用户名: 密码: 验证码:
重庆青木关地下河系统的水文地球化学特征及悬浮颗粒物运移规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
+我国南方岩溶地区(包括贵州、云南、广西、重庆、湖北、湖南、四川、广东等8个省、市、自治区)的岩溶总面积约有60×10~4 km~2,岩溶地下水是这些地区生产生活用水的重要来源。近年来,随着该地区经济的发展和石漠化治理进程的推进,岩溶地下水资源战略储备显得特别重要。但人类活动对岩溶地下水水质的影响日渐明显,水环境问题呈现污染源多样化,3066条地下河面临城市生活、工业、矿山以及农业多重污染的挑战,受到国内岩溶研究学者的高度关注。
     岩溶含水介质是岩溶区地下水存储的场所,其形态千差万别,主要表现为含水介质的不均匀性,因而在研究岩溶地下水储藏、运移规律以及水文地球化学特征之前,必须弄清岩溶含水介质的几何形态特征。目前岩溶动力学阐明了与碳酸盐岩溶解有关的离子,如钙、镁、重碳酸根等离子的来源,国内外这方面的研究成果也很丰富,而对于地下水中其他非岩溶作用产生的离子来源,大部分的研究只是停留在现象的描述上,且数据的随机性很大,需要进行在高分辨率监测基础上的研究,寻找一种定量的方法来确定源头。悬浮颗粒物在地下水中扮演着重要的角色,目前国内在这方面的研究基本是空白,而国外大部分的研究是集中在悬浮颗粒物和微生物、有机物等的相互作用关系研究上,对于悬浮颗粒物来源的研究甚少。
     本文从保护岩溶地下河水资源和环境出发,以重庆青木关地下河系统为例。首次引进国外在线示踪试验技术,初步定量地了探明岩溶含水介质特征。采用在线高分辨率技术进行了多次示踪试验,根据示踪剂的浓度历时曲线为单峰型的特点,以及利用美国环保局的Qtracer2软件对岩溶含水介质几何形态特征和水力参数计算的结果,初步判断了研究区存在规模较大的单一岩溶管道。进而利用地下水衰减方程,计算得到赋存于流域内溶洞-管道的水资源量,占总贮水量的8.6%,而赋存于流域内岩溶化的裂隙水占总贮水量的91.4%,表明研究区存在溶洞-管道和裂隙多重介质。
     将高分辨率的取样和数理统计作为分析工具,辨别了降雨期间地下水无机离子的来源。随着实验室测试技术和野外自动化监测技术的不断发展,地下水长时间尺度和短时间尺度(极端气候事件,如暴雨、干旱)的水文地球化学动态变化过程可被持续记录,产生庞大的数据。而这些数据所包含的指标之间往往存在一定的相关性,用一般方法很难进行充分的分析并得出可靠的结论。通过对降雨期间姜家泉82组高分辨率的水文地球化学指标进行主成分分析,提取了能代表85%信息量的3个主成分,降雨造成的以流量、浊度、Al3+、全Fe、全Mn.Ba~(2+)和NO2-等离子浓度升高为代表的水土流失,和以HC0_3~-、Ca~(2+)、Sr~(2+)等与灰岩溶解有关的离子浓度和电导率降低为代表的稀释效应,对水文地球化学特征变化的贡献率为41.5%;以Na~+、N0_3~-、PO_4~(3-)、K~+、C1~-等离子浓度和电导率升高为代表的农田中残留肥料及鸭子代谢物,对水文地球化学特征变化的贡献率为37.4%;白云质灰岩、白云岩的溶解对水文地球化学特征变化的贡献率为6.0%。降雨对于地下水文地球化学特征的变化有着极为关键的影响,而水质是水文地球化学指标的综合反映。因而在不同流量时段,主导地下水水质变化的因子不尽相同,需要综合各种水文地球化学指标来分析。建议将流量也纳入岩溶区地下水水质评价的指标中,全面探讨岩溶地下水水质变化的影响因素。
     辨别了地下水中悬浮颗粒物的来源。采用在线颗粒计数仪对姜家泉泉水中悬浮颗粒物的粒径分布进行了监测,表明在降雨初期悬浮颗粒物主要为外源物质;随后当地下水流量主要靠裂隙水补给时,岩溶裂隙中沉积物的再悬浮作用占到主导地位;而当雨水补给地下水时,地下水悬浮颗粒物为外源物质。不同粒径悬浮颗粒物的搬运方式与颗粒的大小有关,沉积物颗粒越小,则地下水搬运的量越大,沉积物颗粒越大,则地下水搬运的量越小,在青木关地下河系统中,其颗粒物直径以4μm为临界值。降雨期间流域内土壤的侵蚀和养分的流失,不但严重破坏了脆弱的岩溶生态环境,而且极易造成地下水由土壤侵蚀引起的非点源污染,对当地居民的饮水安全造成严重的威胁。
Groundwater in karst aquifers in southwestern China including Yunnan, Guizhou, Guangxi, Chongqing, Hunan, Hubei, Sichuan, and Guangdong is a fragile system, especially when these areas are subject to intense karst rocky desertification processes. According to geologic survey, there are 3066 underground rivers in this region. With an annual discharge of~1482 m3/s, those karst aquifers provide a vital water resource for numerous communities. In recent years, impact of human activities on groundwater quality in the karst area has become serious. Irresponsible land uses for agriculture, industry, city construction, and mining have been strongly impacting groundwater quality. Hence, protection of groundwater quality is paramount to human health, economic development, and environmental interests of southwestern China.
     Karst aquifer media with varied shape is heterogeneous and the storage space for the groundwater. So it is necessary to understand the geometrical characteristics of the karst aquifer media prior to researching on karst groundwater of storage, transport law and hydrogeochemical features. The theory of Karst Dynamics has fully illustrated the source of the carbonate-derived ions, such as calcium, magnesium, and bicarbonate. But most of the research on the source of noncarbonate-derived ions has only been descript shallowly. Besides, the data often are random. Thus a high-resolution monitoring and quantitative method to determine the source of noncarbonate-derived ions are extremely necessary. The suspended particle matters (SPMs) play an important role in the groundwater. The domestic basic research in this sphere is blank, whereas most of the related studies abroad are concentrated in the interaction of SPMs and microorganisms, or organic matters. It should be noted that few efforts have been devoted to investigating the source of the SPMs.
     In this dissertation, Qingmuguan underground river system (QURS) which is a typical karst valley and located at southwest Chongqing, China, has been obtained as a case for the study.
     The characteristics of the karst aquifer have been fully investigated by the high-resolution technique (flourometer) that is the first importation from Switzerland. Based on the results of hydrogeological surveys and using flourometer, several times of tracer tests were carried out to obtain the breakthrough curves of dye. The symmetrical breakthrough curves, the geometrical morphology and hydraulic parameters of karst aquifer calculated by the Qtracer2 (U.S. Environmental Protection Agency) suggest that there is a large-scale single karst conduit in QURS. Using groundwater attenuation equation, we found that the water volume stored in caves-conduits and karst fissures accounted for 8.6% and 91.4%, respectively. This result demonstrates that there is multiple media including conduit and fissures.
     The source of inorganic ions in the groundwater during storm events has been investigated in detail. With development of laboratory test and field automatic monitoring technology, data of groundwater hydrogeochemical dynamics have been recorded continuously. Hence, it consequently results in large sets of hydrogeochemical parameters which are relevant to each other and often difficult to be interpreted and drew firm meaningful conclusions. High-frequency samples have been collected at Jiangjia Spring. Principal component analysis (PCA) of the 20 variables is employed to interpret the relationships with specific processes that control the groundwater hydrogeochemical formations. Through PCA,85% of the total amount information is extracted to indicate the formations of groundwater hydrogeochemical features in QURS during storm events. The first component separates the soil erosion (i.e., increases in discharge, turbidity and concentrations of A13+, TFe, TMn, Ba2+ and NO_2), and dilution effect (i.e., decreases in specific conductance and concentrations of HCO_3, Ca~(2+)and Sr2+), accounting for 41.5% of the variability in the data. The second component indicates residual fertilizers and duck's waste from farmlands (i.e., increases in specific conductance and concentrations of Na+, NO_3, PO(_4~3), K~+and Cl), contributing for 37.4%. The dissolution of dolomite and dolomitic limestone makes up 6.0%. The precipitation had a crucial impact on the groundwater hydrogeochemical variations in QURS. The groundwater quality is the comprehensive reflection for hydrogeochemistry. The dominant factors controlling the groundwater quality were obviously varying at different hydrologic processes. Therefore the high-frequency sampling strategy was essentially required, and the comprehensive hydrogeochemical parameters including the discharge were necessarily considered to fully assess the karst groundwater quality.
     The source of SPMs in the groundwater has been identified. We used the particle counter to record the size distribution of SPMs. We found that at the beginning of the storm, the SPMs were mainly allochthonous substances. When the water in the karst fissures recharged the underground river, the re-suspension of sediment from the karst fissure played a dominant role. When the rainwater recharged the groundwater, the dilution effect dominated, and the SPMs were allochthonous. The transported ways of different size of SPMs are subject to the size of particle, i.e., the size of sediment was significantly negative with the loading capacity of groundwater in which the critical diameter of the particles was 4μm. Soil erosion and nutrient losing not only strongly destroyed the fragile karst ecological environment, but also lead to non-point source pollution, and seriously threatened the drinking water safety of locals.
引文
[1]Jiang Y J, Zhang C, Yuan D X, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China:a case study of the Xiaojiang watershed, Yunnan Province. Hydrogeology Journal,2008,16(4):727-735.
    [2]贾亚男,刁承泰,袁道先.土地利用对埋藏型岩溶区岩溶水质的影响——以涪陵丛林岩溶槽谷区为例.自然资源学报,2004,19(4):455-461.
    [3]李晓明.西南岩溶区地下水环境告急.科学时报,2009-2-19 A1版.
    [4]袁道先,薛禹群,傅家谟,et al.防止我国西南岩溶地区地下河变成“下水道”的对策与建议.中国科学院院士建议,2007(4):1-14.
    [5]WCED. Sustainable development and water, statement on the WCED Report "Our Common Future". Water International,1989,14(3):151-152.
    [6]ICWE. The Dublin statement and report of the conference. International Conference on W ater and the Environment, Dublin,26-31 Jan.1992.1992; Available from:http://www. un-documents.net/h2o-dub.htm.
    [7]Engelman R, LeRoy P. Sustaining water:Population and the future of renewable water supplies. 1993:Population and Environment Program, Population Action International.
    [8]Ford D C, Williams P W. Karst geomorphology and hydrology.2007, Chichester, U.K.:Wiley.
    [9]Gunn J. Solute processes and karst landforms. Solute Processes:Chichester, John Wiley and Sons, 1986:363-437.
    [10]Ford D C, Williams P W. Karst geomorphology and hydrology.1992:Chapman & Hall New York.
    [11]Prohic E. Pollution assessment in carbonate terranes-a review. Hydrologiy of limestone terranes, Annotated Bibliography of Carbonate Rocks, vol. four, IAH,1989,10:61-82.
    [12]Williams P W. Karst terrains:environmental changes and human impact.1993:Catena.
    [13]Drew D, Hotzl H. Karst hydrogeology and human activities.1999:Balkema.
    [14]钱家忠,汪家权,吴剑锋,et al.徐州张集水源地裂隙岩溶水化学特征及影响因素.环境科学研究,2003,16(2):23-26.
    [15]邹胜章,彬梁,朱志伟,etal.生态系统变化对岩溶水资源的影响——以湘西为例.长江流域资源与环境,2004,13(6):599-603.
    [16]袁道先,朱德浩,翁金桃,etal.中国岩溶学.1994,北京:地质出版社.
    [17]袁道先.我国西南岩溶石山的环境地质问题.大自然探索,1996,15(58):21-23.
    [18]卢耀如,张凤娥,刘长礼,et al.中国典型地区岩溶水资源及其生态水文特性.地球学报,2006,27(5):393-402.
    [19]袁道先.中国西南部的岩溶及其与华北岩溶的对比.第四纪研究,1992(4):352-361.
    [20]袁道先.岩溶作用对环境变化的敏感性及其记录.科学通报,1995,40(13):1210-1213.
    [21]潘国营,韩怀彦,张慧娟.焦作岩溶水系统水质模拟与污染原因探讨.焦作工学院学报,2000,19(6):417-420.
    [22]张江华.娘子关岩溶水系统演化再认识.太原理工大学学报,2007,38(5):420-423.
    [23]张志祥.延河泉域岩溶地下水数值模拟研究.太原理工大学学报,2009,40(3):319-322.
    [24]许贵森,哈承佑,王怀颖.山西太原西山裂隙岩溶地下水系统.中国地质科学院地质力学研究所所刊,1987(10):85-125.
    [25]郭清海,王焰新,马腾,etal.山西岩溶大泉近50年的流量变化过程及其对全球气候变化的指示意义.中国科学D辑,2005,35(2):167-175.
    [26]朱永琴,彭先孚.重庆市岩溶地下水的开发与利用.中国岩溶,2000,19(2):147-151.
    [27]袁道先.岩溶学词典.1988,北京:地址出版社.
    [28]《地球科学大辞典》编委会.地球科学大辞典(基础学科卷).2005:290.
    [29]Grund A. Die Karsthydrographie, Stuedien aus Westbosnien. Geographische Abhandlungen herausgegeben von A, Penck 7,1903,3(101-301).
    [30]Katzer F. Karst und Karsthydrographie. Zur Kunde der Balkanhalbinsel,1909,8:94.
    [31]Martel E A. Nouveau traite des eaux souterraines.1921, Paris:Librairie Octave Dion.
    [32]Bogli A, Schmid J C. Karst hydrology and physical speleology 1980:Springer Berlin.
    [33]Atkinson T. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset(Great Britain). Journal of Hydrology,1977,35(1/2).
    [34]White W, Role of solution kinetics in the development of karst aquifers. Karst hydrogeology. International Association of Hydrogeologists,12~th Memoirs,1977:503-517.
    [35]Milanovic P T. Karst hydrogeology, water resources publications,. Littleton, Colorado, USA, karst aquifer and evolution of karst aquifer,1981:121-127.
    [36]Yuan D X. On the heterogeneity of karst water. Karst Water Resouces (Proceedings of the Ankara-Antalya symposium, July,1985), IAHS publication,1985,161:281-292.
    [37]袁道先.论岩溶水的不均匀性.地质出版社,1978:1-19.
    [38]崔光中,于浩然,朱远峰.我国岩溶地下水系统中的快速流.中国岩溶,1986,5(4):297-305.
    [39]杨勇.后寨河流域岩溶含水介质结构域地下径流研究.中国岩溶,2001,20(1):17-20.
    [40]杨立铮.贵州普定后寨地下河岩溶水运动特征.中国岩溶,1982(1):18-26.
    [41]何宇彬,徐超.喀斯特隙流水和管流水的耦合及转化关系研究.中国岩溶,1995,14(2):150-160.
    [42]高阳,张庆松,原小帅,etal.地质雷达在岩溶隧道超前预报中的应用.山东大学学报(工学版),2009,39(4):82-86.
    [43]杨立铮,刘俊业.试用示踪剂浓度——时间曲线分析岩溶管道的结构特征.成都地质学院学报,1979,16(4):211-219.
    [44]李敬兰,李益民.广西龙排布泥库地下水多元示踪试验研究.安全与环境工程,2004,11(1):59-62.
    [45]Pronk M, Goldscheider N, Zopfi J. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeology Journal,2006,14(4):473-484.
    [46]Andreo B, Goldscheider N, Vadillo I, et al. Karst groundwater protection:First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain). Science of the Total Environment,2006,357(1-3):54-73.
    [47]Goldscheider N, Meiman J, Pronk M, et al. Tracer tests in karst hydrogeology and speleology.
    International Journal of Speleology,2008,37(1):27-40.
    [48]Nguyet V T M, Goldscheider N. Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietnam. Hydrogeology Journal,2006,14(7):1147-1159.
    [49]邹国富,范柱国,朱春蓉,et al.云南普朗铜矿尾矿库喀斯特渗漏示踪试验研究.成都理工大学学报(自然科学版),2009,36(3):292-297.
    [50]鲁程鹏,束龙仓,苑利波,et al.基于示踪试验求解岩溶含水层水文地质参数.吉林大学学报(地球科学版),2009,39(4):717-721.
    [51]汪进良,姜光辉,侯满福,et al.自动化监测电导率在盐示踪试验中的应用——以云南八宝水库盐示踪试验为例.地球学报,2005,26(4):317-374.
    [52]Anon. Bath Chronicle. October 25,1860.
    [53]Knop A. Uber die hydrographische Beziehungen zwischen der Donau und der Aachquelle im basischen Oberlande. Neues Jahrbuch Fur Mineralogie,1878:350-363.
    [54]Show T R. History of Cave Science.1992, Sydney:Sydney Speleological Society.
    [55]Kass W. Tracer technique in geohydrology.1998, Rotterdam:Balkema.
    [56]Berthelot. Sur les origines de la source de la Loue. Comptes Rendus De L'Academie des Sciences 133,1901,8:394-397.
    [57]Quinlan J F, Ray J A. Groundwater basins in the Mnmmonth Cave regions, Kentuchy.1981, Kentucky:Mammoth Cave, Occasional Publication no.1. Friends of the karst.
    [58]Worthington S, Ford D. Self-organized permeability in carbonate aquifers. Ground Water,2009, 47(3):326-336.
    [59]Goldscheider N, Drew D P. Methods in Karst hydrogeology.2007:Taylor & Francis Group.
    [60]邓振平,周小红,邹胜章,et al.在线监测仪在岩溶地下水示踪实验中的应用——广西临桂县罗锦地下水示踪试验.水资源保护,2009,25(2):75-78.
    [61]袁道先,蔡桂鸿.岩溶环境学.1988,重庆:重庆出版社.
    [62]袁道先,刘再华,林玉石,et al.中国岩溶动力系统.2002,北京:地质出版社.275.
    [63]袁道先,戴爱德,蔡五田,et al.中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究——以桂林丫吉村为例.1996,桂林:广西师范大学出版社.
    [64]刘再华,袁道先,姜光辉,et al.水—岩—气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例.水文地质工程地质,2003,30(4):13-18.
    [65]刘再华,李强,汪进良,et al.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译.中国岩溶,2004,23(3):169-176.
    [66]章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究——以广西马山弄拉兰电堂泉和东旺泉为例.中国岩溶,2003,22(1):1-5.
    [67]Hess J, White W. Storm response of the karstic carbonate aquifer of southcentral Kentucky. Journal of Hydrology,1988,99(3-4):235-252.
    [68]Liu Z H, Groves C, Yuan D X, et al. South China karst aquifer storm-scale hydrochemistry. Ground Water,2004,42(4):491-499.
    [69]傅伯杰,陈利顶,王军,et al.土地利用结构与生态过程.第四纪研究,2003,23(3):247-253.
    [70]Liu J Y, Liu M L, Tian H Q, et al. Spatial and temporal patterns of China's cropland during 1990-2000:An analysis based on Landsat TM data Remote sensing of environment 2005, 98(4):442-456.
    [71]沈照理,朱宛华,钟佐燊.水文地球化学基础.1993,北京:地质出版社.
    [72]Jeong C. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology,2001,253(1-4):194-210.
    [73]Chae G, Kim K, Yun S, et al. Hydrogeochemistry of alluvial groundwaters in an agricultural area:an implication for groundwater contamination susceptibility. Chemosphere,2004,55(3): 369-378.
    [74]喻理飞.人为干扰与喀斯特森林群落退化及评价研究.应用生态学报,2002,13(5):529-532.
    [75]张维理,武淑霞,冀宏杰,et al.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1033.
    [76]Lang Y, Liu C, Zhao Z, et al. Geochemistry of surface and ground water in Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied Geochemistry, 2006,21(6):887-903.
    [77]Vladimir N, Harvey O. Water quality:Prevention, identification and management of diffuse pollution. Van Nastrand Reinhold Company,1993,2.
    [78]Copeland C. Clean Water Act:a summary of the law. Congressional Research Service Report RL30030. Washington, DC:National Council for Science and the Environment. See the NCSE Web site at http://www.ncseonline.org,1999.
    [79]Kacaroglu F. Review of groundwater pollution and protection in karst areas. Water, Air,& Soil Pollution,1999,113(1):337-356.
    [80]Ekmekci M. Pesticide and nutrient contamination in the Kestel polje-Kirkgoz karst springs, Southern Turkey. Environmental Geology,2005,49(1):19-29.
    [81]Markovic T, Miko S, Kapelj S, et al. Behaviour of metals and nutrients in soils and groundwater of a karst polje. Journal of Geochemical Exploration,2006,88(1-3):124-129.
    [82]Yuan D X. Environmental change and human impact on karst in southern China Karst terrains: environmental changes and human impact,1993:99.
    [83]袁道先.岩溶地区的地质环境和水文生态问题.南方国土资源,2003(1):21-25.
    [84]蒋勇军,袁道先,谢世友,et al.典型岩溶农业区地下水质与土地利用变化分析——以云南小江流域为例.地理学报,2006,61(5):471-481.
    [85]郭芳,姜光辉,夏青,et al.土地利用影响下的岩溶地下水水化学特征.中国岩溶,2007,26(3):23-25.
    [86]刘方,罗海波,刘鸿雁,et al.土地利用方式对喀斯特浅层地下水质量的影响.矿物学报,2007,27(3):540-544.
    [87]Zemeckis R, Lazauskas S, Gorton M. The Europeanisation of agri-environmental policy:a case study of water quality in the Lithuanian karst zone. Land Use Policy,2005,22(3):255-264.
    [88]梁彬,朱明秋,梁小平,et al.湖南洛塔岩溶山区水土流失影响因素分析.中国岩溶,2004,23(1):7-13.
    [89]Ryan M, Meiman J. An examination of short-term variations in water quality at a karst spring in Kentucky. Ground Water,1996,34(1):23-30.
    [90]Pronk M, Goldscheider N, Zopfi J. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environmental Science & Technology, 2007,41(24):8400-8405.
    [91]Mahler B, Personne J, Lods G, et al. Transport of free and particulate-associated bacteria in karst. Journal of Hydrology,2000,238(3-4):179-193.
    [92]Pommepuy M, Guillaud J, Dupray E, et al. Enteric bacteria survival factors. Water Science& Technology,1992,25(12):93-103.
    [93]Vesper D J, White W B. Metal transport to karst springs during storm flow:an example from Fort Campbell, Kentucky/Tennessee, USA. Journal of Hydrology,2003,276(1-4):20-36.
    [94]Vesper D, Loop C, White W. Contaminant transport in karst aquifers. Theoretical and Applied Karstology,2001,13(14):101-111.
    [95]张海平,朱宜平,陈玲,et al.悬浮泥沙对酚类化合物的吸附特性研究.环境科学,2008,29(1):71-76.
    [96]Massei N, Wang H, Dupont J, et al. Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. Journal of Hydrology,2003,275(1-2):109-121.
    [97]Atteia O, Kozel R. Particle size distributions in waters from a karstic aquifer:from particles to colloids. Journal of Hydrology,1997,201(1-4):102-119.
    [98]Mahler B, Lynch F. Muddy waters:temporal variation in sediment discharging from a karst spring. Journal of Hydrology,1999,214(1-4):165-178.
    [99]Beaudeau P, Payment P, Bourderont D, et al. A time series study of anti-diarrheal drug sales and tap-water quality. International Journal of Environmental Health Research,1999,9(4):293-311.
    [100]Dogramaci S, Herczeg A, Schiff S, et al. Controls on δ~34S and δ~18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Applied Geochemistry,2001,16(4):475-488.
    [101]Barbieri M, Boschetti T, Petitta M, et al. Stable isotope (~2H,~18O and ~87Sr/~86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Applied Geochemistry,2005,20(11):2063-2081.
    [102]Liu C, Li S, Lang Y, et al. Using δ~15 N-and δ~18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China Environmental Science & Technology,2006,40(22): 6928-6933.
    [103]Einsiedl F, Maloszewski P, Stichler W. Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system. Journal of Hydrology,2009, 365(1-2):113-121.
    [104]Obeidat M, Massadeh A, Al-Ajlouni A, et al. Analysis and evaluation of nitrate levels in groundwater at Al-Hashimiya area, Jordan. Environmental Monitoring And Assessment,2007, 135(1):475-486.
    [105]Wells E R, Krothe N C. Seasonal fluctuation in δ~15N of groundwater nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate. Journal of Hydrology(Amsterdam),1989,112(1-2):191-201.
    [106]王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础.地球化学,1997,18(2):220-223.
    [107]Fogel M L. Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry,1989,26:351-361.
    [108]Bottcher J, Strebel O, Voerkelius S, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology,1990,114(3):413-424.
    [109]Vitoria L, Soler A, Canals A, et al. Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters:Example of Osona (NE Spain). Applied Geochemistry,2008,23(12):3597-3611.
    [110]李思亮,刘丛强.贵阳地下水硝酸盐氧同位素特征及其应用.中国岩溶,2006,25(2):900-903.
    [111]Kohl D, Shearer G, Commoner B. Fertilizer nitrogen:contribution to nitrate in surface water in a corn belt watershed. Science,1971,174(4016):1331-1334.
    [112]Heaton T. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:A review. Chemical Geology,1986,59(1):87-102.
    [113]Aravena R, Robertson W D. Use of multiple isotope tracers to evaluate denitrification in ground water:Study of nitrate from a large-flux septic system plume. Ground Water,1998,36(6):975-982.
    [114]尹德忠,肖应凯.硝酸盐中氮氧同位素的正热电离质谱法测定.质谱学报,2000,21(3):157-158.
    [115]邢光熹,曹亚澄,施书莲,et al.太湖地区水体氮的污染源和反硝化.中国科学(B辑),2001,31(2):130-137.
    [116]杨琰,蔡鹤生,刘存富,et al. NO_3中15N和18O同位素新技术在岩溶地区地下水氮污染研究中的应用.中国岩溶,2004,23(3):206-211.
    [117]张翠云,郭秀红.氮同位素技术的应用:土壤有机氮作为地下水硝酸盐污染源的条件分析.地球学报,2005,34(5):533-540.
    [118]高彦芳,沈立成,杨平恒.重庆金佛山地下水的氮污染源研究.水资源与水工程学报,2007,18(6):23-25.
    [119]饮用天然矿泉水检测方法.1995.
    [120]Silva S, Kendall C, Wilkison D, et al. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. Journal of Hydrology,2000,228(1-2): 22-36.
    [121]地理系研究所(原西南师范学院).青木关背斜地下水的分布规律及其利用.西南师范大学学报(自然科学版),1960(2):102-112.
    [122]成都地质学院水文地质72级联队.观音峡、温塘峡两背斜青木关地区的暗河水及其开发.成都理工大学学报(自然科学版),1975(Z1):68-78.
    [123]重庆市北碚区地方志编撰委员会.北碚自然地理.1986:西南师范大学出版社.
    [124]罗鉴银,傅瓦利.岩溶地区开凿隧道对地下水循环系统的破坏——以重庆市中梁山为例.西南农业大学学报,2005,27(4):432-435.
    [125]贺秋芳.青木关地下河岩溶系统中的氮循环及其相关微生物作用与示踪研究.[博士学位论文].重庆:西南大学.2009.
    [126]贺秋芳,杨平恒,袁文昊,etal.微生物与化学示踪岩溶地下水补给源和途径.水文地质工程地质,2009,36(3):33-3.
    [127]张强.岩溶区地下水脆弱性风险性评价——以重庆市青木关岩溶槽谷为例.[硕士学位论文].重庆:西南大学.2009.
    [128]袁文昊.土壤微生物活动下的氮磷变化及对地下河水质的影响——以重庆青木关岩溶槽谷区为例.[硕士学位论文].重庆:西南大学.2009.
    [129]旷颖仑.重庆青木关地下河阳离子对降雨响应研究.[硕士学位论文].重庆:西南大学.2009.
    [130]刘仙.基于BASINS/HSPF模型的岩溶槽谷区地下水模拟研究——以重庆青木关地下河系统为例.[硕士学位论文].重庆:西南大学.2009.
    [131]Ted W B. Water quality impacts from agricultural land-use in the karst groundwater basin of Qingmuguan, Chongqing, China [Master Thesis]. Bowling Green, Kentucky:Western Kentuchy University.2008.
    [132]何师意,裴建国,谢运球,etal.湖南保靖县白岩洞地下河流域水文地球化学特征研究.中国岩溶,2006,25(3):187-194.
    [133]邹成杰.岩溶地区地下水位分析.中国岩溶,1995,14(3):261-269.
    [134]黄敬熙.流量衰减方程及其应用——以洛塔岩溶盆地为例.中国岩溶,1982(2):118-126.
    [135]Field M S. The QTRACER2 program for tracer-breakthough curve analysis for tracer tests in karstic aquifer and other hydrologic systems.2002:United States Environmental Protection Agency.
    [136]Schnegg P A, Costa R. Tracer tests made easier with field fluorometers. Bulletin d'Hydrogeologie,2003,20:89-91.
    [137]Massei N, Lacroix M, Wang H Q, et al. Transport of suspended solids from a karstic to an alluvial aquifer:the role of the karst/alluvium interface. Journal of Hydrology,2002,260(1-4): 88-101.
    [138]Smart C. Artificial tracer techniques for the determination of the structure of conduit aquifers. Ground Water,1988,26(4):445-453.
    [139]White W B. Geomorphology and Hydrology of Karst Terrains.1988, New York:Oxford University Press.
    [140]CraigH. Isotopic variations in meteoric waters. Science,1961,133(3465):1702-1703.
    [141]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧同位素研究.科学通报,1983,28(13):801-806.
    [142]于津生,虞福基,刘德平.中国东部大气降水氢氧同位素组成.地球化学,1987(1):22-26.
    [143]刘东生,陈正明,罗可文.桂林地区大气降水的氢氧同位素研究.中国岩溶,1987,6(3): 225-231.
    [144]章新平,姚檀栋.我国江水中的δ18O的分布特点.地理学报,1998,53(4):356-363.
    [145]Mengis M, Schiff S, Harris M, et al. Multiple geochemical and isotopic approaches for assessing ground water NO_3 elimination in a riparian zone. Ground Water,1999,37(3): 448-457.
    [146]Kendall C, Elliott E M, Wankel S D. Tracing anthropogenic inputs of nitrogen to ecosystems. Stable Isotopes in Ecology and Environmental Science,2007:375-449.
    [147]Kendall C. Tracing nitrogen sources and cycling in catchments. Isotope tracers in catchment hydrology,1998:519-576.
    [148]Dealy M T. Investigation of nitrate-nitrogen concentrations in the Equus Beds aquifer.1995.
    [149]Long A J. Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model. Journal of Hydrology,2009,364(3-4):249-256.
    [150]Pronk M, Goldscheider N, Zopfi J. Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeology Journal,2009,17(1):37-48.
    [151]Bottomley D, Craig D, Johnston L. Neutralization of acid runoff by groundwater discharge to streams in Canadian Precambrian Shield watersheds. Journal of Hydrology,1985,75(1984): 1-26.
    [152]Pearce A, Stewart M, Sklash M. Storm runoff generation in humid headwater catchments:1. Where does the water come from. Water Resources Research,1986,22(8):1263-1272.
    [153]Fritz P, Cherry J, Weyer K, et al. Storm runoff analyses using environmental isotopes and major ions. Panel Proceedings Series-International Atomic Energy Agency (IAEA),1976.
    [154]Mul M L, Mutlibwa R K, Uhlenbrook S, et al. Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania. Physics and Chemistry of the Earth,2008,33(1-2): 151-156.
    [155]Liu Y H, Fan N J, An S Q, et al. Characteristics of water isotopes and hydrograph separation during the wet season in the Heishui River, China Journal of Hydrology,2008,353(3-4): 314-321.
    [156]Heppell C M, Chapman A S. Analysis of a two-component hydrograph separation model to predict herbicide runoff in drained soils. Agricultural Water Management,2006,79(2): 177-207.
    [157]Pinder G, Jones J. Determination of the ground-water component of peak discharge from the chemistry of total runoff.1969.
    [158]Zhao D, Seip H, Zhang D. Pattern and cause of acidic deposition in the Chongqing region, Sichuan Province, China Water, Air,& Soil Pollution,1994,77(1):27-48.
    [159]Xue H, Schnoor J. Acid deposition and lake chemistry in southwest China Water, Air,& Soil Pollution,1994,75(1):61-78.
    [160]Ashton K. The analysis of flow data from karst drainage systems. Transactions of the Cave Research Group of Great Britain,1966,7(2):161-203.
    [161]Toran L, Tancredi J, Herman E, et al. Conductivity and sediment variation during storms as evidence of pathways to karst springs. Perspectives on Karst geomorphology, hydrology, and geochemistry:a tribute volume to Derek C. Ford and William B. White,2006:169.
    [162]Wunderlin D, Diaz M, Ame M, et al. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study:Suquia river basin (Cordoba, Argentina). Water Research,2001,35(12):2881-2894.
    [163]Simeonov V, Stratis J, Samara C, et al. Assessment of the surface water quality in northern Greece. Water Research,2003,37(17):4119-4124.
    [164]Carroll S, Goonetilleke A. Assessment of high density of onsite wastewater treatment systems on a shallow groundwater coastal aquifer using PCA. Environmetrics,2005,16(3):257-274.
    [165]Koonce J E, Yu Z, Farnham I M, et al. Geochemical interpretation of groundwater flow in the southern Great Basin. Geosphere,2006,2(2):88-101.
    [166]Lamouroux C, Hani A. Identification of groundwater flow paths in complex aquifer systems. Hydrological Processes,2006,20(14):2971-2987.
    [167]Omo-Irabor O O, Olobaniyi S B, Oduyemli K, et al. Surface and groundwater water quality assessment using multivariate analytical methods:A case study of the Western Niger Delta, Nigeria. Physics and Chemistry of the Earth,2008,33(8-13):666-673.
    [168]Rao N S, Rao J P, Subrahmanyam A. Principal component analysis in groundwater quality in a developing urban area of Andhra Pradesh. Journal of the Geological Society of India,2007, 69(5):959-969.
    [169]Mahler B J, Valdes D, Musgrove M, et al. Nutrient dynamics as indicators of karst processes: Comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, USA). Journal of Contaminant Hydrology,2008,98(1-2):36-49.
    [170]刘再华,W. Dreybrodt,王海静.一种由全球水循环产生的可能重要CO2汇.科学通报,2007,52(20):2418-2422.
    [171]Bouwer H. Integrated water management:emerging issues and challenges. Agricultural Water Management,2000,45(3):217-228.
    [172]Bronson K F, Malapati A, Booker J D, et al. Residual soil nitrate in irrigated Southern High Plains cotton fields and Ogallala groundwater nitrate. Journal of Soil and Water Conservation, 2009,64(2):98-104.
    [173]Yadav S. Formulation and estimation of nitrate-nitrogen leaching from corn cultivation. Journal of Environmental Quality,1997,26(3):808-814.
    [174]白秀娟.稻鸭共生生态模式(一).农民科技培训,2005(8):14-15.
    [175]汪智军,杨平恒,旷颖仑,etal.基于~15N同位素示踪技术的地下河硝态氮来源时空变化特征分析.环境科学,2007,30(12):3548-3554.
    [176]Valdes D, Dupont J P, Laignel B, et al. A spatial analysis of structural controls on Karst groundwater geochemistry at a regional scale. Journal of Hydrology,2007,340(3-4):244-255.
    [177]Calo F, Parise M. Waste management and problems of groundwater pollution in karst environments in the context of a post-conflict scenario:The case of Mostar (Bosnia Herzegovina). Habitat International,2009,33(1):63-72.
    [178]Currens J C. Changes in groundwater quality in a conduit-flow-dominated karst aquifer, following BMP implementation. Environmental Geology,2002,42(5):525-531.
    [179]Zhou W F, Beck B F, Wang J, et al. Groundwater monitoring for cement kiln dust disposal units in karst aquifers. Environmental Geology,2007,52(4):761-777.
    [180]Elmi A, Madramootoo C, Egeh M, et al. Water and fertilizer nitrogen management to minimize nitrate pollution from a cropped soil in southwestern Quebec, Canada Water, Air, & Soil Pollution,2004,151(1):117-134.
    [181]Voutsa D, Manoli E, Samara C, et al. A study of surface water quality in Macedonia, Greece: Speciation of nitrogen and phosphorus. Water, Air, & Soil Pollution,2001,129(1):13-32.
    [182]地下水水质标准(GB/T 14848-93).1993.
    [183]McCarthy J, Zachara J. Subsurface transport of contaminants. Environmental Science & Technology,1989,23(5):496-502.
    [184]Herman E, Toran L, White W. Threshold events in spring discharge:Evidence from sediment and continuous water level measurement. Journal of Hydrology,2007,351(1-2):98-106.
    [185]Mahler B, Lynch L, Bennett P. Mobile sediment in an urbanizing karst aquifer:implications for contaminant transport. Environmental Geology,1999,39(1):25-38.
    [186]White E, White W. Dynamics of sediment transport in limestone caves. Bulletin of the National Speleological Society,1968,30(4):115-129.
    [187]顾思丁,刘新超.浊度传感器应用于连续监测污水厂进水悬浮颗粒浓度的研究.四川环境,2009,28(5):1-3.
    [188]Li ZP, Zhang TL and Chen BY. Soil organic matter dynamics in a cultivation chronosequence of paddy fields in subtropical China Acta Pedologica Sinica,2003,40(3):352-358.
    [189]Goldscheider N, Pronk M, Zopfi J. Role of sediments and suspended particles for contaminant attenuation and transport in karst aquifer systems, 中国岩溶,2009,28(2):113-121.
    [190]杨平恒,罗鉴银,袁道先,et al.降雨条件下岩溶槽谷泉水的水文地球化学特征.水利学报,2009,40(1):67-74.
    [191]曹云松,罗祥康,黄德辉.试论重庆酸雨对地下水水质变异的影响.中国地质灾害与防治学报,1995,6(3):43-48.
    [192]张卫东,张大元,陈军,et al.重庆地区降水污染分析.重庆环境科学,2003,25(8):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700