increasing carbon content and the maximum carbon content to form coesite is 86%. This indicated that more graphite content, more soft the environment and surface pressure is consumed and has fluidity, so that the effective pressure onα-quartz decreased, delay the real, smallest formation pressure of coesite.
     In this study, we detected the effect of strong - weak bond mixed environment on the phase transition ofα-SiO_2 under high pressure and temperature condition. For the SiO_2-C-Si system (SiO_2: C: Si = 3:1:9, SiO_2: C: Si = 1:3:3), carbon and silicon became amorphous after milled 20h for the one of SiO_2: C: Si = 3:1:9 which was 40h shorter comparing to the SiO_2-C system of 60h. Graphite ,carbon and silicon became completely amorphous for SiO_2: C: Si = 1:3:3 mixture after milling 60h.For the case of SiO_2: C: Si = 3:1:9 and SiO_2: C: Si = 1:3:3, the coesite formation were not found after 40 min under high temperature and pressure of 3.8GPa, 1273K.
     Despite the uneven local small-scale area forming surface coesite is a new mechanism with great possibility. However, the synthesis of coesite closely related with environmental factors, large-scale presence of coesite has not been found in the crust until now.
引文
[1]沙润.地球科学精要[M].高等教育出版社,2003.
    [2]金祖孟.地球概论[M].高等教育出版社,2003.
    [3]陈毓川,赵逊,张之一等.世纪之交的地球科学[M].地质出版社,2000.
    [4]杨桥.地球科学概论[M].石油工业出版社,2004.
    [5]孙立广.地球与极地科学[M].中国科学技术大学出版社,2003.
    [6]谢鸿森.地球深部物质科学导论[M].科学出版社,1997.
    [7]刘作程.岩石学[M].冶金工业出版社,1992.
    [8]邱家骧.岩浆岩岩石学[M].地质出版社, 1985.
    [9]腾吉文,张中杰,白武明等.岩石圈物理学[M].科学出版社, 2004.
    [10]张本仁,傅家谟.地球化学进展[M].化学工业出版社, 2005.
    [11]胡继良.金刚石高压腔白云石内衬的研究[J].探矿工程, 1995, 3: 18.
    [12] KULINICH S, ZHUKOV A, L. SEVAST G, et al. On Some Alkali and Alkaline erath metal Boron Nitrides Unsaturated with Boron [J]. Diamond Relat. Mater., 1999, 8: 2152.
    [13]邱家骧.岩浆岩岩石学[M].地质出版社, 1985.
    [14] COES L JR. A New Dense Crystalline Silica [J]. Science, 1953, 118: 131-132.
    [15] CHAO E C T, SHOEMAKER E M, MADSEN B M. First Natural Occurrence of Coesite [J]. Science, 1960, 132: 220-221.
    [16] CHOPIN C. Coesite and Pure Pyrope in High-Grad Bluechists of the Western Alps-A First Record and Some Consequences [J]. Contrib Mineral Petrol, 1984, 86: 107-118.
    [17] SMITH D C. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics [J]. Nature, 1984, 310: 641-644.
    [18] Chesnokov R V, Popov V A. Increasing volume of quartz grains in eclogites of south Urals [J]. DokladyAkad Nauk, 1965, 62:909 - 910.
    [19] Tagiri M, Bakirov A. Quartz p seudomorph after coesite in garnet from a garnet chloritoid2talc schist, nortern Tiensha, Kirghiz,USSR [J]. Proc Japan Acad, 1990, 66: 135-139.
    [20] Swchmadicke E. Quartz p seudomorphs after coesite in eclogites from the saxonian Erzgebirge [J]. Earth JourMineral, 1991, 1: 231-238.
    [21] Xu Z. Etude tectonique etmicrotectonique de la chaine paleozoique et triassique des Quinlin GS ( Chine ) [D]. Montpelier:Univ Sci Tech Languedoc, 1987.
    [21] Wang X, Liou J G. Regional ultrahigh2p ressure coesite bearing eclogitic terrane in central China: evidence from country rocks, gneiss, marble and metapelite [J]. Geology, 1991, 19: 933-936.
    [22]王晓燕,崔文元,刘树忠等.豫南地区含柯石英榴辉岩的发现[J].岩石学报, 1993, 9(2):181-185.
    [23]从柏林,王清晨.大陆深俯冲作用研究引起的新思维[J].自然科学进展, 2000, 10(9):777-782.
    [24]王清晨.中国超高压变质岩十五年研究进展[J].地球学报,2001,1: 12-16.
    [25]从柏林,王清晨,翟明国.超高压变质作用:固体地球科学领域的新挑战[J].地球物理学进展,1994,9(4):31-39.
    [26] HSU K J. Exhumation of High-Pressure Metamorphic Rocks [J]. Geology, 1991, 19: 107-110.
    [27] COLEMAN R G, WANG X. Ultrahigh Pressure Metamorphism [J]. Cambridge: Cambridge Univ. Press, 1995.
    [28] Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics[J]. Nature,1984, 310:641-644.
    [29] Okay A I,Xu S and Sengor A M C. Coesite from the Dabie Shan eclogites [J]. central China:Eur. Jour. Mineral,1989,1:595-598.
    [30] Liou J G and Zhang R Y. Significance of ultrahigh - P talc bearing eclogitic assemblages[J]. Mineralogical Magazine,1995, 59:93-102.
    [31] Liou J G and Zhang R Y. Occurrence of intergranular coesite in Sulu ultrahigh - P rocks from China:Implications for fluid activity during exhumation[J]. American Mineralogist,1996, 81: 1217-1221.
    [32] Maruyama S,Liou J G and Zhang R. Tectonic evolution of the ultrahigh - pressure and high - pressure metamorphic belts from central China [J]. The Island Arc, 1994,3:112-121.
    [33] Wang X,Liou J G and Mao H K. Coesite - bearing eclogite from the Dabie mountains in central China[J]. Geology.1989,17 :1085-1088.
    [34] Yang J and Smith D C. Evidence for a former sanidine coesite eclogite at Lanshantou,east China, and the recognition of the Chines“Su-Lu coesite - eclogite province”[J]. Third International Eclogite Conference ; Oxford , Blackwell scientific Publications. 1989, 26.
    [35] Yang J , Godard G, Kiensat J R , Lu Y and Sun J . Ultrahigh -pressure ( 60 kbar ) magnesite - bearing garnet peridotites from northeastern Jiangsu , China[J]. J . Geology , 1993,101 : 541-554.
    [36] Zhang R Y, Hirajima T, Banno S ,Ishiwatari A , Li J , Cong B and Nozaka T. Coesite - eclogite from Donghai area , Jiangsu Province in China[J] : The 15th General Meeting of the Int’l Mineral.Assoc. Abs. 1989,2 :923-924.
    [37] Zhang R Y and Liou J G. Significance of coesite inclusions in dolomite from eclogite in the southern Dabie mountains , China[J].American Mineralogist , 1996,80 : 181-186.
    [38]王清晨.中国超高压变质岩十五年研究进展[J].地球学报, 2001,22(1): 11-17.
    [39]苏文辉,刘晓梅,许大鹏等.柯石英最小静态形成压力与地表柯石英形成新机制及其地学意义[J].自然科学进展, 2009, 19(7): 730-745.
    [40]周永胜,何昌荣,马胜利等.差应力在超高压变质岩形成过程中的作用[J].地震地质, 2003, 25(4): 566-573.
    [41]从柏林,王清晨.大陆深俯冲作用研究引起的新思维[J].自然科学进展, 2000, 10(9): 777-782.
    [42] Hsu J H Exhumation of high-pressure metamorphic rocks of Alps[J]. Geology, 1991,19:107.
    [43] Nie S,Yin A,Rowley D B,et al. Exhumation of the Dabie Shan ultrahigh-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence,central China[J]. Geology,1994,11:999.
    [44] Platt J P. Exhumation of high-pressure rocks:A review of concepts and processes. Terra Nova, 1993,5:119.
    [45] Platt J P.Dynamics of orogenic wedges and the uplift of high-pressure metamarphic rocks.Geol Soc America Bull,1986,97:1037.
    [46] Emst W G,Liou J G Hacker B R.Petrotectonic significance of high and uptrahigh-pressure metamarphic belts:inferences for subduction- zone histories [J]. Intermational Geology Review,1994,36:213.
    [47]池顺良.苏文辉挑战‘大陆深俯冲’表明科学研究已进入大综合时代[N].科学时报, 2009.12.23.
    [48]吕古贤.关于构造作用力影响“静水压力”问题[J].科学通报,1995,40(3):286.
    [49] Hirth G,Tullis J. The brittle2plastic transition in experimentally deformed quartz aggregates[J]. Jour Geophys Res, 1994,99(B6) : 11731-11747.
    [50]周永胜,马胜利,何昌荣.大别山超高压岩石形成温压(深度)条件的研究进展与讨论[J].地球物理学进展, 2000,15(3) :1-5.
    [51]周永胜,何昌荣,马胜利等.差应力在超高压变质岩形成过程中的作用[J].地震地质,2003,25(4): 566-573.
    [52]池顺良,武红岭.寄主矿物天然压机机制”与超高压矿物的形成[J].地学前缘, 2002,9(3): 118.
    [53]武红岭,池顺良.微观结构超压机制与超高压矿物的形成[J].岩石学报, 2003,19(4): 739-744.
    [54] WONG, K W, WANG Y M, LEE S T, et al. Diamond Relat [J]. Mater. 1999, 8: 1885.
    [55] SUNG C M. A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis [J]. High Temperature High Pressure, 1997, 29: 253.
    [56] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature, 1955, 176: 51.
    [57] JAMIESON J C, LAWSON A W, NACHTRIEB N D. New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure [J]. Rev. Sci. Instrum, 1959, 30: 1016.
    [58] JAYARAMAN A. Ultrahigh pressures [J]. Review of Scientific Instruments, 1986, 57: 1013-1031.
    [59] BASSETT W A. The birth and development of laser heating in diamond anvil cells [J]. Review of Scientific Instruments, 2001, 72(2): 1283-1288.
    [60] DEWAELE A, FIQUET G, GILLET P. Temperature and pressure distribution in the laser-heated diamond–anvil cell [J]. Review of Scientific Instruments, 1998, 69(6): 2421.
    [61] YUSA H. Laser-heated diamond anvil cell system for photochemical reaction measurements [J]. Review of Scientific Instruments, 2001, 72(2): 1309-1312.
    [62] MING L AND BASSETT W A. Laser heating in the diamond anvil press up to 2000℃sustained and 3000℃pulsed at pressures up to 260 kilobars [J]. Review of Scientific Instruments, 1974, 45(9): 1115.
    [63]苏文辉,许大鹏,刘宏建.凝聚态物理学中若干前沿问题的高压研究[J].吉林大学自然科学学报特刊, 1992, 170.
    [64] SCHNEIDER S J, ROTH R S. Phase Equilibria in Systems Involving the Rare-Earth Oxides [J]. J. Res. Natl. Bur. Std., 1960, A64: 317.
    [65] SU W, WU D, LI X, et al. Investigation using high-pressure synthesis of double rare-earth oxides of ABO3 composition [J]. Physica B, 1986, 658: 139-140.
    [66]周建十.高压科学与技术[M].吉林:吉林大学出版社, 1986.
    [67]王克基.高压科学与技术[M].吉林:吉林大学出版社, 1985.
    [68] SU W, WU D. Physica B, 1986, 139: 661.
    [69] WANG Y F. Chinese Physics Letters, 1991, 8(10) (supplement): 53-55.
    [70]孙宝权,王一峰.冷压与热压处理对YBa2Cu3O7-б的结构相变和超导电性的影响[J].高压物理学报, 1990, 4(4): 246-253.
    [71] CHU C. Superconductivity at 52.5K in the lanthanum-barium-copper- oxide system [J]. Science, 1987, 235: 567.
    [72] LEE P D, KING J L, SEEBALD S, et al. Organometallics, 1998, 17: 524.
    [73]谢鸿森.地球深部物质科学导论[M].科学出版社, 1997.
    [74]谢鸿森.地球科学中静态超高压实验研究的发展趋势[J].高压物理学报, 1997, 11(增刊): 2.
    [75]丁东业,谢鸿森,郭捷等.利用SiO2玻璃的折射率来标定压力[J].高压物理学报, 1999, 13(增刊): 122.
    [76]毕延,龚自正.冲击波物理在地球和行星科学研究中的应用[J].地球科学进展, 1997, 12(5): 399.
    [77]龚自正,经福谦, LSD在地球科学研究中的若干近期进展[J].高压物理学报, 1999, 13(增刊): 235.
    [78]龚自正,谢鸿森,经福谦等.顽火辉石的高压声速和下地幔的可能组成[J].科学通报, 1999, 44(15): 1662.
    [79]宋双茂.蛇纹石化橄榄岩H2O和NaOH溶液高温高压实验研究[M].中国科学院地球化学研究所, 1996.
    [80]姜峰,杜建国,王万春等.高温高压模拟实验研究[J].沉积学报, 1998, 15(4): 145.
    [81]姜峰,杜建国,王万春等.高温高压模拟实验气态产物碳同位素演化特征[J].地球化学, 2000, 29(1): 73.
    [82]腾吉文,张中杰,白武明等.岩石圈物理学[M].科学出版社, 2004.
    [83]张本仁,傅家谟.地球化学进展[M].化学工业出版社, 2005.
    [84] Liu L,Zhang JF,Green II HW,et a1.Evidence of fornler stishovite in metamorphosed sediments , implying subduction to>350km[J] . Earth and Planetary Science Letters,2007,263(3-4):180-191
    [85] LIU S E, XU D P, LIU X M, et al. Modelling Synthesis in Laboratory of Coesite in the Earth’s Crust and Its Formation Mechanism [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 163-171. (in Chinese)
    [86] Xue Yanfeng, Xu Dapeng, et al. Synthesis of ZrSiO4 and coesite in SiO2-ZrO2 system under high pressure[J]. Chem J Chinese U, 2008 24(2): 135-137.
    [87]孙敬姝,刘晓梅,许大鹏等.高压变质二氧化硅矿物的合成及表征[J].高等学校化学学报, 2006, 27(11): 2022-2025.
    [88]张广强,许大鹏,王德涌等.纳米SiO2在高压高温下的结构转化[J].吉林大学学报, 2008, 46(2): 311-313.
    [89]张广强,徐跃,孙敬姝等.纳米SiO2形成柯石英的P-T相图[J].高压物理学报, 2009, 23(1): 9-16.
    [90] Guang-Qiang Zhang, Da-Peng Xu, et al. Effect of Si–OH on the transformation of amorphous SiO2 to coesite[J]. Journal of alloys and compounds. 2009, 476(1-2): L4-L7.
    [91] SU W H, LIU S E, XU D P, et al. Effects of Local Mechanical Collision With Shear Stress on the Phase Transformation fromα-quartz to Coesite Induced by High Static Pressure [J]. Phys Rev B, 2006, 73: 144110.
    [92] Su W H,Liu S E,Xu DP,et a1.A new way of transformation from a-quartz tO coesite.Progress in Natural Science。2006,16(10): 1090-1097.
    [93]苏文辉,刘晓梅,许大鹏等.柯石英最小静态形成压力与地表柯石英形成新机制及其地学意义[J].自然科学进展, 2009, 19(7): 730-745.
    [94] KULINICH S, ZHUKOV A, L. SEVAST G, et al. On Some Alkali and Alkaline erath metal Boron Nitrides Unsaturated with Boron [J]. Diamond Relat. Mater., 1999, 8: 2152.
    [95] Massonne H J, SchreyerW. Phengite barometry based on the limiting assemblage with K2feldspar, phlogop ite and quartz [J].ContribMineral Petrol, 1987, 96: 212-214.
    [96]游振东,钟増球,索书田.论超高压变质的矿物学标志[J].现代地质,2007,21(2):195-202.
    [97]朱孟番,朱永峰.苏鲁三清阁榴辉岩中柯石英的发现及其地质意义探讨[J].高校地质学报,2007,13(3):581-589.
    [98] Liu X Y,Su W H,Wang Y F,et a1.Transformation of ZSM-5 to ZSM-ll zeolite under high pressure[J].J Chem Soc Chem Commun,1992,12:902-903.
    [99] Liu X Y,Su W H,Wang Y F,et al.Transformation of MFI To a-quartz and coesite under high pressure and high temperature[J] . J Chem Soc Chem Commun,1993,11:891-892.
    [100] Liu X Y,Zhao X D,Hou W M,et a1.Transformation of ZSM-5 zeolite under high pressure and high temperature[J].Science in China(Ser.B),1994。37(9) :1054-1062.
    [101]章小鸽.硅及其氧化物的电化学---表面反应、结构和微加工[M].化学工业出版社,2004,9:39-41.
    [102] S.K.Ghandhi,VLSI Fabrication Principles[M].John Willey and Sons,New York,1983.
    [103] S.M.Sze,Physics of Semiconductor Devices[M].John Willey and Sons,New York,1981.
    [104] R.S.Muller and T.I.Kamins, Devices Electronics for Integrated Circuits[M].John Willey and Sons,New York,1977.
    [105] SU W H. Mossbauer Effect Used to Study Rare-Earth Oxides Synthesized by a High-Pressure Method [J]. Phys Rev B, 1988, 37(1): 35-37.
    [106] LI L P. Valence Characteristics and Structural Stabilities of the Electrolyte Solid Solutions Ce1 - x RExO2 -δ(RE =Eu, Tb) by High Temperature and High Pressure [J]. Chem Mater, 2000, 12: 2567-2574.
    [107]苏文辉,刘曙娥,许大鹏等.一种由α-石英到柯石英转变的新途径[J].自然科学进展,2006,16(10):1090-1097.
    [108] B.Boizot et al.,Journal of Non-Crystalline Solids [J].2003,325,22-28.
    [109] Wang Wei-Ran,Xu Da-Peng,Su Wen-Hui,Raman Shift of RMnO3 (R=La,Pr,Nd, Sm) Manganites [J].2005,22,705-707.
    [110] Wang Wei-Ran,Xu Da-Peng,Su Wen-Hui,Ding Zhan-Hui,Xue Yan-Feng,Song Geng-Xin,Raman Active Phonons in RCoO3 (R=La,Ce,Pr,Nd,Sm,Eu,Gd,and Dy) Perovskites [J].Chin.Phys.Lett,2005,22,2400-2402.
    [111] S.Tsuneyuki,M.Tsukada,and H.Aoki,First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics [J].Physical Review Letters,1988,61,869-872.
    [112] D.M.Teter,G.V.Gibbs,M.B.Boisen,D.C.Allan,M.P.teter,First-principles study of several hypothetical silica framework structures [J].Physical Review B,1995,52,8064-8073.
    [113] K. Lu, et al. J. Appl. Phys. 1991,69(10), 7345.
    [114] R.S.Darling, IM.Chou, R.J.Bodnar. An occurrence of metastable cristobalite in high-pressure garnet granulite[J]. Science, 1997,27: 691-93.
    [115] A. Pasquarello, R. Car, Phys. Rev. Lett. 1998,80 (23), 5145.
    [116] M.T.Dove, V.Heine, K.D.Hammond. Rigid unit modes in framework silicates [J]. Mineral Mag, 1995, 59: 629-639.
    [117] M.Gambhir, M.T.Dove, V.Heine. Rigid unit modes and dynam ic diso rder: SiO2 cristobalite and quartz [J]. Phys Chem Minerals, 1999,26, 484-495.
    [118] I.P.Swainson, M.T.Dove. Low-frequency floppy modes inβ-cristobalite. [J]. Phys Rev Lett, 1993, 71: 193-196.
    [119] J.W.Morse, Casey W.H.O stwald p rocesses and m ineral paragenesis in sediments[J]. American Journal of Science, 1988,288, 537-560.
    [120] V.N.Sigaev, E.N.Smelyanskaya, V.G.Plotnichenko, et al. Low-frequency band at 50 cm-1 in the Raman spectrum of cristobalite: identification of similar structuralmotifs in glasses and crystals of similar composition[J]. J Non-cryst Solids, 1999,248, 141-146.
    [121] N.Makamura, A Mrai, T Otomo, et al. Dispersive excitation in different forms of SiO2[J]. J Non-cryst Solids, 2001, 293, 377-382.
    [122]张金民,叶大年.硅酸盐熔体的体积行为[J].矿物学报,1989,9(2),112.
    [123] G. Edward, Jr. Brame, Infrared and Raman Spectroscopy. Marcel Dekker INC[M]. New York and Basel, 1976.
    [124] L. Stixyude, M.S.T.Bakowinski, Simple Covalent Potential Models of Tetrahedral SiO Applications toα-quartz and Coesite at Pressure[J]. Phys. Chem. Miner, 1988,16, 199.
    [125] S.Naka, S.Ito, T.Kameyama, M.Inagaki, Crystallization of coesite[J]. Memoirs of the Faculty of Engineering, 1976, Vol.2, Nagoya University, 266.
    [126] K. Lu, J.T. Wang and C.W.Wei[J]. J. Appl. Phys. 1991,69(1), 522.
    [127] LIU L, MERNAGH T P, HIBBERSON W O. Raman Spectra of High-Pressure Polymorphs of SiO2 at Various Temperatures [J]. Phys Chem Minerals, 1997,24: 396-402.
    [128]徐培苍,李如璧,王志海等.华中高压变质柯石英的拉曼谱学研究[J].西北地质科学, 1992, 13(2): 111-119.
    [129] Schmadicke E , Quartz pseudomorphs after coesite in eclogites from the Saxoman Erzgebirge[J].Eur.J.Mineral,1991,3:231.
    [130] Sobolev N V,Shatsky V S,Diamond inclusions in garnet from metamorphic rocks,a new envionment for diamond formation[J].Nature,1990,343:742.
    [131] Tagiri M,Bakior A,Quartz pseudomorph after coesite in garnet from a garnet-chloritoid-talc schist,Northern Tienshan[J].Kirghiz,USSR.Proc, Japan Acad. Sci. 1990, 66: 135.
    [132] Okay A I,Xu S,Sengor AMC,Coesite from the Dabieshan eclogite[J].Central China,Eur.J.Mineral,1989,1:595.
    [133] Wang X, Liu J G,Mao H K,Coesite-bearing eclogite from the Diabie Mountain in central China[J]. J. Metamorph. Ceol. 1989,11:575.
    [134] Tabata H,Yamauchi K.Maruyam E et al,Tracing the extent of Ultrahigh-pressure metamorph terran:a mineral-inclusion study of zircons in gneisses from the Dabie Mountains.In:Hacker B>Liou J G eds.When ContientsCollide:Geodynamics and Geochemistry of Ultrahigh-pressure Rocks[J].London: Kluwer Academic & Lippincott Raven PUBlishers, 1998,261.
    [135] Liu J G, Zhang R Y,Occurences of intergranular coesite in ultrahigh-pressure rocks from the Sulu region. Eastern China: implications for lack of fluid during exhumation[J]. Am.Mineral,1996,81:1217.
    [136]杨经绥,宋述光,许志琴等.柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物—柯石英[J].地质学报,2001,75(2):175-179.
    [137]孙敬姝,刘晓梅,许大鹏等.高压变质二氧化硅矿物的合成及表征[J].高等学校化学学报, 2006, 27(11): 2022-2025.
    [138]孙静姝.α-石英—石墨的纳米非晶和中间亚稳相的制备及其高压合成和相变的研究[D].吉林:吉林大学物理学院, 2006.
    [139] KAMEYAMA T, NAKA S. Effect of water on crystallization process of coesite [J]. Bull. Chem. Soc. Jpn., 1976, 49: 92-96.
    [140] LATHE C, KOCH-MüLLER M, WIRTH R, et al. The influence of OH in coesite on the kinetics of the coesite-quartz phase transition [J]. Am. Mineral., 2005, 90: 36-43.
    [141] MOSENFELDER J L, SCHERTL H P, SMYTH J R, et al. Factors in the preservation of coesite: The importance of fluid infiltration [J]. Am. Mineral. 2005, 90: 779-789.
    [142] Guang-Qiang Zhang, Da-Peng Xu, et al. Effect of Si–OH on the transformation of amorphous SiO2 to coesite[J]. Journal of alloys and compounds. 2009, 476(1-2): L4-L7.
    [143]张广强.不同初始状态的SiO2在高温高压下的结构转变研究[D].吉林:吉林大学物理学院, 2009.
    [144]郭用猷.物质结构原理[M].高等教育出版社,1985.
    [145] Zheng-song Lou, Qian-wang Chen, Yu-feng Zhang, et al. Diamond formation by reduction of carbon dioxide at low temperatures[J]. J Am. Chem. Soc. 2003,125:9302.
    [146] HIROSE T, KIHARA K, OKUNO M, et al. X-ray, DTA and Raman studies of monoclinic tridymite and its higher temperature orthorhombic modification with varying temperature [J]. Journal of Mineralogical and Petrological Sciences, 2005, 100: 55-69.
    [147] KIHARA K, HIROSE T, SHINODA K. Raman spectra, normal modes and disorder in monoclinic tridymite and its higher temperature orthorhombic modification [J]. Journal of Mineralogical and Petrological Sciences, 2005, 100: 91-103.
    [148] PALMER D C, HEMLEY R J, PREWITT C T. Raman spectroscopic study of high-pressure phase transitions in cristobalite [J]. Phys. Chem. Minerals, 1994, 21: 481-488.
    [149] F. P. Bundy, H. T. Hall, H. M. Strong and R.H. Wentorf, Jr.,Man-made diamonds [J]. Nature, 1955,176:51.
    [150] J. Isoya, H. Kanda, Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: site and spin multiplicity [J]. Phys. Rev. B, 1990,41:3905.
    [151] Y. Wang, H. Kanda,Growth of HPHT diamonds in alkali halides: possible effects of oxygen contamination [J]. Diamond Relat. Mater.,1998,7:57.
    [152] M. Akaishi,H. Kanda,S. Yamaoka,Synthetic of diamond from graphite-carbonate systems under very high temperature and pressure [J].J. Cryst. Growth,1990,104:578.
    [153] Kaiser.W.,Bond.W.L.Diamonds [J].Phys.Reew.,1959,(115):857-863.
    [154]谈逸梅,容振球.湖南II型金刚石在显微镜下的特征[J].人工晶体,1984,13(3):245-248.
    [155]薛理辉,岳文海,陈丰,等.天然含硅柯石英的拉曼光谱研究[J].武汉工业大学学报,1994,16(2):77-80.
    [156] C. Turquat,H. B r_equel, H.-J. Kleebe, F. Babonneau,S. Enzo. Investigation of SiCO glasses synthesized with extensive ball milling [J]. Journal of Non-Crystalline Solids,2003, 319 :117–128.
    [157]邢淑芝.石英、石墨和硅在高温高压下的结构相变[D].吉林:吉林大学物理学院, 2007.
    [158]苏文辉,刘晓梅,许大鹏等.柯石英最小静态形成压力与地表柯石英形成新机制及其地学意义[J].自然科学进展, 2009, 19(7): 730-745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700