用户名: 密码: 验证码:
磁化率在碳酸盐岩地层旋回分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁化率是物质被磁化难易程度的一种度量。尽管碳酸盐岩磁化率变化受到陆源碎屑物质输入量、相对海平面变化、沉积速率变化、成岩作用等因素的影响,但仍然可以记录稳定的米兰柯维奇旋回信号。中国华南震旦系陡山沱组沉积连续,出露完整,是新元古代“雪球地球”事件之后沉积的第一套地层,对其开展详细的旋回地层学研究对认识前寒武纪地球天文动力学、建立陡山沱组天文年代标尺及正确评价陡山沱组地质事件的环境学意义均具有重要意义。
     论文详细介绍了旋回地层学分析的基本原理及其在海陆相地层中的研究进展。系统介绍了旋回地层学分析的数学方法,如以傅立叶变换为基础的谱估计方法以及一些常用的其它谱估计方法,讨论了谱峰值的显著性检验。重点介绍了本文使用Matlab工具编写的谱分析程序。分别介绍了旋回分析采样数据最小长度的计算方法、滤波方法;沉积速率变化、整流过程与生物扰动等对旋回信号识别的影响,以及旋回分析最佳采样间隔的确定原则。
     湖北宜昌的三峡地区的台地相陡山沱组可分为四段,其中陡三段为60~80 m灰-灰黑色泥质、白云质灰岩以及白云岩,陡四段为约10m厚的发育大量大型碳酸盐结核黑色页岩,露头上岩性变化显示出明显的旋回性特征。论文对湖北秭归附近的两个震旦系陡山沱组三、四段剖面进行连续采样和磁化率测量,并对磁化率数据进行了详细的旋回地层学分析,确定出可能的长偏心率、斜率和岁差旋回。结合陡山沱组四段551Ma的放射性同位素年龄,建立了陡山沱组三、四段基于长偏心率旋回的“浮动”天文年代标尺。结果显示,陡山沱组四段沉积持续时间为6.2Ma,三、四段界线年龄为557.2Ma;三段沉积持续的时间为28Ma,其中薄层部分沉积持续时间为14.1Ma;三段与二段界线年龄为585.2Ma;跨越三、四段及灯影组底部的δ13C负漂移持续时间为24.94Ma,负漂移开始时间为575.94Ma。旋回地层学研究结果为精确估计发生在陡山沱组三、四段的重大环境、生物和古气候变化提供了重要年代依据。研究结果还表明磁化率能够作为前寒武纪的古气候替代性指标。
Susceptibility is a measurement of materials whether it is easy to be magnetized or is hard to be magnetized when it is placed in an applied field. Though susceptibility of carbonate rocks is affected by terristrial clastic supplies,relative sea level changes, varying carbonate accumulation rates and potential diagenesis, it is still able to encode stable Milankovitch cycles’signals.The Sinian Doushantuo Formation in south China deposited consecutively and well exposed. It is the first successions which deposited after the Neoproterozoic snowball earth events. Detailed cyclostratigraphic study on this succession has important significance on understanding astrodynamics of the Earth in Precambrian period,on setting up the astronomical time scale of the Doushantuo Formaton as well as on correctly evaluating the environmental significance of geologic events in the Doushantuo Formation.
     Principles and progresses of cyclostratigraphic analysis in marine and terrestrial deposits are detailly introduced. This thesis also systematicly introduced mathematical methods such as power spectrum estimation methods which are based on fourier transforms as well as other commonly used power spectrum estimation methods in cyclostratigraphic analysis and discussed the statistical significance of spectra peaks.A power spectrum estimation program which was writen by Matlab tools is also emphasized. The least record length for cyclostratigraphic analysis, filtering , infulences of accumulation rates changes, rectification, bioturbation on recognition of Milankovitch signals and the principal by which the fittest sampling interval is decided are introduced respectively.
     The platform Doushantuo Formation in Three Gorges area of Hubei Province can be lithologically divided into four members. Among these members,the third member is composed of 60-80-m-thick shaly or dolomitic limestones,and thick dolomite. The fourth member consists of~10-m-thick black shale containing abundant carbonate concretions. Lithological changes on crops all displayed obvious Milankovitch cycles character. This thesis carried out consecutive sampling and measuring of susceptibility on two sections of the third member and the fourth member of the Sinian Doushantuo Formation near Zigui county,Hubei province. Detailed cyclostratigraphic analysis on susceptibility data is conducted and potential cycles of long eccentricity,obliquity and precessions are recognized. Combined with the precise radiometric age of 551Ma on the top of the fourth part of the Doushantuo Formation and based on the long eccentricity signals, the floating astronomical time scale for the third part and the fourth part of the Doushantuo Formation was set up.The results reveal that the fourth part of the Doushantuo Formation lasts for 6.2 million years. The boundary age of the fourth part and the third part is 557.2 million years. The third part of the Doushantuo Formation lasts for 28 million years. Successions of thin- laminated limestones parts in the third part last for 14.1 millions years. The boundary age of the second part and the third part is 585.2 million years. The negativeδ13C anomalies which spans the the third part, the fourth part of the Doushantuo Formation and the bottom of the Dengying Formation lasts for 24.94 million years and it starts at 575.94 million years ago.
     Cyclostratigraphic study results provide a critical age support for precisely estimating significant changes on environments,biology and palaeoclimate in the third part and the fourth part of the Doushantuo Formation. This research also reveals that susceptibility can be used as a palaeoclimate proxy for Precambrian successions.
引文
[1] Abdul Aziz H, van Dam J, Hilgen F J,et al. Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 2004, 222: 243-258
    [2] Abels H A, Aziz H A, Krijgsman W, et al. Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle Miocene, Spain). Earth and Planetary Science Letters, 2010, 289: 220-231
    [3] Amthor J E, Grotzinger J P, Schroder S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003,31: 431-434
    [4] Anderson R Y. Orbital forcing of evaporite sedimentation. Dordrecht: Dordrecht Reidel Publication Company, 1984,147-162
    [5] Barfod G H, Albarede F, Knoll A H, et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 2002, 201: 203-212
    [6] Bengtson S and Zhao Y. Predatorial Borings in Late Precambrian Mineralized Exoskeletons. Science, 1992, 257: 367-369
    [7] Berger A and Loutre M F. Astronomical forcing through geological time. Oxford: Blackwell Scientific Publications, 1994,15-24
    [8] Berger A L. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. Journal of the Atmospheric Sciences, 1978, 35: 2362-2367
    [9] Bloomfield P. Fourier Analysis of Time Series: an Introduction. London: Wiley, 1976
    [10] Boulila S, Hinnov L A, Huret E, et al. Astronomical calibration of the Early Oxfordian (Vocontian and Paris basins, France): Consequences of revising the Late Jurassic time scale. Earth and Planetary Science Letters, 2008,276:40-51
    [11] Bowring S A, Myrow P, Landing E,et al. NASA Astrobiology Unit,General Meeting 2003,Abstract 13045, 2003 http://nai.arc.nasa.gov/institute/general_meeting_2003/Abstract Book.pdf
    [12] Broomhead D S and King G P. Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 1986, 20: 217-236
    [13] Condon D, Zhu M Y, Bowring S, et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98
    [14] Cooley J W and Tukey J W. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation, 1965, 19: 297-301
    [15] da Silva A-C, Potma K, Weissenberger J A W, et al. Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and Alberta, Canada. Sedimentary Geology, 2009, 214: 3-18
    [16] Dunlop D J and Ozdemir O. Rock magnetism:fundamentals and frontiers. Cambridge studies in magnetism. Cambridge: Cambridge University Press, 1997
    [17] El-Hilo M, K O G and Chantrell RW. Susceptibility phenomena in a fine article system,II. Feild dependence of the peak.Journal of Magnetism and Magnetic Materials, 1992, 114: 307-313
    [18] Evans M E and Heller F. Environmental Magnetism-Principles and Applications of Enviromagnetics. San Diego: Academic Press,2003
    [19] Fiet N, Beaudoin B and Parize O. Lithostratigraphic analysis of Milankovitch cyclicity in pelagic Albian deposits of central Italy: implications for the duration of the stage and substages. Cretaceous Research, 2001, 22: 265-275
    [20] Frakes L A and Jianzhong S. A carbon isotope record of the upper Chinese loess sequence: Estimates of plant types during stadials and interstadials.Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108: 183-189
    [21] Gale A S, Young J R, Shackleton N J, et al. Orbital Tuning of Cenomanian Marly Chalk Successions: Towards a Milankovitch Time-Scale for the Late Cretaceous. Philosophical Transactions of the Royal Society,London,Series A, 1999, 357: 1815-1829
    [22] Ge S, Shi X and Han Y. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea. Chinese Science Bulletin, 2003, 48: 37-41
    [23] Ghil M, Allen M R, Dettinger M D, et al. Advanced spectral methods for climatic time series. Reviews of Geophysics, 2002, 40(1),doi:10.1029/2000RG000092
    [24] Goforth T and Herrin E. an automatic seismic signal detection algorithm based on the Walsh transform. Bulletin of the Seismological Society of America, 1981,71: 1351-1360
    [25] Goodwin A M. Precambrian Geology:The Dynamic Evolution of the Continental Crust. London: Academic Press, 1991,1-666
    [26] Hays J D, Imbrie J and Shackleton N J. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 1976, 194: 1121-1132
    [27] Heard T G, Pickering K T and Robinson S A. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth and Planetary Science Letters, 2008,272: 130-138
    [28] Henderson G M. Caving in to new chronologies. Science, 2006, 313: 620-622
    [29] Hinnov L A and Ogg J G. Cyclostratigraphy and the Astronomical Time Scale. Stratigraphy, 2007, 4: 239-251
    [30] Hinnov L A and Park J J. Strategies for Assessing Early-Middle (Pliensbachian-Aalenian) Jurassic Cyclochronologies. Philosophical Transactions of the Royal Society,London,Series A, 1999, 357: 1831-1859
    [31] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic Snowball Earth. Science, 1998, 281:1342-1346
    [32] Hoffman P F and Schrag D P. The snowball Earth hypothesis:testing the limits of global change. Terra Nova, 2002, 14: 129-155
    [33] Holbourn A, Kuhnt W, Schulz M, et al. Orbitally-paced climate evolution during the middle Miocene "Monterey" carbon-isotope excursion. Earth and Planetary Science Letters, 2007, 261: 534-550
    [34] House M R. Devonian sedimentary microrhythms and a givetian time scale.Proceedings of the Ussher Society, 1991,7:392-395
    [35] Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth and Planetary Science Letters, 2002, 203: 413-429
    [36] Jackson M, McCabe C, Ballard M M, et al. Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalachian basin. Geology, 1988, 16: 592-595
    [37] Jiang G, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean [delta]13C gradient. Earth and Planetary Science Letters, 2007, 261: 303-320
    [38] Jiang G, Kennedy M J and Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426: 822-826
    [39] Kennedy M J, Christie-Blick N and Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology, 2001, 29: 443-446
    [40] Kent D V and Olsen P E. Astronomically tuned geomagnetic polarity timescale for the Late Triassic. J. Geophys. Res., 1999, 104:12831-12841
    [41] Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball earth. in Schopf J W, Klein C A, eds. The Proterozoic Bioshere:a multidisciplinary study. Cambridge University Press, 1992, 51-52
    [42] Knoll A H. End of the Proterozoic Eon. Sci. Am, 1991, 265: 64-73
    [43] Knoll A H. A new period for the geologic time scale. Science, 2004, 305: 621-622
    [44] Knoll A H. The Ediacaran Period: a new addition to the geologic time scale. lethaia, 2006, 39: 13-30
    [45] Kumar P and Foufoula-Georgiou E. Wavelet Analysis for Geophysical Applications. Rev. Geophys., 1997, 35: 385-412
    [46] Laskar J. The chaotic behavior of the solar system: A numerical estimate of the chaotic zones. Icarus, 1990, 88: 266-291
    [47] Laskar J, Joutel F and Boudin F. Orbital, precessional, and insolation quantities for the Earth from -20 MYR to +10 MYR. Astronomy and Astrophysics, 1993, 270: 522-533
    [48] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth. A&A, 2004, 428: 261-285
    [49] Lathi B P. signal processing and linear systems. Carmichael: Berkeley Cambridge Press, 1998, 1-850
    [50] Li Y-X, Bralower T J, Montanz I P, et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120Ma). Earth and Planetary Science Letters, 2008, 271: 88-100
    [51] Ling H-F, Feng H-Z, Pan J-Y, et al. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 158-174
    [52] Lisiecki E L and Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic {delta} 18 O records. Paleoceanography, 2005, 20, PA1003:1-17
    [53] Liu Q, Jackson M J, Banerjee S K, et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. J. Geophys. Res., 2004, 109, B12107,doi: 10.1029/2004jb003249
    [54] Liu Q, Torrent J, Maher B A, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res., 2005,110, B11102,doi: 10.1029/2005jb003726
    [55] Locklair R E and Sageman B B. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: A Coniacian-Santonian orbital timescale. Earth and Planetary Science Letters, 2008, 269: 540-553
    [56] Lomb N R. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 1976, 39: 447-462
    [57] Lourens L J, Hilgen F J, Shackleton N J,et al. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2004, 1-589
    [58] Lourens L J, Sluijs A, Kroon D, et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature, 2005, 435: 1083-1087
    [59] Lowrie W and Heller F. Magnetic properties of marine limestones. Reviews of Geophysics and Space Physics, 1982, 20: 171-192
    [60] Machlus M L, Olsen P E, Christie-Blick N, et al. Spectral analysis of the lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: Support for Milankovitch cyclicity. Earth and Planetary Science Letters, 2008, 268: 64-75
    [61] Maher B A. Magnetic properties of some synthetic submicron magnetites. Geophysical Journal, 1988, 94: 83-96
    [62] Mann M E and Lees J M. Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 1996,33: 409-445
    [63] Maruyama S and Liou J G. Ultrahigh-pressure metamorphism and its significance on the Proterozoic-Phanerozoic boundary. The Island Arc, 1998, 7: 6-35
    [64] Morin F J. Magnetic susceptibility of a~Fe2o3 and a~Fe2o3 with added titanium. Physical Review, 1950, 78: 819-820
    [65] OrgeIra M J, Walther A M, Vásquez C A, et al. Mineral magnetic record of paleoclimate variation in loess and paleosol from the Buenos Aires formation (Buenos Aires, Argentina). Journal of South American Earth Sciences, 1998, 11: 561-570
    [66] Osleger D. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls. Geology, 1991, 19: 917-920
    [67] Paillard D, Labeyrie L and Yiou P. Macintosh program performs time-series analysis. EOS, 1996,77: 379
    [68] Percival D B and Walden A T. Spectral analysis for physical applications.Multitaper and conventional univariate techniques. Cambridge: Cambridge University Press, 1993
    [69] Pickard A L, Barley M E and Krapez B. Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia. Sedimentary Geology, 2004, 170: 37-62
    [70] Priestley M B. spectral analysis and time series. London: Academic Press, 1981, 1-890
    [71] Prokoph A and Barthelmes F. Detection of nonstationarities in geological time series: Wavelet transform of chaotic and cyclic sequences. Computers & Geosciences, 1996, 22: 1097-1108
    [72] Quinn T R, Tremaine S and Duncan M. A three million year integration of the earth's orbit. Astronomical Journal, 1991,101: 2287-2305
    [73] Rochette P. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 1987, 9: 1015-1020
    [74] Sawaki Y, Ohno T, Tahata M,et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 2010, 176: 46-64
    [75] Scargle J D. Studies in astronomical time series analysis II. Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 1982, 263: 835-853
    [76] Scargle J D. Studies in astronomical time series analysis. III. Fourier transforms,autocorrelation functions,and cross-correlation functions of unevenly spaced data. The Astrophysical Journal, 1989, 343: 874-887
    [77] Schulz M and Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences, 2002, 28: 421-426
    [78] Schulz M and Stattegger K. SPECTRUM:Spectral analysis of unevenly spaced paleoclimatic time series. Computers & Geosciences, 1997, 23: 929-945
    [79] Schwarzacher W. Cyclostratigraphy and the Milankovitch Theory. Amsterdam: Elsevier Science Publishers B.V., 1993,1-225
    [80] Stage M. Magnetic susceptibility as carrier of a climatic signal in chalk. Earth and Planetary Science Letters, 2001,188:17-27
    [81] Sun W. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 1986, 31: 361-375
    [82] Tang T, Zhang J and Jiang X. Discovery and significance of the Late Sinian fauna from western Hunan and Hubei. Acta Stratigr.Sin., 1978, 2: 32-45
    [83] Thompson R and Oldfield F. Environmental Magnetism. London: George Alien & Unwin, 1986
    [84] Thomson D J. Spectrum estimation and harmonic analysis. Proceedings of IEEE, 1982, 70:1055-1096
    [85] Torrence C and Compo G P. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 1998, 79: 61-78
    [86] Varadi F, runnegar B and Ghil M. Successive Refinements in Long-Term Integrations of Planetary Orbits. The Astrophysical Journal, 2003, 592: 620-630
    [87] Vautard R, Yiou P and Ghil M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 1992, 58: 95-126
    [88] Vernekar A D. Long-period global variations of incoming solar radiation. Meteorological monographs, 1972, 12
    [89] Verwey E J W. Electronic conduction of magnetite(Fe3o4) and its transition point at low temperatures. Nature, 1939, 144: 327-328
    [90] Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 2000, 100:371-433
    [91] Weedon G P. Time-Series Analysis and Cyclostratigraphy-Examining stratigraphic records of environmental cycles. Cambridge: Cambridge University Press, 2003, 1-259
    [92] Weedon G P and Jenkyns H C. Cyclostratigraphy and the Early Jurassic timescale: Data from the Belemnite Marls, Dorset, southern England. Geological Society of America Bulletin, 1999, 111: 1823-1840
    [93] Westerhold T, Rohl U, Laskar J, et al. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography, 2007, 22,doi: 10.1029/2006PA001322
    [94] Worm H U. On the superparamagnetic-stable single domain transition for magnetite and frequency dependency of susceptibility. Geophysical Journal International, 1998,133:201-206
    [95] Worm H U, Clark D and Dekkers M J. Magnetic susceptibility of pyrrhotite:Grain size,field and frequency dependence. Geophysical Journal International, 1993, 114: 127-137
    [96] Wu H, Zhang S, Jiang G,et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 2009, 278: 308-323
    [97] WU H, ZHANG S, JIANG G, et al. Magnetic susceptibility variations of the Edicaran cap carbonates in the Yangtze platform and their implications for paleoclimate.Chinese journal of oceanology and limnology, 2005, 23:291-298
    [98] Xiao S and Knoll A H. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. lethaia, 1999, 32: 219-238
    [99] Xiao S, Knoll A H, Yuan X, et al. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation,China, and the early evolution of florideophyte red algae. Am. J. Bot., 2004,91: 214-227
    [100] Xiao S, Yuan X, Steiner M, et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe Biota, south China. Journal of Paleontology, 2002, 76: 347-376
    [101] Xiao S, Zhang Y and Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391: 553-558
    [102] Yang T, Liu Q, Wu Y, et al. Characteristics of magnetic susceptibility in the depth of 100~2000m mainhole of Chinese Continental Scientific Drilling and its geological implications. Acta Petrologica Sinica, 2006, 22: 2089-2094
    [103] Yin C, Bentson S and Yue Z. Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 2004, 49: 1-12
    [104] Yin C, Gao L and Xing Y. Discovery of Tianzhushania in Doushantuo phosphorites, in Weng'an, Guizhou Province. Acta Palaeontol. Sin., 2001a, 40: 497-504
    [105] Yin C, Gao L and Xing Y. New Observations on Phosphatized Spheroidal Fossils in Sinian Doushantuoan Phosphorites in Weng'an, Guizhou Province. Acta Geologica Sinica, 2001b, 75: 145-150
    [106] Yin C, Gao L and Xing Y. Advacnes in the Study of Permineralized Biota of Doushantuo Stage in Weng'an, Guizhou Provice and Their Geological Significance: Acta Geoscientia Sinica, 2002, 23: 47-54
    [107] Yin C, Tang F, Liu Y,et al. New U-Pb zircon ages from the Ediacaran(Sinian) System in the Yangtze Gorges:constraint on the age of Miaohe biota and Marinoan glaciation. Geological Bulletin of China, 2005, 24: 393-400
    [108] Yiou P, Baert E and Loutre M F. spectral analysis of climate data. Surveys in Geophysics, 1996, 17: 619-663
    [109] Yuan X and Hofmann H J. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 1998, 22: 189-222
    [110] Zhang S, Jiang G, Zhang J, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473-476
    [111] Zhang Y, Yin L, Xiao S, et al. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleontol. Soc. Mem., 1998, 50: 1-52
    [112] Zhao Z, Xing Y, Ding Q, et al. The Sinian System of Hubei. Wuhan: China University of Geosciences Press, 1988,1-205
    [113] Zhou C and Xiao S. Ediacaran [delta]13C chemostratigraphy of South China. Chemical Geology, 2007, 237: 89-108
    [114] Zhu R X, Matasova G, Kazansky A, et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section,southern Siberia. Geophysical Journal International, 2003,152:335-343
    [115]白凌燕.宜昌陡山沱组碳酸盐岩岩石磁学研究:[硕士学位论文].北京:中国地质大学(北京), 2008
    [116]陈后金,薛健,胡健.数字信号处理.北京:高等教育出版社, 2004
    [117]陈建强,周洪瑞,王训练.沉积学及古地理学教程.北京:中国地质大学(北京), 1998
    [118]陈玉东.数字信号处理.北京:地质出版社, 2005,1-288
    [119]董进,张世红, Ganqing J,等.华南宜昌陡山沱组四段碳酸盐结核形成环境研究及其烃源岩评价意义.中国科学(D辑:地球科学), 2009, 39:317-326
    [120]丁莲芳,李勇,胡夏嵩,等.震旦纪庙河生物群.北京:地质出版社,1996
    [121]龚一鸣,杜远生,童金南,等.旋回地层学:地层学解读时间的第三里程碑.地球科学-中国地质大学学报, 2008, 33: 443-457
    [122]胡广书.数字信号处理--理论、算法与实现.北京:清华大学出版社,2003
    [123]简念川,王广利,李金岭,等.基于Lomb算法的非等间距VLBI观测资料频谱分析研究.天文学报, 2006,47: 336-347
    [124]李海燕,张世红,方念乔,等.孟加拉湾MD77-181岩芯磁学记录及其古环境意义.科学通报,2006,51(18):2166-2174
    [125]李朋武,崔军文,高锐,等.柴达木地块新生代古地磁新数据及其构造意义.地球学报,2001,22(6):563-568
    [126]刘青松,邓成龙.磁化率及其环境意义.地球物理学报, 2009, 52: 1041-1048
    [127]刘青松,邓成龙,潘永信.磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义.第四纪研究, 2007,27: 955-962
    [128]柳永清.旋回年代学及其应用意义-华北地台中寒武世碳酸盐岩鲕滩高频旋回的年代学研究.地质论评, 2001, 47: 53-56
    [129]鹿化煜,胡挺,王先彦. 1100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析.高校地质学报, 2009, 15: 149-158
    [130]梅冥相,马永生,郭庆银.天津蓟县雾迷山旋回层基本模式及其马尔柯夫链分析.高校地质学报, 2001, 7: 288-299
    [131]梅冥相,周洪瑞,杜本明,等.雾迷山旋回层的相序组构特征及其在长周期层序中的有序叠加形式——来自前寒武纪的米兰柯维奇旋回证据.现代地质, 1999,2: 226-227
    [132]彭兴芳,冯庆来,李周波,等.广西东攀二叠系-三叠系界线剖面地球化学高分辨率旋回研究.中国科学(D辑:地球科学), 2007, 37: 1565-1570
    [133]桑树勋,郑永飞,张华,等.徐州地区下古生界碳酸盐岩的碳、氧同位素研究.岩石学报, 2004, 20: 707-716
    [134]眭素文.松辽盆地旋回地层的地球物理替代性指标及分析方法研究:[博士学位论文].北京:中国地质大学(北京), 2009
    [135]同济大学数学教研室.高等数学(下册).北京:高等教育出版社, 2001, 293-315
    [136]王训练.露头层序地层学研究中定义和识别不同级别沉积层序的标准.中国科学(D辑),2003,33(11):1057-1068
    [137]王训练,王雷,张海军,等.陕西镇安西口石炭系-二叠系界线剖面综合地层学研究.地学前缘(中国地质大学(北京);北京大学),2006,13(6):291-302
    [138]熊盛青,周伏洪,姚正熙,等.青藏高原中西部航磁调查.北京:地质出版社, 2001,1-221
    [139]杨建强,崔之久,易朝露,等.云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义.第四纪研究, 2004, 24: 591-597
    [140]杨黎静,汪卫国.台湾海峡西部表层沉积物磁化率特征.沉积学报, 2009, 27: 697-703
    [141]尹崇玉,柳永清,高林志,等.震旦(伊迪卡拉)纪早期磷酸盐化生物群--瓮安生物群特征及其环境演化.北京:地质出版社, 2007
    [142]余素玉,何镜宇.沉积岩石学.武汉:中国地质大学出版社, 1989
    [143]张彭熹,张保珍,钱桂敏,等.青海湖全新世以来古环境参数的研究.第四纪研究, 1994,3: 225-238
    [144]张世红.论岩石磁性地层学的概念、方法和应用.地学前缘(中国地质大学,北京), 2000, 7: 498
    [145]张世红,李海燕.地磁学、古地磁学和环境磁学的研究新进展-第32届国际地质大学学科总结和评述.现代地质, 2004, 18: 415-422
    [146]张世红,王训练,朱鸿.碳酸盐岩磁化率与相对海平面变化的关系-黔南泥盆-石炭系例析.中国科学(D辑:地球科学), 1999, 29: 558-566
    [147]曾允孚,夏文杰.沉积岩石学.北京:地质出版社, 1986
    [148]周洪瑞,梅冥相,杜本明,等.天津蓟县雾迷山组高频旋回沉积特征.现代地质,2006,20(2):209-215
    [149]周锡华,孟祥聪,王金龙,等.智能磁化率仪的研制.物探与化探,2005,29(5): 428-430
    [150]朱岗崑.古地磁学--基础、原理、方法、成果与应用.北京:科学出版社, 2005
    [151]朱宗敏,张世红,李海燕,等.洞穴石笋的磁组构特征及其对石笋生长机制的指示意义.北京:中国地球物理学会第二十四届年会,2008,548-548
    [152]宗孔德,胡广书.数字信号处理.北京:清华大学出版社, 1988, 1-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700