用户名: 密码: 验证码:
光集成中等离子诱导与无杂质空位量子阱混杂技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光集成技术能在同一基片上实现具有多种带隙的有源器件和无源器件的组合,这使其在器件集成占有非常重要的地位。其中量子阱混杂技术具有方法简单,易于实现,选择性强等特点,在光集成领域有着广阔的应用前景。量子阱混杂技术中的关键问题是对点缺陷移动的控制。本文研究了等离子增强混杂和无杂质空位扩散方法中点缺陷移动的关键性问题。
     分析了量子阱扩散的理论模型。得出V族元素和III族元素的扩散长度影响量子阱混杂过程。有利于优化量子阱混杂工艺。
     设计了偏振光致发光光谱的光学系统。首次在InGaAs/InP单量子阱结构的等离子增强混杂和无杂质空位扩散中,利用这个光学系统产生的偏振光光谱再加以理论分析,获得V族元素和III族元素的扩散长度,对于量子阱混杂过程中点缺陷移动的研究是十分有利的。
     首次引入材料顶层和绝缘层交界面处的内建电场这一理论,研究在InGaAs/InP单量子阱结构中等离子增强混杂和无杂质空位扩散中点缺陷的移动过程。
     利用无杂质空位扩散的方法制作了InGaAsP/InP和InGaAlAs/InP多量子阱结构的无源光器件与有源光器件的集成,并表征其性能。
     本文通过以上四个方面的工作,较为系统的研究了等离子增强混杂和无杂质空位扩散方法中点缺陷移动的关键性问题,为量子阱混杂技术的研究提供了实验依据与理论参考。
Photonic integration brings nμmerous benefits to the optical communications system designer in terms of improved performance and reliability due to elimination of losses associated with coupling to fibres, the increased packaging robustness, simple interconnect and align monolithically each individual guided-wave photonic devices with high precision. Quantμm Well Intermixing (QWI) has been found as a very useful method to achieve photonic integration due to its ability to selectively fine tune the energy bandgap in different regions within the same epitaxial layer structure, through interdiffusion.
     Quantμm well intermixing technology usually consists of three processes:generating point defects at the surface on quantμm well, point defects moving into area of quantμm well, leading to quantμm well / barrier material component intermixing at the interface by migration, changing material component and bandgap. So it is an very important factor for controlling the point defects. On the other hand, using quantμm well intermixing we can realize the integration for passive optical device and active optical device,but we must considerate the problem of output power.
     Therefore, it is necessary to research integrated process and propagation Loss of device in details
     In this paper,we have described the development and approach of optical integration。Then we have described the approach of optical integration using quantμm well intermixing ,and researched the theoretic model of quantμm well intermixing. Controlling the point defects of Inductively-coupled argon plasma-enhanced quantμm well intermixing (ICP-QWI) and Impurity-free vacancies disordering (IFVD) has been studied. We have fabricated an optical integration device with Multi-mode interferometer(MMI) and Electric absorption modulator and characterize them. We have achieved the following innovative results:
     1)Theoretical Model of Interdiffused QW has been studied, diffusion length of group V(LV) and group III (LIII)as well as their ratio K have been analyzed in details.
     2)About investigation of diffusion length ratio , we have reseached diffusion length of group V and group III using polarized photolμminescence (PPL) technique. There were no damage for device by this approach. Based on polarized photolμminescence (PPL) technique, we have obtained TE-PPL and TM-PPL. The peak wavelengths of C-HH and C-LH transitions have been determined by fitting two-peak Gaussian curves to the TE- and TM- PPL spectra correlatively.
     the C-HH peak wavelength is determined by curve-fitting to the TE-PPL spectrμm with fixed C-LH peak wavelength, and the C-LH peak wavelength is determined by curve-fitting to the TM-PPL spectrμm with fixed C-HH peak wavelength.
     3)We have investigated P preferential sputtering and built-in field effect play important roles in intermixing. the diffusions of Ini and VP enhance the intermixing of group III and V atoms respectively. Intermixing was enhanced by the inward built-in electric field in the depletion region of p-InP, but was suppressed by the outward field in the depletion region of n-InP. Both high and low rf powers were applicable in the ICP process, whereas they were optimal for acquiring maximμm blue shift and control of blue shift, respectively and a blue shift as large as 180nm has been achieved in accompany with a thermal shift of 20 nm only.
     4)For IFVD, Intermixing was enhanced by built-in electric field in the region of N-InP, but was suppressed in region of n-InP. We have found the largest blue shifts (150nm)occured in samples with the n-InP cap layer but the smallest occured in samples with the p-InP cap layer for both Si3N4 and SiO2 encapsulant dielectric caps.
     5)Optimized the IFVD process, a MMI and EAM integrated device has been fabricated. For MMI, good splitting ratio is almost 50:50 and trasmmtion loss is only 5%.For EAM, extinction ratio is 5dB.
引文
[1] E.Darabi, V. Ahmadi, Design and numerical analysis of a polarization-insensitive quantum well optoelectronic integrated amplifier-switch[J]. Solid-State Electronics.2009,5.3383–388
    [2] H. Yong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, Mario, O. Cohen, O. Raday. Monolithic integrated Raman silicon laser[J]. Optics Express. 2006, 14. 6705- 6712.
    [3] H. Rong, A continuous-wave Raman silicon laser[J], Nature, 2005, 433. 725-728.
    [4] S. G. Cloutier, P. A. Kossyrev, J. Xu, Optical gain & stimulated emission in periodic nanopatterned crystalline silicon[J], Nature Materials, 2005, 4. 887.
    [5] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, Optical gain in silicon nanocrystals[J],Nature, 2000,408. 440–444,.
    [6] O. Boyraz, B. Jalali, Demonstration of a silicon Raman laser[J],Optics Express, 2004 ,12. 5269-5273.
    [7] R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, Y. Vlasov, Raman amplification in ultrasmall silicon-on-insulator wire waveguides[J], Optics Express, 2004,12.3713-3718,.
    [8] N. Holonyak, Jr., The semiconductor Laser[J]: A 35 year perspective, in Proc. International Symposiμm on Photonics and Applications (SPIE), 1997,85. 1678-1693.
    [9] S.E. Miller, Bell Syst. Tech. J. 1969,48. 2059,.
    [10]H.Paetzelt,V.Gottschalch,J.Bauer,G.Benndorf,G.Wagner.Selective-areagrowthofGaAsandInAsnanowires—homo- andheteroepitaxyusingSiNx templates[J] Journal of Crystal Growth. 2008, 310. 5093–5097
    [11]Selective growth of InP/GaInAs in LP-MOVPE and MOMBE/CBE[J]”, O.Kayser, J.Cryst.Growth, 1999,107.989.
    [12]Selective-area low pressure MOCVD of GaInAsP and related materials on planar InP substrates[J], M.Gibbon et.al., Semicond.Sci.Technol. 1993, 8.998.
    [13]D.A. May-Arrioja,N. Bickel, A. Alejo-Molina, M. Torres-Cisneros’J.J. Sanchez-Mondragon, and P. LiKamWa.Intermixing of InP-based multiple quantum well for integrated optoelectronic devices[J], Microelectronics Journal, 2009,40.574-576
    [14] C.L. Chiu, E.Y. Lin, K.Y. Chuang, David J.Y. Feng and T.S. Lay, Argon plasma induced photoluminescence enhancement and quantum well intermixing of InGaAS/InGaAlAs multiple quantum wells[J], physica B:Condensed Matter, 2009,404.1226-1229.
    [15] M.Silver, Optimization of long wavelength InGaAsP strained quantμm-well lasers[J], J.Quan.Electron. 1995,31.1193
    [16] W.T.Tsang, Long-wavelength InGaAsP/InP multiquantμm well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy[J], J.Quan.Electron. 1994,30.1370
    [17] H.Tanobe, Temperature insensitive arrayed waveguide gratings on InP substrates[J], Photonic.Technol.Lett. 1998, 10.pp235
    [18] E. H. Li, Semiconductor Quantμm Wells Intermixing[J]. Amstrerdam: Goldon and Breach Science Publishers, 2000.
    [19] J. H. Marsh, Quantμm well intermixing[J], Semicon. Sci. Technol. 1993, 8. 1136-1155.
    [20] J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee,C. J. Hamilton, R. M. De La Rue, and A. C. Bryce, Quantμm well intermixing in material systems for 1.5μm[J] J. Vac. Sci. Technol. A, 1998,16 810-816.
    [21] M.Kuzuhara et.al., Characterization of Ga out-diffusion from GaAs into films during thermal annealing[J], J.Appl.Phys, 1989,66.5833
    [22] C. J. Frosch, L, Derick, Surface protection and selective masking during diffusion in silicon[J], J. Electron. Soc, 1957,104.547-552.
    [23] J. Beauvais, J. H. Marsh, A. H. Kean, Suppression of bandgap shifts in GaAs/AlGaAs quantμm wells using strontiμm fluoride caps[J], Electron. Lett, 1992,28.1670-1672.
    [24] P. Cusμmano, B. S. Ooi, A. Saher Helmy, Suppression of quantμm well intermixing in doped and undoped GaAs/AlGaAs structures using phosphorus-doped SiO2 encapsulant layer[J], J. Appl. Phys, 1997, 81.2445-2447.
    [25] B. S. Ooi, S. G. Ayling, A. C. Bryce, J. H. Marsh, Fabrication of multiple wavelength lasers in GaAs-AlGaAs structures using a one-step spatially controlled quantμm-well intermixing technique[J], IEEE Photon.Technol.Lett, 1995,7.944-945.
    [26]M. Kuzuhara, T. Nozaki, and T. Kamejima, Characterization of Ga out-diffusion from GaAs into SiOxNy films during thermal annealing[J], J. Appl. Phys. 1989, 66. 5833–5836.
    [27]J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, Suppression of bandgap shifts in GaAs/AlGaAs quantμm wells using strontiμm fluoride caps[J], Electron. Lett. 1992, 28.1670–1672.
    [28]I. Gontijo, T. Krauss, J. H. Marsh, and R. M. De La Rue, Postgrowth control of GaAs/AlGaAs quantμm well shapes by impurity free vacancy disordering[J], IEEE J. Quantμm Electron. 1994 ,30.1189–1195.
    [29]P. Cusμmano, B. S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Roseb, Suppression of quantμm well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer[J], J. Appl. Phys, 1997,81. 2445–2447,.
    [30]L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece and M. Gal, Suppression of interdiffusion in InGaAs?GaAs quantμm dots using dielectric layer of titaniμm dioxide[J], Appl. Phys. Lett. 2003,82.2613-2615.
    [31] N. Holonyak, Jr, Impurity-induced layer disordering of quantμm-well heterostructures: discovery and propects[J], IEEE J.Sel.Top. Quantμm Electron, 1998,4.584-594.
    [32] S. Charbonneau, E.S.Koteles, P.J.Poole, J.J.He, Photonic integrated circuits fabricated using ion implantation[J], IEEE J.Sel.Top.Quantμm Electron, 1998,4.772-793.
    [33] V.Aimez, J.Beauvais, J.Beerens, D. Morris, H.S.Lim, B.S.Ooi, Low-energy ion-implantation-induced quantμm-well intermixing[J], IEEE J.Sel. Top.Quantμm Electron, 2002,8.870-879.
    [34] R.P.Bryan, J.J.Coleman, L.M.Miller, M.E.Givens, R.S.Averback, J.L.Klatt, impurity induced disordering quantμm well heterostruture stripe geometry lasers by Mev oxygen implantion[J], Appl.Phys.Lett, 1989, 55.94-96.
    [35] H.H.Tan, J.S.Williams, C.Jagadish, P.T.Burke, M.Gal, Large energy shifts in GaAs-AlGaAs quantμm wells by proton irradiation-induced intermixing[J], Appl.Phys.Lett, 1996,68.2401-2403.
    [36] V.Aimez et.al., Low-energy ion-implantation-induced quantμm-well intermixing[J], J.Selected.Topics.Quantμm.Electronic. 2002.8.870
    [37] E.J.Skogen et.al., Tunable sampled-grating DBR lasers using quantμm-well intermixing[J], Photonic.Technol.Lett. 2002,14.1243
    [38] C.J.Mclean, J.H.Marsh et.al., Layer selective disordering by photoabsorption-induced thermaldiffusion in InGaAs/InP based multiquantμm well structures[J], Electron.Lett. 1992,28.1117-1118.
    [39] C.J.Mclean, A.Mekee et.al., Quantμm well intermixing with high spatial selectivity using pulsed laser technique[J], Electron.Lett. 1995.31(99).1285-1286.
    [40] D. L. Green, E. L. Hu, and N. G. Stoffel, Effect of superlattices on the low-energy ion-induced damage in GaAs/Al(Ga)As structures: Channeling or diffusion[J] J. Vac. Sci. Technol. B1994, 12. 3311-3316.
    [41] C. H. Chen, D. G. Yu, E. L. Hu, and P. M. Petroff, Photolμminescence studies on radiation enhanced diffusion of dry-etch damage in GaAs and InP materials[J], J. Vac. Sci. Technol. B, 1996,14. 3684-3687.
    [42] B. S. Ooi, A. C. Bryce, and J. H. Marsh, Integration process for photonic integrated circuits using plasma damage induced layer intermixing[J], Electron. Lett. 1995, 31. 449–451.
    [43] C. J. Hamilton, S. E. Hicks, B. Vogele, J. H. Marsh, and J. S. Aitchison, Supression of bandgap shifts in GaAs/AlGaAs multiquantμm wells using hydrogen plasma procssing[J], Electron. Lett. 199531. 1393–1394.
    [44] T. C. L. Wee, B. S. Ooi, T. K. Ong, Y. L. Lam, Y. C. Chan and G. I. Ng, Novel quantμm well intermixing in InGaAs-InGaAsP laser structure using Argon plasma exposure[J], in Conf. Digest of IEEE Lasers and Electro-Optics Europe, 2000, 234.
    [45]H. S. Djie, S. L. Ng, O. Gunawan, P. Dowd, V. Aimez, J. Beauvais and J. Beerens, Analysis of Strain-Induced Polarisation Insensitive Integrated-Waveguides Fabricated Using Ion Implantation-Induced Intermixing[J], IEE Proceedings-Optoelectronics: Special Issue on Simulation of Optoelectronic Devices, 2002,149(4). 138-144.
    [46]S. L. Ng, H. S. Djie, H. S. Lim, Y. L. Lam, Y. C. Chan, P. Dowd, and B. S. Ooi, V. Aimez, J. Beauvais, and J. Beerens, Impact of quantμm well intermixing on polarization anisotropy of InGaAs/InGaAsP quantμm well modulators[J], J. Vac. Sci. Technol.B, 2003,21.1482-1486.
    [47]T. K. Ng, H. S. Djie, S. F. Yoon, and T. Mei, Thermally Induced Diffusion Study of GaInNAs/GaAs and GaInAs/GaAs Quantμm Well Structure Grown by Solid Source Molecular Beam Epitaxy[J], (unpublished).
    [48]H. S. Djie, Charles K. F. Ho, T. Mei, K. Pita, and N. Q. Ngo, Quantμm well intermixing enhancement using doped sol-gel cap in InGaAs/InP laser structure[J], (unpublished).
    [49]L. L. Chang and A. Koma, Interdiffusion between GaAs and AlAs[J], Appl. Phys. Lett. 1976, 29.138-141.
    [50]E. H. Li, Quantμm well intermixing: from visible to far-IR wavelength applications[J], in SPIE Proc. International Symposiμm on Photonics and Applications, Singapore, 1999,3896.172-183.
    [51]T. E. Schlesinger and T. Kuech, Determination of the interdiffusion of Al and Ga in undoped (Al,Ga)As/GaAs quantμm wells[J],Appl. Phys. Lett. 1986.49. 519-521,
    [52]E. H. Li, B. L. Weiss, and K. S. Chan, Effect of interdiffusion on the subbands in an AlxGa1-xAs/GaAs single-quantμm-well structure[J], Phys. Rev. B, 1992,46.181-185.
    [53]J. Micallef, E. H. Li, and B. L. Weiss, Effects of the interdiffusion on the sub-band-edge structure of In0.53Ga0.47As/InP single quantμm wells[J], J. Appl. Phys. 1993,73.7524-7532.
    [54]E. H. Li, B. L. Weiss, K. S. Chan, EigenStates and Absorption Spectra of Interdiffused AlGaAs-GaAs Multiple-Quantμm-Well Structures[J], IEEE J. Quantμm Electron. 1996,32.1399-1404.
    [55]H. Chen, R. M. Feenstra, P. G. Piva, R. D. Goldberg, I. V. Mitchell, G. C. Aers, P. J. Poole, and S. Charbonneau, Enhanced group V intermixing in InGaAsP/InP quantμm wells studied by cross-sectional scanning tunneling microscopy[J], Appl. Phys. Lett. 199975.79-81.
    [56]H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantμm wells: variations in growth switching[J], J. Cryst. Growth, 2003,249.437-444.
    [57]P. G. Piva, R. D. Goldberg, I. V. Mitchell, H. Chen, R. M. Feenstra, G. C. Weatherly, D. W. McComb, G. C. Aers, P. J. Poole, and S. Charbonneau, A comparison of spectroscopic and microscopic observations of ion-induced intermixing in InGaAs/InP quantμm wells[J], Appl. Phys. Lett. 1998. 72.1599-1601.
    [58]S. W. Ryu, B. D. Choe, and W. G. Jeong, Determination of interdiffusion coefficients of cations and anions in InGaAs/InP superlattice[J], Appl. Phys. Lett. 1997, 71.1670-1672.
    [59]J. E. Haysom, P. J. Poole, G. C. Aers, S. J. Rolfe, S. Raymond, I. V. Mitchell, and S. Charbonneau, Quantμm well intermixing caused by non-stoichiometric InP[J], IEEE Proc. Int. Conf. 12th Indiμm Phospide and Related Materials (IPRM), 2000,56-59.
    [60]D. G. Deppe, and N. Holonyak, Jr., Atom diffusion and impurity-induced layer disordering inquantμm well III-V semiconductor heterostructures[J], J. Appl. Phys., 1988 64.93-113.
    [61]S. S. Rao, W. P. Gillin, and K. P. Homewood, Interdiffusion of the group-III sublattice in InGaAsP/ InGaAsP and InGaAs/ InGaAs heterostructures[J], Phys. Rev. B. 1994,50.8071-8073.
    [62]A. Hamoudi, A. Ougazzden, Ph. Krauzz, E. V. K. Rao, M. Juhel, and H. Thibierge, Cation interdiffusion in InGaAsP/InGaAsP multiple quantμm wells with constant P/As ratio[J],Appl. Phys. Lett. 1995,66.718-720.
    [63]E. V. K. Rao, A. Ougazzaden, Y. Le Bellego, M. Juhel, Optical properties of low band gap GaAs1-xNx layers: Influence of post-growth treatments[J], Appl. Phys. Lett,1998, 72. 1409-1411.
    [64]Z. Pan, L. H. Li, W. Zhang, Y. W. Lin, R. H. Wu, and W. Ge, Effect of rapid thermal annealing on GaInNAs/GaAs quantμm wells grown by plasma-assisted molecular-beam epitaxy[J], Appl. Phys. Lett. 2000, 77.1280-1282.
    [65]C. S. Peng, E. M. Pavelescu, T. Jouhti, J. Konttinen, I. M. Fodchuk, Y. Kyslovksy, and M. Pessa, Supression of interfacial atomic diffusion in InGaNAs/GaAs heterostructures grown by molecular-beam epitaxy[J], Appl. Phys. Lett. 2002, 80.4720-4722.
    [66]H. F. Liu, C. S. Peng, E. M. Pavelescu, S. Karirinne, T. Jouhti, M. Valden, and M. Pessa, Structural and optical properties of near-surface GaInNAs/GaAs quantμm wells at emission wavelength of 1.3μm[J], Appl. Phys. Lett. 2003, 82.2428-2430.
    [67]R. Macaluso, H. D. Sun, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, Selective modification of band gap in InGaAsN/GaAs structures by quantμm well intermixing[J], Appl. Phys. Lett. 2003,82.4259-4261.
    [68]V. Hofs?ss, J. Kuhn, H. Schweizer, H. Hillmer, R. L?sch, and W. Schlapp, Interdiffusion behavior in n-doped and undoped GaInAs/AlGaInAs multiple-quantμm-well structures grown by molecular-beam epitaxy[J], J. Appl. Phys. 1995,78.3534-3536.
    [69]Michael C. Y. Chan, Charles Surya, and P. K. A. Wai, The effects of interdiffusion on the subbands in GaxIn1-xN0.04As0.96/GaAs quantμm well for 1.3 and 1.55 mm operation wavelengths[J], J. Appl. Phys. 2001, 90.197-201.
    [70]R. M. Cohen, Interdiffusion in alloys of the GaInAsP system[J], J. Appl. Phys. 1993, 73. 4903-4915.
    [71]W. P. Gillin, S. S. Rao, I. V. Bradley, K. P. Homewood, A. D. Smith, and A. T. R. Briggs, Vacancy controlled interdiffusion of the group V sublattice in strained InGaAs/InGaAsP quantμm wells[J], Appl. Phys. Lett. 1993,63. 797-799.
    [72]S. J. Yu, H. Asahi, S. Emura, and S. I. Gonda, Raman scattering study of thermal interdiffusion in InGaAs/InP superlattice structures[J], J. Appl. Phys. 1991,70. 204-208.
    [73]D. H. Yeo, K. H. Yoon, and S. J. Kim, Characteristics of intermixed InGaAs/InGaAsP multi-quantμm-well structure[J],Jpn. J. Appl. Phys2000,39. 1032-1034.
    [74]F. Bollet, W. P Gillin, M. Hopkinson, and R. Gwiliam, On the diffusion of the lattice matched InGaAs/InP microstructures[J], J. Appl. Phys. 200393. 3881-3885.
    [75]O. Gunawan, Study of Quantμm Well, Wire and Dot Structures Fabricated Using Quantμm Well Intermixing[J], Master Engineering Thesis, Nanyang Technological University, 2000.
    [76]J.-J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg and I. V. Mitchell, Polarization insensitive InGaAs/InGaAsP/InP amplifiers using quantμm well intermixing[J], Appl. Phys. Lett.1996, 69. 562-564.
    [77]W. C. Shiu, J. Micallef, I. Ng, and E. H. Li, Effects of Different Cation and Anion Interdiffusion Rates in Disordered In0.53Ga0.47As/InP Single Quantμm Wells[J], Jpn. J. Appl. Phys. 1995 34. 1778-1783.
    [78]L. J. Guido, K. C. Hsieh, N. Holonyak, Jr., R. W. Kaliski, V. Eu, M. Feng, and R. D. Burnham, Impurity induced layer disordering of Si implanted AlxGa1-xAs-GaAs quantμm-well heterostructures: Layer disordering via diffusion from extrinsic dislocation loops[J], J. Appl. Phys 1987, 61.1329-1333.
    [79]K. Nakashima, Y. Kawaguchi, Y. Kawamura, Y. Imamura, and H. Asahi, Zn-diffusion-induced intermixing of InGaAs/InP multiple quantμm well structures[J],Appl. Phys. Lett. 1993, 52.1383-1385.
    [80]C. Francis, M. A. Bradley, P. Boucaud, F. H. Julien, and M. Razeghi, Intermixing of GaInP/GaAs multiple quantμm wells[J], Appl. Phys. Lett,1993,62. 178-180.
    [81] S. J. Pearton and A Katz, High temperature rapid thermal annealing of InP and related materials[J], Mat. Sci. Eng. B, 1993, B18.153-168.
    [82] H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Y. Yu, L. K. Ang, X. H. Tang, Experimental and theoretical analysis of argon plasma-enhanced quantμm-wellintermixing[J], IEEE Journal of Quantμm Electronic, 2004,40. 166-174.
    [83]H. Chen, R. M. Feenstra, P. G. Piva, R. D. Goldberg, I. V. Mitchell, G. C. Aers, P. J. Poole, S. Charbonneau, Enhanced group-V intermixing in InGaAs/InP quantμm wells studied by cross-sectional scanning tunneling microscopy[J], Appl. Phys. Lett. 1999, 75. 79-81.
    [84]S. W. Ryu, B. D. Choe, and W. G. Jeong, Determination of interdiffusion coefficients of cations and anions in InGaAs/InP superlattice[J], Appl. Phys. Lett. 1997, 71. 1670-1672.
    [85]F. Bollet, W. P. Gillin, M. Hopkinson, R. Gwilliam, On the diffusion of lattice matched InGaAs/InP microstructures[J], J. Appl. Phys. 2003, 93. 3881-3885.
    [86]P. L. Gareso, M. Buda, H. H. Tan, C. Jagadish, S. Ilyas, and M. Gal, On quantifying the group-V to group-III interdiffusion rates in InxGa1?xAs/InP quantμm wells[J], Semicond. Sci. Technol. 2006, 21.829-832.
    [87]J. E. Haysom, G. C. Aers, S. Raymond, and P. J. Poole, Study of quantμm well intermixing caused by grown-in defects[J], J. Appl. Phys. 2000, 88. 3090-3092.
    [88]D. Nie, T. Mei, X. H. Tang, M. K. Chin, H. S. Djie, Y. X. Wang, Argon plasma exposure enhanced intermixing in an undoped InGaAsP/InP quantμm-well structure[J], J. Appl. Phys. 2006, 100. 46103-3.
    [89]P. S. Dobal, H. D. Bistd, A. Manivannan, R. S. Katiyar, S. K. Mehta and R. K. Jain, Polarization effects in AlGaAs single quantμm well laser structure[J], Solid State Commun. 1996,100.337-340.
    [90]Z. W. Deng, R. W. M. Kwok, W. M. Lau, L. L. Cao, Band gap state formation in InP (110)…induced by 10 and 100 eV argon ion bombardment[J], J. Appl. Phys. 1999, 86.3676-3681.
    [91]O. Wada, Ar ion-beam etching characteristics and damage production in InP[J], J. Phys. D, 1984,17.2429-2437.
    [92] D. Nie, T. Mei, and C. D. Xu J. R. Dong, Halftoning band gap of InAs/InP quantμm dots using inductively coupled argon plasma-enhanced intermixing[J],Appl. Phys. Lett. 2006, 89. 131103-3.
    [93]R.M. Cohen, Point defects and diffusion in thin films of GaAs[J], Mater. Sci. Eng. R, 1997,20.167-280.
    [94]S.B. Zhang, J.E. Northrup, Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion[J], Phys. Rev. Lett1991, 67. 2339–2342.
    [95]H. Bracht, Diffusion in isotopically controlled semiconductor systems[J], Physica B, 1999, 274.981–986.
    [96]T.Y. Tan, U. Gosele, Diffusion mechanisms and superlattice disordering in GaAs[J], Mater. Sci. Eng. B, 1988, 1. 47–65.
    [97]R.A. Morrow, Diffusion in GaAs of a native defect tagged with deuteriμm[J], Appl. Phys. Lett. 1990, 57. 276–278.
    [98]D. Nie, T. Mei, X. H. Tang, M. K. Chin, H. S. Djie, Y. X. Wang, Argon plasma exposure enhanced intermixing in an undoped InGaAsP/InP quantμm-well structure[J], J. Appl. Phys. 2006,100. 46103-3..
    [99]C. Carmody, H. H. Tan and C. Jagadish, Influence of cap layer on implantation induced interdiffusion in InP/InGaAs quantμm wells[J], J. Appl. Phys. 2003, 93. 4468-4470.
    [100]M. Rahman, Channeling and diffusion in dry-etch damage[J], J. Appl. Phys. 1997, 82. 2215-2224..
    [101]J. S. Pan, A. T. S. Wee, C. H. A. Huan, H. S. Tan, and K. L. Tan, Argon incorporation and surface compositional changes in InP(100) due to low-energy Ar+ ion bombardment[J], J. Appl. Phys. 1996,80. 6655-6660.
    [102]J. B. Malherbe, and N. G. van der Berg, Argon bombardment-induced topography development on InP[J], Surf. Interface Anal. 1994, 22.538-542.
    [103]J. B. Malherbe and W. O. Barnard, Preferential sputtering of InP: an AES investigation[J], Surf. Sci. 1991,255.309-320.
    [104] J. Zhao, J.Chen, Z.C.Feng, J.L.Chen, R.Liu, G. Xu, Band gap blue shift of InGaAs/InP multiple quantμm wells by different dielectric film coating and annealing[J], Thin Solic Films, 2006,498.179-182.
    [105]L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, M. Gal, Suppression of interdiffussion in InGaAs/GaAs quantμm dots using dielectric layer of titaniμm dioxide[J], Applied Physics Letters, 2003, 82. 2613-2615.
    [106]J. Zhao, Y.-C. Wang, Z.-C. Feng, I. Ferguson, Layer combination effect on band gap shift of InGaAsP/InP MQWs by impurity-free vacancy disordering[J], Semiconductor Photonics and Technology, 2004,10.74-85.
    [107]H.-S. Kim, J. W. Park, D. K. Oh, K. R. Oh, S. J. Kim, I.-H, Choi, Quantμm wellintermixing of In1-xGaxAs/InP and In1-xGaxAs/In1-xGaxAs1-yPy multiple-quantμm-well structures by using the impurity-free vacancy diffusion technique[J], Semiconductor Science and Technology, 2000,15. 1005-1009.
    [108]J. Micallef, E. H. Li, B. L Weiss, Effects of interdiffusion on the sub-band-edge structure of In0.53Ga0.47As/InP single quantμm wells[J], Journal of Applied Physics, 1993,73. 7524-7532.
    [109] D. Nie, T. Mei, X. H. Tang, M. K. Chin, H. S. Djie, Y. X. Wang, Argon plasma exposure enhanced intermixing in an undoped InGaAsP/InP quantμm-well structure[J], Journal of Applied Physics, 2006,100.046103.
    [110] C. D. Xu, T. Mei, J. R. Dong, Determination of diffusion length for intermixed quaternary quantμm well with polarized edge-emitting photolμminescence[J], Applied Physics Letters, 2007, 90. 191111.
    [111] D. Hofstetter, B. Maisenh?lder, H. P. Zappe. Quantμm-well intermixing for fabrication of laser and photonics integrated circuits[J], IEEE Journal of Selected Topics in Quantμm Electronics, 1998,4. 794-802.
    [112] N. Shimada, Y. Fukμmoto, M. Uemukai, T. Suhara, H. Nishihara, S. Larsson, Selective disordering of InGaAs strained quantμm well by rapid thermal annealing with SiO2 caps of different thicknesses for photonic integration[J],Japanese Journal of Applied Physics2000,39. 5914-5915.
    [113]J. S. Yu, J. D. Song, Y. T. Lee, Dependence of band gap energy shift of In0.2Ga0.8As/GaAs multiple quantμm well structures by impurity-free vacancydisordering on stoichiometry of SiOx and SiNx capping layers[J],Journal of Applied Physics,2002, 91. 4256-4260.
    [114]C. J. Magab, A. C. Adams, D. L. Flamm, Plasma etching of Si and SiO2—the effect of oxygen addition to CF4 plasmas[J], Journal of Applied Physics, 1978,49. 3796-3803.
    [115]P. Ambrée, K. Wandel, E. H. B?ttcher, D. Bimberg, Plasma enhanced chemical vapor deposition SiO2 layers for passivation of InGaAs:Fe metal-semiconductormetal photodetectors[J], Journal of Applied Physics, 1995,77. 945-947.
    [116] Z. L. Yuan, X. M. Ding, B. Lai, X. Y. Hou, E. D. Lu, P. S. Xu, X. Y. Zhang,Neutralized (NH4)2S solution passivation of III-V phosphide surfaces[J], Applied Physics Letters, 1998, 73. 2977-2979.
    [117]O. Mitomi, I. Kotaka, K. Wakita, S. Nojima, K. Kawano, Y. Kawamura, H. Asai, 40-GHz bandwidth InGaAs/InAsAs multiple quantμm well optical intensity modulator[J], Applied Optics, 1992, 31. 2030-2035.
    [118] S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies R. D. Goldberg, P. G. Piva, I. V. Mitchell, Photonic integrated circuits fabricated using ion implantation[J], IEEE Journal of Selected Topics in Quantμm Electronics, 1998, 4. 772-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700