用户名: 密码: 验证码:
内皮氧化损伤体外分析系统的建立及在药效评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮细胞是覆盖在血管腔内表面的单层细胞,可以通过分泌多种活性物质参与心血管系统功能的调节。许多心血管疾病及危险因素均可以导致内皮功能损伤,而内皮功能损伤又常伴发和加重心血管疾病。引起内皮细胞损伤的原因很多,氧化应激引起的内皮细胞氧化损伤是引起内皮功能障碍的一个重要原因。本课题利用细胞阻抗微阵列传感器及计算机图像处理等工程手段在体外建立了单核细胞-内皮静态粘附及动态粘附定量分析模型,同时结合流式细胞术、激光共聚焦显微技术、免疫细胞化学、活体细胞染色等多种传统生化技术手段,较为系统和全面的建立了体外内皮氧化损伤分析系统,并将此系统应用于药效评价中,对金丝桃苷药效做以研究。为心血管疾病相关药物筛选提供了一个高效、定量、敏感的平台,也为筛选出的药物的开发提供理论依据。
     本研究在体外建立了利用基于细胞阻抗分析白细胞-内皮细胞静态粘附分析模型。利用RT-CES系统,观察研究白细胞粘附过程中内皮细胞与胞外基质间粘附性的变化,并通过与传统生化方法的比较,验证了此方法的可行性和准确性。
     在体外建立了单核细胞-内皮细胞动态粘附模型。利用流动小室系统和荧光标记技术,在体外模拟血流动力学条件,结合图像处理技术,定量分析了单核细胞运动速度等参数。
     通过内皮细胞代谢活性、凋亡坏死、线粒体功能及凋亡相关蛋白表达几个方面,建立了体外氧化损伤致内皮凋亡的定量分析模型。在此模型上,研究了金丝桃苷对氧化损伤所致内皮细胞凋亡坏死的作用及可能的作用途径。结果表明金丝桃苷可以抑制氧化损伤造成的内皮细胞的凋亡和坏死、线粒体功能紊乱及Bax表达增高,并可以增强Bcl-2的表达,证明抑制细胞凋亡坏死是金丝桃苷的内皮保护作用的重要机制,而Bax和Bcl-2则是金丝桃苷抑制内皮细胞凋亡的重要途径之一。
     利用基于细胞阻抗分析的单核细胞-内皮细胞静态粘附体外分析模型,研究了金丝桃苷对氧化损伤后内皮细胞表面粘附分子ICAM-1和E-Selectin表达的作用及对单核细胞粘附个数、内皮细胞阻抗变化的影响。利用单核细胞-内皮细胞动态粘附模型体外定量分析系统,研究了剪切力条件下,金丝桃苷对氧化损伤引起的单核细胞-内皮细胞粘附的影响。发现金丝桃苷可以降低两种粘附分子的表达,减少单核细胞静态粘附个数及增高粘附过程中内皮细胞细胞指数(cellindex,CI)值,同时金丝桃苷还可以提高动态粘附条件下单核细胞的慢速滚动速度,减少慢速滚动和牢固粘附的单核细胞的数目。提示金丝桃苷下调内皮细胞表面粘附分子,从而减少单核细胞静/动态粘附个数,增加内皮细胞与胞外基质的粘附性、加快单核细胞滚动速度是金丝桃苷发挥其内皮保护作用另一重要机制。
     综上,本课题的主要创新之处在于:1.利用RT-CES系统,建立了基于细胞阻抗分析的单核细胞-内皮细胞静态粘附体外分析模型,研究单核细胞粘附过程中内皮细胞与胞外基质间粘附性变化,较之传统的生化分析手段,具有免标记、实时动态、操作简便等优点。2.利用流动小室系统及图像处理技术,建立了单核细胞-内皮细胞动态粘附模型,并定量分析了单核细胞运动速度等运动参数。3.利用上述模型并结合传统生化分析手段,在体外建立了内皮氧化损伤定量分析系统,并将此系统应用于金丝桃苷的药效评价。研究结果表明金丝桃苷具有一定的内皮保护作用,该作用可能是通过抑制Bax表达和增强Bcl-2的表达,同时在抑制细胞线粒体膜电势损失、降低胞内自由基含量和增强细胞抗氧化性损伤等作用的共同参与下,抑制动脉粥样硬化发生过程中内皮细胞的凋亡和继发性的坏死;通过抑制损伤处内皮细胞表面粘附分子的表达及增加内皮细胞与胞外基质的粘附性,减少单核细胞向内膜下的迁移,继而减少巨噬细胞源泡沫细胞的形成。
Vascular endothelial cells form a single cell layer that lines allblood vessels and participate in cardiovascular function regulation.Endothelial dysfunction is involved in many cardiovascular diseases.Many studies indicated that oxidative stress plays an important role inendothelial dysfunction. In the present study, we employed diversebiomedical techniques such as cell-based impedance sensing,quantitative image processing, flow cytometry, confocal imaging,immuocytochemistry and live cell labeling to establish a quantitativeanalysis system to investigate endothelial dysfunction induced byoxidative damage. Furthermore, this quantitative system was applied toevaluate the effects of Hyperoside. This system would be helpful to drugdiscovery and biomedical mechanisms investigation.
     We applied a non-invasive biosensor system referred to as real-timecell electronic sensor (RT-CES) system to monitor the changes inendothelial cell-substrate adhesion induced by monocyte adhesion in adynamic and quantitative manner, while the number of adherent U937 cellsto the endothelial cells was verified bya standard assay. Furthermore,decrease in FAK protein level and F-actin rearrangement in endothelialcells were observed after addition of U937 cells. Our results indicatethat the adhesion of U937 cells to LPS-treated endothelial ceils reducesthe cell adhesiveness to the substrate, and such reduction may facilitateinfiltration of leukocytes.
     Based on the culture of endothelial ceils and cellularmicrofluorescence image processing technique, a new method was developedto study the adhesion between endothelial ceils and leukocytes undershear stress by simulating the blood flow in vitro. Employing inversemicrofluorescence imaging and image processing technique, theinteraction between monocytes and endothelial cells under flow condition, was studied quantificationally and objectively.
     The effect of hyperoside on cndothelial cell damage was studied onendothelial cell oxidative damage model induced by H_2O_2 of cultured humanumbilical vein endothelial cells (HUVEC). The results showed thathyperoside could reduce apoptosis, necrosis, the loss of mitochondrialmembrane potential and the ROS content of endothelial cells induced byH_2O_2, decrease the expression of Bax and increase the expression of Bcl-2.These results proved that reduction of apoptosis and necrosis may be oneof important mechanisms of protective effects of hyperoside onehdothelial cells, and inhibiton of Bax expression and increasing Bcl-2expression were important mechanisms of anti-apoptosis effect ofhyperoside on endothelial cells.
     On endothelial cells damage model induced by oxLDL in vitro, the effectof hyperoside on ICAM-1 and E-Selectin expression andmonocytes-endothelial cell adhesion were investigated. The resultsshowed that hyperoside could decrease the number of adherent monocytes,increase the CI value during monocytes-endothelial cell binding, anddecrease the velocity and number of slow roiling monocytes by decreasingthe expression of ICAM-1 and E-Selectin. Therefore hyperoside may reducethe adherence of monocytes on oxLDL treated-HUVECs. It may be anotherimportant mechanism of protective effect of hyperoside on endothelialcells.
     In conclusion, our study achieved the following novel findings: 1. Withthe application of RT-CES system, study on endothelial cell-substrateadhesiveness during leukocyte binding was carried out in a label-free,dynamic, convenient and quantitative way. 2. With the application of flowchamber system and image processing technique, the monocytes wererecognized and counted, and themonocytes' rollingvelocity was measured.3. Two above mentioned methods and traditional biochemical methods were employed in this study to estabilish a quantitative system to analyzeendothelial dysfunction induced by oxidative damage. Additionally, theprotective effects of hyperoside on endothelial cells were investigated.The results showed that hyperoside protected endothelial cells againstoxidative damage by inhibiting apoptosis, necorsis and mitochondrialdysfunction, reducing ROS content and Bax expression, increasing Bcl-2expression, and reduced the interaction between monocytes andendothelial cells.
引文
1 Tritto I, Ambrosio G. Spotlight on microcirculation: an update. Cardiovasc Res 1999;42:600-606.
    2 Haller H. Endothelial function. General considerations. Drugs. 1997, 53Suppl 1:1-10.
    3 De Meyer GR, HermanAG. Vascular endothelial dysfunction. Prog Cardiovasc Dis. 1997, 39:325-342.
    4 Chappey 0, Wautier MP, Boval B, Wautier JL. Endothelial cells in culture: an experimental model for the study of vascular dysfunctions. Cell Biol Toxicol. 1996, 12:199-205.
    5 Wautier JL, Wautier MP, Pintigny D, et al. Factors involved in cell adhesion to vascular endothelium. Blood Cells. 1983, 9:221-234.
    6 Conger JD. Endothelial regulation of vascular tone. Hosp Pract. 1994, 29:117-126.
    7 Wautier JL, Setiadi H, Vilette D, et al. Leukocyte adhesion to endothelial cells. Biorheology. 1990, 27:425-432.
    8 Biegelsen ES, Loscalzo J. Endothelial function and atherosclerosis.Coron Artery Dis. 1999, 10:241-256.
    9 Wautier JL, Zoukourian C, Chappey O, et al. Receptormediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996, 97:238-243.
    10 Cowan DB, Langille BL. Cellular and molecular biology of vascular remodeling. Curr Opin Lipidol. 1996,7:94-100.
    11 Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 2006;147 (Suppll):S193_S201.
    12 Stamler JS, Singel DJ, Loscalzo J: Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898, 1992
    13 De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK: Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60, 1995
    14 Griffith TM Endothelial control of vascular tone by nitric oxide and gap junctions: a haemodynamic perspective. Biorheology 2002; 39(3-4): 307-18
    15 Huang PL. Lessons learned from nitric oxide synthase knockout animals. Semin Perinatol 2000;24:87-90.
    16 Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H. Protective role of endothelial nitric oxide synthase. J Pathol 2003 Jan; 199(1): 8-17
    17 Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 2001; 281: L529_L533.
    18 Furchgott RF. Introduction to EDRF research. J Cardiovasc Pharmacol. 1993, 22 Suppl 7:S1-2.
    19 Wu KK. Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci 2002 May; 962: 122-30
    20 Loscalzo J, Vita JA: Ischemia, hyperemia, exercise, and NO: Complex physiology and complex molecular adaptations. Circulation 90: 2556, 1994
    21 Balligand JL, Ungureanu-Longroid D, Simmons WW, Kobzik L, Lowenstein CJ, Lamas S, Kelly RA, Smith TW, Michel T: Induction of nitric oxide synthase in rat cardiac microvascular endothelial cells by IL-beta and IFN-gamma. Am J Physiol 268:H1293, 1995
    22 Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 1999; 34: 879-886.
    23 Chiang TM, Woo-Rasberry V, Cole F. Role of platelet endothelial form of nitric oxide synthase in collagen-platelet interaction: regulation by phosphorylation. Biochim Biophys Acta 2002 Oct 21;1592 (2): 169-74
    24 Garg UC, Hassid A: Nitric oxide (NO) and 8-bromo-cyclic GMP inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1974, 1989
    25 Marks DS, Vita JA, Folts JD, Keaney JF Jr, Welch GN, Loscalzo J: Inhibition of neointimal proliferation in rabbits following vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Invest 96:2630, 1995
    26 Morbidelli L, Donnini S, Ziche M Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des 2003;9 (7): 521-30
    27 Sachais BS. Platelet-endothelial interactions in atherosclerosis. Curr Atheroscler Rep 2001 Sep;3(5): 412-6
    28 Zygmunt PM, Plane F, Paulsson M et al. Interactions between endothelium-derived relaxing fators in the rat hepatic artery on regulation of EDHF. Br J Pharmacol, 1998, 124: 992-1000
    29 Bauersaehs J, Popp R, Heeker M et al. Nitric oxide attenuates the release of endothelium- derived hyperpolarizing factor. Circulation, 1996, 94: 334-337
    30 Levin ER: Endothelins. N Engl J Med, 1996,333:356,
    31 Nagai M, Kamide K, Rakugi H, Takiuchi S, Imai M, Kida I, Matsukawa N, Higaki J, Ogihara T. Role of endothelin-1 induced by insulin in the regulation of vascular cell growth. Am J Hypertens 2003, 16(3): 223-8
    32 Chen Y, McCarron RM, Golech S, Bembry J, Ford B, Lenz FA, Azzam N, Spatz M. ET-1-and NO-mediated signal transduction pathway in human brain capillary endothelial cells. Am J Physiol Cell Physiol 2003 Feb;284(2):C243-9
    33 Sawada N, MurataM, Kikuchi K, et al. Tight junctions and human diseases. Med Electron Microsc 2003;36:147 -56.
    34 Alexander JS, Elrod JW. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat 2002; 200 (6): 561-74
    35 Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol, 1995, 163(3): 510-522.
    36 Van RH, van Kempen MJ, Analbers LJ. Gap junctions in umbilical cord endothelial cells contain multiple connexins. Am J Physiol. 1997, 272: C117-C130.
    37 Thurston G, Baldwin AL. Changes in endothelial actin cytoskeleton in venules with time after histamine treatment. Am J Physiol, 1995, H1528-1537.
    38 Thurston G, Turner D. Thromibin-induced increase of F-actin in human umblical vein endothelial cells. Microvasc Res, 1994, 47: 1-20.
    39 Goode BL, Drubin DG, Barnes G. Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol, 2000; 12: 63-71.
    40 Venn AD, Birukova A, Wang P, et al. Microtubule disassembly increase endothelial cell barrier dysfunction: role of microf ilament corsstalk and myosin light chain phosphorylation. Am J Physiol, 2001, 281: L565-574.
    41 Kolodney MS, Elson EL. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Natl Acad Sci USA, 1995, 92:10252-10256.
    42 van Hinsbergh VW. The endothelium: vascular control of haemostasis. Eur J Obstet Gynecol Reprod Biol 2001;95 (2): 198 -201.
    43 Bauer KA, Rosenberg RD. Role of antithrombin Ⅲ as a regulator of in vivo coagulation. Semin Hematol 1991;28 (1):10-8.
    44 Spronk HMH, Govers-Riemslag JWP, ten Cate H. The blood coagulation system as a molecular machine. Bioessays 2003; 25: 1220-8.
    45 Steams-Kurosawa DJ, Kurosawa S, Mollica JS, et al. The endothelial cell protein C receptor augments protein C activation by thrombin-antithrombomodulin complex. Proc Natl Acad Sci USA, 1996; 93:10212-10216.
    46 Astrup T. Fibrinolysis: past and present. A reflection of fifty years. Semin Thromb Hemost 1991;17:161-74.
    47 Semeraro N, Colucci M. Endothelial cell perturbation and disseminated intravascular coagulation. In: ten Cate H, Levi M, editors. Molecular mechanisms of disseminated intravascular coagulation. Bioscience, 2003, 156-190.
    48 Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol, 2003, 6; 91(3A): 7A-11A
    49 Napoli C. Nitric oxide and atherosclerotic lesion progression: an overview. J Card Surg, 2002,17(4): 355-362.
    50 Schiffrin EL Beyond blood pressure: the endothelium and atherosclerosis progression. Am J Hypertens, 2002,15:115S-122S.
    51 Hingorani AD. Endothelial nitric oxide synthase polymorphisms and hypertension. Curr Hypertens Rep, 2003,5(1):19-25.
    52 Audiffret A, Soloway P, Saadeh R, Carty C, Bush P, Ricotta JJ, Dryjski M. Endothelial dysfunction following thrombolysis in vitro. Eur J Vasc Endovasc Surg, 1998,16(6):494-500.
    53 Gotlieb AI, Silver MD. Cardiovascular Pathology, 3rd edn. Churchill-Livingstone: New York, NY, 2001.
    54 Li YS, Hang JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomcech, 2005,38:1949-1971.
    55 Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev, 2001, 81:1415-1459.
    56 Lieu DK, Pappone PA, Barakat AI. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am J Physiol Cell Physiol, 2004, 286: C1367-C1375.
    57 Mccue S, Noria S, Langille BL. Shear-induced reorganization of endothelial cell cytoskeleton and adhesion complexes. Trends Cardiovasc Med, 2004, 14:143-151.
    58 Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res, 2003, 93: E136-E142.
    59 Gudi S, Huvar I, White CR, McKnight NL, Dusserre N, Boss GR, Frangos JA. Rapid activation of Ras by fluid flow is mediated by G alpha and G beta gamma subunits of heterotrimeric G proteins in human endothelial cells. Arteriosclerosis Thrombosis Vasc Biol, 2003, 23:994-1000.
    60 Zuluaga S, Alvarez-Barrientos A, Guti (?) rrez-Uzquiza A, Benito M, Nebreda AR, Porras A. Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell Signal, 2007, 19(1): 62-74.
    61 Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genom, 2002, 9:27-41.
    62 Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ Jr, Davies PF. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA, 2004, 101:2482-2487.
    63 Ignarro LI, Napoli C, Novel features of nitric oxide, endothelial nitric oxide synthase and atherosclerosis. Curr Diab Rep, 2005, 5: 17-23
    64 Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech, 2005, 38 (10): 1949-71.
    65 Ganguli A, Persson L, Palmer IR, et al. Distinct NF-kappaB regulation by shear stress through Ras-dependent IKappaBalpha oscillations real-time analysis of flow-mediated activation in live cells. Circ Res, 2005, 96: 626-634
    66 Dancu MB, Berardi DE, Vanden Heuvel JP, Tarbell JM. Atherogenic Endothelial Cell eNOS and ET-1 Responses to Asynchronous Hemodynamics are Mitigated by Conjugated Linoleic Acid. Ann Biomed Eng, 2007, 35(7): 1111-1119.
    67 Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, Wasserman MA, Medford RM, Jaiswal AK, Kunsch C. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells - a novel anti-inflammatory mechanism. J Biol Chem, 2003, 278:703-711.
    68 Liu Y, Zhu Y, Rannou F, Lee TS, Foment in K, Zeng L, Yuan X, Wang N, Chien S, Forman BM, Shyy JY. Laminar flow activates peroxisome proliferator-activated receptor-gamma in vascular endothelial cells. Circulation, 2004, 110: 1128-1133.
    69 Jin ZG, Wong C, Wu J, et al. Flow shear stress stimulates Gabl tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells. J Biol Chem, 2005, 280:12305-12309.
    70 Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress stimulates endothelial production of 02- from p47(phox)-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem, 2003, 278: 47291-47298.
    71 De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state梤ole of a superoxide-producing NADH oxidase. Circ Res, 1998, 82:1094-1101.
    72 Hwang J, Ing MH, Salazar A, Lass(?)gue B, Griendling K, NavabM, Sevanian A, Hsiai TK. Pulsatile versus oscillatory shear stress regulates NADpH oxidase subunit expression梚mplication for native LDL oxidation. Circ Res, 2003, 93:1225-1232.
    73 Hermann C, Zeiher AM, Dimmeler S. Shear stress induced up-regulation of superoxide dismutase inhibits tumor necrosis factor alpha-mediated apoptosis of endothelial cells. Circulation, 1997, 96:2732.
    74 Irani K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res, 2000, 87(3): 179-183.
    75 Griendling, K. K., Sorescu, D., and Ushio-Fukai, M. (). NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 2000, 86:494-501.
    76 Jones, S. A., 0' Donnell, V. B., Wood, J. D., Broughton, J. P., Hughes, E. J., and Jones, 0. T. Expression of phagocyte NADpH oxidase components in human endothelial cells. Am J Physiol, 1996, 271: H1626-H1634.
    77 Seno, T., Inoue, N., Gao, D., et al. Involvement of NADH/NADpH oxidase in human platelet ROS production. Thromb Res, 2001, 103:399-409.
    78 Babior, B. M. The neutrophil NADpH oxidase. Arch Biochem Biophys. 2002, 397: 342-344.
    79 Wang HD. Xu S. Johns DG. et al. Role of NADpH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin Ⅱ in mice. Oirc Res. 2001, 88 (9) : 947-953.
    80 Azumi H. moue N. Takeshita S, et al. Expression of NADH/NADpH oxidase p22phox in human coronary arteries. Circulation, 1999, 100(14): 1494-1498
    81 Cahilly 1:. Ballantyne l'M. Lim DS, et al. A variant of p22 (phox) involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atheroscelerosis. Circ Res. 2000, 86(3): 391-395.
    82 Guzik, T.J., Mussa, S., Gastaldi, D., et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation, 2002, 105:1656-1662.
    83 Kerr, S., Brosnan, M. J., McIntyre, M., Reid, J. L., Dominiczak, A. F., and Hamilton, C.A. Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension, 1999, 33:1353-1358.
    84 Heitzer T. Brockhoff C. Mayer B, et al. Tetrahydrobiop-terin improves endothelium-dependent vasodilation in chronic smokers; evidence for a dysfunctional nitric oxide synthase. Circ Res. 2000, 86(2);E36-E41. Butler R. Morris AD, Belch JJ, et al. Allopurinol mormalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension, 2000, 35 (3): 746-751.
    85 Engerson, T. D., McKelvey, T. G., Rhyne, D. B., Boggio, E. B., Snyder, S. J., and Jones, H. P. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J Clin Invest.1987, 79:1564-1570.
    86 Im, M. J., Hoopes, J. E., Yoshimura, Y., Manson, P. N., and Bulkley, G. B. Xanthine: acceptor oxidoreductase activities in ischemic rat skin flaps. J Surg Res, 1989, 6:230-234.
    87 Granger, D. N., Benoit, J. N., Suzuki, M., and Grisham, M. B. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol.1989, 257: G683-G688.
    88 Kurose, I., Argenbright, L. W., Wolf, R., Lianxi, L., and Granger, D. N. Ischemia/reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol,1997, 272: H2976-H2982.
    89 Gaboury, J.P., Anderson, D. C., and Kubes, P. Molecular mechanisms involved in superoxide-induced leukocyte-endothelial cell interactions in vivo. Am J Physiol, 1994,266: H637-H642.
    90 Cai, H. and Harrison, D. G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res,2000, 87:840-844.
    91 Desco, M. C., Asensi, M., Marquez, R., et al. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes,2002, 51:1118-1124.
    92 Mervaala EM. Cheng ZJ. Tikkanen I, et al. Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes, Hypertenlion, 2001.37(2 Part2): 414-418.
    93 Butler R. Morris AD, Belch JJ, et al. Allopurinol mormalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension, 2000, 35 (3): 746-751.
    94 Knowles, RG, and Moncada S. Nitric oxide synthases in mammals. Biochem J 298: 249-258, 1994.
    95 Nageswara RM, Aleksandr V, and Marschall SR. Oxidative stress and vascular disease. Arterioscler Thromb Vase Biol, 2005, 25:29-38.
    96 Lum, H, Gibbs L, Lai L, and Malik AB. CD18 integrin-dependent endothelial injury: effects of opsonized zymosan and phorbol ester activation. J Leukoc Biol 55: 58-63, 1994
    97 Tauber, AI, Brettler DB, Kennington EA, and Blumberg PM. Relation of human neutrophil phorbol ester receptor occupancy and NADpH-oxidase activity. Blood 60: 333-339, 1982
    98 Nathan, CF. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 80: 1550-1560, 1987.
    99 Matsubara, T, and Ziff M. Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol 137: 3295-3298, 1986
    100 Holland, JA, Pritchard KA, Pappolla MA, Wolin MS, Rogers NJ, and Stemerman MB. Bradykinin induces superoxide anion release from human endothelial cells. J Cell Physiol 143: 21-25, 1990
    101 Lum, H, Barr DA, Shaffer JR, Gordon RJ, Ezrin AM, and Malik AB. Reoxygenation of endothelial cells increases permeability by oxidant-dependent mechanisms. Circ Res 70: 991-998, 1992
    102 Zweier, JL, Kuppusamy P, and Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci USA 85: 4046-4050, 1988
    103 Zhao Y, Davis HW. Hydrogen peroxide-induced cytoskeletal rearrangement in cultured pulmonary endothelial cells. J Cell Physiol. 1998, 174: 370-379
    104 Hotter, G, Closa D, Prats N, Pi F, Gelpi E, and RoselloCatafau J. Free radical enhancement promotes leukocyte recruitment through a PAF and LTB4 dependent mechanism. Free Radic Biol Med 22: 947-954, 1997
    105 Scalia, R, and Lefer AM. In vivo regulation of PECAM-1 activity during acute endothelial dysfunction in the rat mesenteric microvasculature. J Leukoc Biol 64: 163-169, 1998
    106 Rattan, V, Sultana C, Shen YM, and Kalra VK. Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Am J Physiol Endocrinol Metab 273: E453-E461, 1997
    107 Johnson, A, Phillips P, Hocking D, Tsan M-F, and Ferro T. Protein kinase C inhibitor prevents pulmonary edema in response to H202. Am J Physiol Heart Circ Physiol 256: H1012-H1022, 1989
    108 Barnard, ML, and Matalon S. Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature. J Appl Physiol 72: 1724-1729, 1992
    109 Seeger, W, Hansen T, Rossig R, Schmehl T, Schutte H, Kramer HJ, Walmrath D, Weissmann N, Grimminger F, and Suttorp N. Hydrogen peroxide-induced increase in lung endothelial and epithelial permeability - effect of adenylate cyclase stimulation and phosphodiesterase inhibition. Microvasc Res 50: 1-17, 1995
    110 Olesen, SP. Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain. Acta Physiol Scand 129: 181-187, 1987
    111 Barnard, JW, Patterson CE, Hull MT, Wagner WWJ, and Rhoades RA. Role of microvascular pressure in reactive oxygen-induced lung edema. J Appl Physiol 66: 1486-1493, 1989
    112 Jin, NJ, and Rhoades RA. Activation of tyrosine kinases in H202-induced contraction in pulmonary artery. Am J Physiol Heart Circ Physiol 272: H2686-H2692, 1997
    113 Shasby, DM, Lind SE, Shasby SS, Goldsmith JC, and Hunninghake GW. Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis. Blood 65: 605-614, 1985
    114 Holman, RG, and Maier RV. Oxidant-induced endothelial leak correlates with decreased cellular energy levels. Am Rev Respir Dis 141: 134-140, 1990
    115 Ochoa, L, Waypa G, Mahoney JR, Rodriguez L, and Minnear FL. Contrasting effects of hypochlorous acid and hydrogen peroxide on endothelial permeability: prevention with cAMP drugs. Am J Respir Crit Care Med 156: 1247-1255, 1997
    116 Sif 1 inger-Birnboim, A, Lum H, del Vecchio PJ, and Malik AE. Involvement of Ca2+ in the H202-induced increase in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 270: L973-L978, 1996
    117 Kevil CG, Oshima T, Alexander B, et al. H202-mediated permeability: role of MAPK and occluding. Am J Physiol Cell Physiol. 2000, 279: C21-C30
    118 Susin SA, Lorenzo HK, Zamzami N, et al. Molecule characterization of mitochondrial apoptosis-inducing factor. Nature. 1999, 397(6718): 441-446
    119 Finkel E. The mitochondrion: is it central to apoptosis. Science. 2001, 292: 624-626
    120 Gesquiere L, Loreau N, Minnich A, et al. Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells. Free Radic Biol Med. 1999, 27(1-2): 134-145
    121 Mehta JL, Li DY. Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun. 1998, 248: 511-514
    122 Rajavashisth TB, Liao JK, Galis ZS, et al. Inflammatory cytokines and oxidized low density lipoprotein increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J Biol Chem. 1999, 274(17): 11924-11929
    123 Li DY, Yang BC, Mehta JL. Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2 and Bax. Am J Physiol Heart Cir Physiol. 1998, 275: H568-H576
    124 Ley K, Pries AR, Gaehtgens P. A versatile intravital microscope design. Int J Microcirc Clin Exp. 1987, 6: 161 ?167
    125 von Andrian UH, Chambers JD, McEvoy LM, et al. Two-step model of leukocyte-endothelial cell interaction in inflammation: Distince roles forLECAM-1 and the leukocyte p2 integrins in vivo. Proc Natl Acad Sci USA. 1991, 88 (17): 7538-7542
    126 Ley K, Gaehtgensn P. Endothelial, not hemodynamic differences are responsible for leukocyte rolling in rat mesenteric venules. Circ Res. 1991, 69 (4): 1034-1041
    127 Cooper, M. A., Non-optical screening platforms: the next wave in label-free screening? Drug Discov. Today 2006, 11, 1068-1074.
    128 Cooper, M. A., Optical biosensors: where next and how soon? Drug Discov. Today 2006, 11, 1061-1067.
    129 McGuinness, R., Impedance-based cellular assay technologies: recent advances, future promise. Curr. Opin. Pharmacol. 2007, 7, 535-540.
    130 Verdonk, E., Johnson, K., McGuinness, R., Leung, G. et al., Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev. Technol. 2006, 4, 609-619.
    131 Atienza, J. M., Yu, N., Wang, X., Xu, X. et al., Label-free and real-time cell-based kinase assay for screening selective and potent receptor tyrosine kinase inhibitors using microelectronic sensor array. J. Biomol. Screen. 2006, 11, 634-643.
    132 Fang, Y., Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 2006, 4, 583-595.
    133 Hug, T. S., Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev. Technol. 2003, 1, 479-488.
    134 Denholm, E. M., Stankus, G. P., Differential effects of two fluorescent probes on macrophage migration as assessed by manual and automated methods. Cytometry 1995, 19, 366-369.
    135 Abbitt, K. B., Rainger, G. E., Nash, G. B., Effects of fluorescent dyes on selectin and integrin-mediated stages of adhesion and migration of flowing leukocytes. J. Immunol. Methods 2000, 239, 109-119.
    136 Giaever, I., Keese, C. R., A morphological biosensor for mammalian cells. Nature 1993, 366, 591-592.
    137 Solly, K. ,Wang, X., Xu, X., Strulovici, B. et al. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev. Technol. 2004, 2, 363-372.
    138 Atienza, J. M., Yu, N., Kirstein, S. L. Xi,B. et al., Dynamic and label-free cell-based assays using the real-time cell electronic sensing system. Assay Drug Dev. Technol. 2006, 4, 597-607.
    139 Giaever, I., Keese, C. R., Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. USA 1984, 81, 3761-3764.
    140 Zhang, Z., Hernandez-Lagunas, L., Horne,W. C., Baron, R., Cytoskeleton-dependent tyrosine phosphorylation of the pl30(Cas) family member HEF1 downstream of the G protein-coupled calcitonin receptor. Calcitonin induces the association of HEF1, paxillin, and focal adhesion kinase. J. Biol. Chem. 1999, 274, 25093-25098.
    141 Thedinga, E. ,Kob, A., Hoist, H. ,Keuer,A. et al., Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicol. Appl. Pharmacol. 2007, 220, 33-44.
    142 Tiruppathi C, Naqvi T, Sandoval R, et al. Synergistic effects of tumor necrosis factor-alpha and thrombin in increasing endothelial permeability. Am J Physiol 2001, 281: L958-L968
    143 Atienza, J. M., Zhu, J.,Wang, X., Xu, X. et al., Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J. Biomol. Screen. 2005, 10, 795-805.
    144 Glamann, J., Hansen, A. J., Dynamic detection of natural killer cell-mediated cytotoxicity and cell adhesion by electrical-impedance measurements. Assay Drug Dev. Technol. 2006, 4, 555-563.
    145 Yu, N., Atienza, J. M., Bernard, J., Blanc, S. et al., Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal. Chem. 2006, 78, 35-43.
    146 Coleman, M. L., Olson, M. F., Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ. 2002, 9, 493-504.
    147 Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M. et al., Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 2001, 3, 339-345.
    148 Fang,Y., Ferrie, A. M., Fontaine, N. H., Yuen, P. K., Characteristics of dynamic mass redistribution of epidermal growth factor receptor signaling in living cells measured with label-free optical biosensors. Anal. Chem. 2005, 77, 5720-5725.
    149 Fang, Y., Li, G. G., Peng, J., Optical biosensor provides insights for bradykinin B(2) receptor signaling in A431 cells. FEBS Lett. 2005, 579, 6365-6374.
    150 Cunningham, B. T., Li, P., Schulz, S., Lin, B. et al., Label-free assays on the BIND system. J. Biomol. Screen. 2004, 9,481-490.
    151 Hug, T. .S, Prenosil, J. E., Maier, P., Morbidelli, M., Optical waveguide lightmode spectroscopy (OWLS) to monitor cell proliferation quantitatively. Biotechnol. Bioeng. 2002, 80, 213-221.
    152 Hug,T. S., Prenosil, J. E., Morbidelli, M., Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. Biosens. Bioelectron. 2001, 16, 865-874.
    153 Hug, T. S., Prenosil, J. E., Maier, P., Morbidelli, M., On-line monitoring of adhesion and proliferation of cultured hepatoma cells using optical waveguide lightmode spectroscopy (OWLS). Biotechnol. Prog. 2002, 18, 1408-1413.
    154 Marx, K. A., Zhou, T., Montrone, A. Schulze, H. et al., A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosens. Bioelectron. 2001, 16, 773-782.
    155 Marx, K. A., Zhou, T., Warren, M., Braunhut, S. J., Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol. Prog. 2003, 19, 987-999.
    156 Marx, K. A., Zhou, T., Montrone, A., McIntosh, D. et al., Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: Evidence for transient cellular stress and viscoelastic changes during detachment and the elastic behavior of the pure matrix. Anal. Biochem. 2005, 343, 23-34.
    157 Marx, K. A., Zhou, T., Montrone, A., McIntosh, D. et al., A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal. Biochem. 2007, 361, 77-92.
    158 Zhou, T., Marx, K. A., Warren, M., Schulze, H. et al., The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnol. Prog. 2000, 16, 268-277.
    159 Wu, M., Neilson, A., Swift, A. L., Tamagnine, J. et al., Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 2007, 292, C125-136.
    160 Sridharan, V., Guichard, J., Bailey, R. M., Kasiganesan, H. et al.,The prolyl hydroxylase oxygen-sensing pathway is cytoprotective and allows maintenance of mitochondrial membrane potential during metabolic inhibition. Am. J. Physiol. Cell Physiol. 2007, 292, C719-728.
    161 Crunkhorn,S., Dearie,F., Mantzoros, C., Garni, H. et al. ,Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 2007, 282, 15439-15450.
    162 Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. Journal of Clinical Investigation 1973,52:2745-2746.
    163 Butcher EC. Leukocyte-endothelial cell recognition. Three (or more) step to specificity and diversity. Cell. 1991, 67(2): 1033-1036
    164 Lo··ster K. , Horstkorte R, Enzymatic quantification of cell-matrix and cell-cell adhesion. Micron, 2000, 31:41-53.
    165 Giaever I, Keese CR: Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA 1984; 81: 3761-3764.
    166 Giaever I, Keese CR: A morphological biosensor for mammalian cells. Nature 1993; 366: 591-592.
    167 Li HB, Deng TL, Zhang QN, et al. Label-free and dynamic monitoring of endothelial barrier functiong on microelectronic cell sensor arrays. 168 Chinnaswamy T, Asrar BM, Peter JD, et al. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier functiong. Proc Natl Acad Sci USA, 1992, 89:7919-7923.
    169 Reddy L, Wang HS, Keese CR, et al. Assessment of rapid morphological changes associated with elevated cAMP levels in human orbital f ibroblasts. Exp Cell Res, 1998, 245(2): 360-367.
    170 Yu N, Atienza JM, Bernard J, et al. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal Chem. 2006 , 78(1): 35-43
    171 Silke A, Jochen S, Katherina P, et al. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron, 2004, 19: 583-594.
    172 Carmen EC, Morten ML, Erlend H, et al. Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Biosens Bioelectron. 2007; 23(4): 536-542.
    173 Xing JZ, Zhu L, Gabos S, et al. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol In Vitro. 2006, 20(6): 995-1004.
    174 Nacima H, Yin XY, David AK, et al. Automated real-time measurements of leukocyte chemotaxis. J Immunol Methods, 2007, 320:70-80.
    175 Richardson A, Parsons T. A mechanism for regulation of the adhesion associated proteintyrosine kinase ppl25FAK. Nature 1996; 380: 538-540.
    176 Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. ppl25FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 1992; 89: 5192-5196.
    177 Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. ,1988, 4, 487-525
    178 Schaller, M. D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J. T. ppl25FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. USA 1992, 89, 5192-5196
    179 Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M., and Juliano, R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem., 1991, 267, 23439-23442
    180 Hanks, S. K., Calalb, M. B., Harper, M. C., and Patel, S. K. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc. Natl. Acad. Sci.,1992, 89, 8487-8491
    181 Burridge, K., Turner, C. E., and Romer, L. H. Tyrosine phosphorylation of paxillin and ppl25FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol., 1992, 119, 893-903
    182 Defilippi, P., Bozzo, C., Volpe, G., Romano, G., Venturino, M., Silengo, L., and Tarone, G. Integrin-mediated signal transduction in human endothelial cells: analysis of tyrosine phosphorylation events. Cell Adhes. Commun. ,1994, 2, 75-86
    183 Richardson, A., and Parsons, J. T. A mechanism for regulation of the adhesion-associated proteintyrosine kinase ppl25FAK. Nature , 1996, 380, 538-540
    184 Fincham, V. J., Wyke, J. A., and Frame, M. C. v-Src-induced degradation of focal adhesion kinase during morphological transformation of chicken embryo fibroblasts. Oncogene ,1995, 10, 2247-2252
    185 Ke Zen and Charles A. Neutrophil migration across endothelium: transcellular or paracellular? Blood. 2005; 106: 394-395
    186 Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24: 327-334
    187 Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med. 1998;187: 903-915.
    188 Rankin S, Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase (pl25FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells: Bell-shaped dose response and cross-talk with bombesin. J Biol Chem 1994; 269: 704-710.
    189 Knight J, Yamauchi K, Pessin JE. Divergent Insulin and Platelet-derived Growth Factor Regulation of Focal Adhesion Kinase (pp125) Tyrosine Phosphorylation, and Rearrangement of Actin Stress Fibers. J Biol Chem 1995; 270: 10199-10203.
    190 Schwartz CJ, Valente AJ, Spargue EA. A modem view of atherogenesis. Am J Cardiol. 1993, 71 (6): 9B-14B
    191 Dewey CF, Bussolari SR, Gimbrone MA, et al. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981, 103 (3): 177-185
    192 Ohshima N, Onohara M, Sato M. Dynamics of platelet adhesion to artificial materials and cultured endothelial cells under shear flow. ASAIO Trans. 1989, 35 (3): 379-381
    193 Cooke BM, Usami S, Perry I, et al. A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvasc Res. 1993, 45 (1): 33-5
    194 Ross R. Atherosclerosis is an inflammatory disease. N Engl JMed. 1999, 340 (2): 115-126
    195 Tangelder GJ, Arfors KE. Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides. Blood. 1991, 77 (7): 1565-1571
    196 Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Cric Res. 1978, 43 (5): 738-749
    197 Lipowsky HH, Riedel D, Shi GS. In vivo mechanical properties of leukocytes during adhesion to venular endothelium. Biorheology. 1991, 28 (1-2): 53-64
    198 Schwartz CJ, Valente AJ, Spargue EA. A modern view of atherogenesis. Am J Cardiol. 1993, 71 (6): 9B-14B
    199 Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992, 13 (3): 93-100
    200 Gearing AJ, Newman W. Circulating adhesion molecules in disease. Immunol Today. 1993, 14 (10): 506-512
    201 Zarbock A, Abram CL, Hundt M, Altman A, Lowell CA, Ley L PSGL-1 engagement by E-selectin signals through Src kinase Fgr and ITAM adapters DAP12 and FcR gamma to induce slow leukocyte rolling. J Exp Med. 2008; 205: 2339-2347.
    202 Jung U, Bullard DC, Tedder TF, Ley K. Velocity differences between L-and P-selectin-dependent neutrophil rolling in venules of mouse cremaster muscle in vivo. Am J Physiol, 1996, 271:H2740-H2747
    203 Lawrence MB, Kansas GS, Kunkel EJ, Ley K. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E). J Cell Biol. 1997, 136 (3): 717-727
    204 Finger EB, Purl KD, Alon R, Lawrence MB, yon Andrian UH, Springer TA.Adhesion through L-selectin requires a threshold hydrodynamic shear.Nature. 1996, 379:266-269
    205 Zhao J, Qi R, Li R, Wu W, Gao X, Bao L, Lu S. Protective Effects of Aspirin Against Oxidized LDL-induced Inflammatory Protein Expression in Human Endothelial Cells J Cardiovasc Pharmacol. 2008 ;51:32-37.
    206 Chen ZW, MA Chuanr-G. Effects of hyperin on free intracellular Ca2+ in dissociated, neonatal rat brain cells . Acta Pharmacol Sin, 1999,20(1):27-30.
    207 章家胜,陈志武,马传庚,等.金丝桃苷对大鼠全脑缺血过程氧自由基和一氧化氮变化的影响.中国中药杂志,1999,24(7):431-433.
    208 陈志武,马传庚,赵维忠.金丝桃苷对脑缺血再灌损伤保护作用.药学学报,1994.29(1):15-17.
    209 陈志武,王宏光,方明,等.一种简便实用的外周镇痛模型.中国药理学通报,1990,6(6):394-396.
    210 Song BW, Ma CG, Xu SY. A new peripheral anlgesic agent: hyperin Asia pacific. J Pharmacoc, 1988, 3:1.
    211 蒋丽君,蒋春亭.黄蜀葵花活性成分-金丝桃苷治疗痛经实验研究.中国中医药信息杂志,2005,12(8):33-34.
    212 Vermes I, Haanen C, Steffens-Hakken H, et al. A novel assay for apoptosis: Flow cytometric detection of phosphatidylserine expression on early apoptosis ceils using fluorescein labled Annexin V. Journal of Immunological Methods. 1995; 184: 39-51.
    213 Smiley ST, Reefs M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming 1 ipophilie cation JC-1. Proc Natl Acad Sci USA. 1991; 88:3671-3675.
    214 Kroemer G, Reed JC, Mitochondrial control of cell death. Nat Med, 2000; 6 (5): 513-519
    215 Zeng ZH, Zhang ZY. The oxidative damage of mitochondrial DNA by free radicals[J]. Prog Bichem Biophys, 1995, 22 (5) : 429-432
    216 Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002, 106: 544-549.
    217 Sanchez-Alcazar JA, Ault JG, Khodjakov A, Schneider E. Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ 2000, 2(11): 1090-1100.
    218 Matarrese P, Testa U, Cauda R, et al. Expression of P-170 glycoprotein sensitizes lymphoblastoid CEM cells to mitochondria-mediated apoptosis. Biochem J 2001, 355(3): 587-595.
    219 Asmis R, Begley JG. Oxidized LDL Promotes Peroxide-Mediated Mitochondrial Dysfunction and Cell Death in Human Macrophages A Caspase-3-Independent Pathway. Circ Res 2003, 92(1): e20-e29.
    220 Kane DJ, SarafianTA, Anton R, et al. Bcl-2 inhibition of neural death: decressed generation of reactive oxygen species. Science. 1993, 262(5137): 1274-1277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700