用户名: 密码: 验证码:
含沙门菌内源启动子新型双功能表达载体的构建及其在猪瘟病毒疫苗研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应以减毒胞内寄生菌为运载体的兽用基因疫苗研究发展趋势,研究构建含有减毒胞内寄生菌自身内源性诱导启动子的新型双功能基因疫苗表达载体,以增强基因疫苗诱导有效保护性免疫。基于以上考虑,本课题研究旨在研制含猪霍乱沙门菌内源性诱导启动子的新型双功能基因疫苗通用表达载体,既能够在运载体原核细胞中可调控表达携带抗原基因,又能够在真核细胞中启动表达携带抗原基因,以期与S.C500合用开发适于粘膜免疫的猪群重组活菌疫苗。为此,本研究首先扩增出猪霍乱沙门菌nirB、pagC两基因启动子区域片段,然后分析其启动活性,进一步构建新型双功能表达载体pCB-neo、pCC-neo,系统研究表达载体的启动活性特点,检验S.C500运送以pCB-neo、pCC-neo基础构建的基因疫苗的可行性。本课题研主要研究内容包括:
     Ⅰ.猪霍乱沙门菌nirB、pagC基因启动子区域分子克隆及其生物信息学分析
     为获得沙门菌nirB、pagC两基因启动子区域片段,利用PCR技术从猪霍乱沙门菌疫苗株S.C500基因组DNA中扩增出启动子PnirB、PpagC基因区域片段,经TA克隆筛选及测序鉴定,成功构建克隆重组质粒pUCX-PnirB、pUCX-PpagC。序列分析结果显示启动子PnirB、PpagC与其它沙门菌相关序列核苷酸同源性较高,分别为96%~100%、93%~99%,其中与霍乱沙门菌SC-B67核苷酸同源性分别高达100%、99%,说明两启动子基因区域高度保守。生物信息学网络软件NNPP分析结果显示,PnirB启动子基因区域序列有3个较强的启动子Promotor序列,PpagC启动子基因序列有12个较强的启动子Promotor序列,说明试验所扩增的两个基因启动子区域片段具有启动基因表达的基本元件。
     Ⅱ.沙门菌nirB、pagC基因启动子启动活性研究
     为考察沙门菌启动子的启动表达能力及特点,运用基因工程技术构建携带有沙门菌内源性启动子PnirB、Ppagc的单一启动子表达载体pPB、pPC,进一步构建其报告基因载体pPB-EGFP、pPC-EGFP,并转化到S.C500中进行相应的诱导性表达。通过表达菌液荧光观察、菌细胞表达荧光检测、SDS-PAGE检测,确证EGFP的获得成功表达,证实克隆获得的启动子PnirB、PpagC区域基因片段在S.C500中具有启动活性。
     Ⅲ.新型双功能基因疫苗通用表达载体的构建及表达活性研究
     为研制含沙门菌内源启动子的新型双功能基因疫苗表达载体,利用PCR技术亚克隆启动子必需区域基因片段PnirB(CB)(190bp)、PpagC(CC)(490bp),并设计添加SD-Kozak杂合序列,替换pCI-neo启动子Pcmv下游的Chimeric intron基因区域,构建双功能疫苗表达载体pCB-neo、pCC-neo。进一步构建报告基因载体pCB-EGFP、pCC-EGFP。实现EGFP在S.C500中表达,证实PnirB(CB)、PpagC(CC)可以在S.C500中驱动外源基因的表达;实现EGFP在Vero细胞中表达,证实原载体中启动子Pcmv可以在Vero中驱动外源基因的表达,说明下游新插入的启动子不影响其启动活性:实现EGFP在小鼠体外培养巨噬细胞中表达,进一步证实S.C500运送以pCB-neo、pCC-neo为表达载体构建的新型基因疫苗的可行性。
     Ⅳ.内江猪白细胞介素15基因的分子克隆、表达及免疫佐剂作用研究
     为获得内江猪白细胞介素15基因序列片段,利用RT-PCR技术从经由Con A刺激的内江猪PMBC扩增了pIL-15基因,经TA克隆筛选及测序鉴定,成功构建克隆重组克隆质粒pUCX-njpIL-15。构建原核表达载体pMAL-pmIL-15,实现pIL-15在大肠杆菌中高效表达。MTT法试验显示融合产物MBP-pmIL-15经初步纯化、透析复性后,可明显增强淋巴细胞增殖。构建真核表达载体pCI-pIL-15,与pCI-gD(PRV)联合肌注免疫BALB/c雌性小鼠试验显示,pCI-pIL15能够促进小鼠脾脏CD4+T、CD8+T细胞数量增殖,加强基因疫苗pCI-gD(PRV)特异性中和抗体的产生:试验证实内江猪IL-15具有免疫佐剂作用。
     Ⅴ.猪瘟病毒E2蛋白主要抗原区编码基因的分子克隆与原核表达研究
     为获CSFV-E2基因片段,利用RT-PCR技术从PK-15细胞增殖的CSFV四川分离株中成功分子克隆E2基因,含有编码E2蛋白完整基因序列,共1119 bp,编码373 aa。构建原核表达载体pET-mE2(pe)、pET-E2(pe),转化到宿主菌E.coli Rosetta-gami-TM(DE3)plysS进行表达研究,SDS-PAGE电泳检测及Western blot分析结果显示,试验成功表达的mE2(pe)、E2(pe)均具有一定的生物学免疫反应活性。CSFV-E2主要抗原位点区域(mE2)的成功原核表达,为进一步研究新型猪瘟病毒基因疫苗奠定理论基础。
     Ⅵ.猪IL-15与CSFV-E2双基因融合表达载体的构建及表达研究
     运用分子生物学实验技术将内江猪IL-15成熟肽基因与CSFV-E2主要抗原位点区域基因有机连接,构建融合双基因的克隆重组质粒pUCX-ME2-IL-15。构建真核表达载体pEGFP-ME2-IL-15,转染到Vero细胞中,荧光检测证实表达出增强型绿色荧光蛋白融合蛋白,证实试验构建的目的融合双基因ME2-IL-15可以在真核Vero细胞中获得表达,为进一步研究融合双基因ME2-IL-15奠定理论基础。构建融合双功能重组表达载体pCB-ME2-IL-15、pCC-ME2-IL-15及对照真核重组表达载体pCI-ME2-IL-15,分别将pCB-ME2-IL-15、pCC-ME2-IL-15转化到S.C500,SDS-PAGE电泳及Western-blott检测显示融合双基因ME2-IL-15在S.C500中成功表达,证实PnirB(CB)、PpagC(CC)可以在S.C500中驱动融合双基因ME2-IL-15的表达:将pCB-ME2-IL-15、pCC-ME2-IL-15、pCI-ME2-IL-15转染到哺乳动物Vero细胞中,mRNA转录、间接免疫荧光及夹心ELISA检测结果证实Pcmv可以在Vero中驱动外源基因ME2-IL-15的表达。为进一步研究S.C500运载双基因融合表达基因疫苗奠定试验基础。
     Ⅶ.融合双基因疫苗在S.C500中的稳定性及其对运载菌侵袭力影响的研究
     为了考察融合双基因疫苗表达载体在运载菌S.C500中的稳定性及其对运载菌侵袭力的影响,试验对构建的重组工程活菌苗进行系统研究。结果显示,双功能表达载体pCB-ME2-IL-15、pCC-ME2-IL-15及对照pCI-ME2-IL-15存在与否不影响运载菌S.C500的生物学特性,对其生化鉴定特性亦不影响,除Amp抗性外,重组菌与运载菌的药敏性一致;基因疫苗表达载体所插入的融合双基因ME2-IL-15增加其在运载菌S.C500体内的稳定性;基因疫苗的存在使运载菌S.C500对ST细胞的粘附能力、侵袭能力及其在ST细胞体内的增殖能力均有一定程度的下降,对运载菌本身的免疫效应有一定影响;口服免疫28日龄BALB/c雌性小鼠具有一定的稳定性和免疫安全性,可以有效的将基因疫苗运载至免疫小鼠机体细胞;为研究S.C500运载基因疫苗的免疫应答奠定前提。
     Ⅷ.融合双基因疫苗重组S.C500活菌苗口服接种家兔的免疫应答初步研究
     为检测家兔血清中S.C500抗体水平,建立猪霍乱沙门菌血清抗体间接ELISA检测方法,确立抗原最佳包被浓度为0.305μg/mL,血清最适稀释度为1:40,试验测定血清样品的D_(492 nm)值,判定标准通过标准阴性血清按照P/N比值公式进行判断,P/N≥2.1为阳性,1.5<P/N≤2.1为可疑,1.5<P/N为阴性;可以间接反应抗体水平的高低。家兔血清CSFV抗体检测结果显示对照A组(口服PBS缓冲液对照)无CSFV抗体,B组(口服S.C500/pCB-ME2-IL-15)、C组(口服S.C500/pCC-ME2-IL-15)、D组(口服S.C500/pCI-ME2-IL-15)、E组(口服S.C500/pCI-ME2)首免后14天即已产生CSFV抗体,第二、三次均呈上升趋势,B、C组免疫效果优于D、E组,B、C组之间相比C组免疫效果稍好,D、E组之间相比D组免疫效果稍好,试验研制的双功能疫苗通用表达载体pCB-neo、pCC-neo具有一定优势;S.C500抗体检测结果显示,试验构建的四个重组工程菌组经灌服均产生了较高的抗体水平,对照灌服PBS缓冲液组未能检测到抗S.C500特异性抗体的存在。免疫家兔T淋巴细胞增殖检测分析显示,对照A组家兔三次T淋巴细胞增殖率均低于15%,之间差异亦不大;B、C、D、E四个口服免疫组T淋巴细胞增殖率均高于18%以上,末次免疫后14d,B组增殖率有小幅度下降,C、D、E三组增殖率均有不同程度的增强提高。于末次免疫后14d,用4头份猪瘟兔化弱毒脾淋苗肌肉注射进行攻毒,以热反应为判定标准,保护率依次为0%、40%、60%、40%、25%,说明S.C500为运载体的猪瘟基因疫苗能够诱导家兔产生一定抗CSFV的保护性特异抗体,其中试验研制的基因疫苗通用表达pCC-neo携带的抗原基因保护率较高,具有一定优势。采用4×10~(10) CFU/只剂量的猪伤寒沙门菌野毒株口服接种攻毒试验,结果表明试验所构建的四个重组工程菌均能够诱导家兔产生一定水平的抗猪伤寒沙门菌野毒株的保护性特异抗体。
Construction of a new dual-function gene vaccine expression vector containing hyperparasite intracellular endogenous inducible-promoter enhances the effective protective immunity induced by the DNA vaccine.This adapts to the research and development trend of veterinary gene vaccine carried by attenuated intracellular parasites. Based on the above considerations,this research aims to develop a new type expression vector for gene vaccine,using vaccine strain of Salmonella choleraesuis(S.C500) as the transporter with the endogenous promoter of its own.Thereby to creat swine live recombinant vaccines that can activate mucosal immunity.Therefore,this study first amplified the nirB,pagC promoter gene fragments of Salmonella choleraesuis,and then to carry out systematic analysis of promoters activity.Based on this,constructing the new type expression vector pCB-neo and pCC-neo,and analysising the characteristics of promoting activity of the vectors;in the end,verify the feasibility of gene vaccines deliveried by S.C500 built on pCB-neo,pCC-neo.The main research contents include:
     Ⅰ.Molecular cloning and bioinformatics analysis of the nirB,pagC promoter genes of Salmonella choleraesuis
     The nirB,pagC promoter gene fragments were amplified from the genome DNA of the vaccine strain Salmonella choleraesuis S.C500.The recombinant plasmid pUCX-PnirB and pUCX-PpagC were successfully constructed,after TA cloning and sequencing.The sequential analysis showed that the homology between the PnirB,PpagC promoter genes of S.C500 and other Salmonellaes related nucleotide sequence are 96-100%,93-99% respectively.The nucleotide homology between the PnirB,PpagC promoter gene of S.C500 and Salmonella cholera SC-B67 are up to 100%,99%respectively.These revealed that the two promoter gene regions were highly conservative.The bioinformatics software NNPP analysis revealed that the PnirB promoter gene includes three strong promotor sequences,and the PpagC promoter gene includes 12 promotor sequences.It indicated that the two Promotor genes have the basic components to activated gene expression.
     Ⅱ.The activity study of nirB,pagC promoter genes of Salmonella choleraesuis
     In order to study the activity of PnirB,PpagC promoter,we builted single-promoter expression vectors pPB,pPC with endogenous promoter of Salmonella by using genetic engineering techniques,and further constructed reporter gene vectors pPB-EGFP, pPC-EGFP,and then Transformed them into S.C500 for inducible expression.The results of observing the fluorescence of expression bacilli,detection the fluorescence of bacteria cells,and SDS-PAGE tests confirmed the successful expression of EGFP.The results showed that have promoter activity of the cloned PnirB,PpagC promoter gene fragments of S.CS00.
     Ⅲ.Construction and Expression of activity Research of New type dual-functional gene vaccine expression vectors
     To develop the new type dual-functional gene vaccine expression vector containing endogenous promoter of Salmonella,we subcloned necessary promoter gene core-region fragments of PnirB(CB) 190bp),PpagC(CC)(490bp),and also added SD/Kozak Hybrid sequences to replace the Pcmv promoter downstream Chimeric intron genes of pCI-neo, and then built dual-functional gene vaccine expression vectors pCB-neo and pCC-neo. Further Constructed reporter gene vectors pCB-EGFP and pCC-EGFP.The successful expression of EGFP in S.C500 confirmed that PnirB(CB),PpagC(CC) could drive foreign genes expression.The realization of EGFP expression in Vero cells,confirmed the original promoter vector Pcmv could also drive the expression of foreign genes,and the new inserted promoters don't affect its promoter activity;the realization of EGFP expression in mice,confirmed the feasibility of delivery the gene vaccine based on pCB-neo,pCC-neo by S.C500.
     Ⅳ.Molecular cloning,expression and the effects of immune adjuvant of the Neijiang porcine interleukin-15 gene
     Porcine interleukin-15 gene fragment was amplified from Neijiang porcine PMBC stimulated by Con A by RT-PCR technology.After the TA cloning to identify the selection and sequencing,the cloned recombinant plasmid pUCX-njpIL-15 was constructed successfully.Prokaryotic expression vector pMAL-pmIL-15 was constructed,and expressed at a high level in E.coli.MTT test showed that after initial purification, renaturation and dialysis,the fusion-protein MBP-pmIL-15 could significantly enhance the proliferation of lymphocyte.Construction of eukaryotic expression vector pCI-pIL-15, combining with pCI-gD(PRV),and to immune BALB/c female mice by intramuscular injection,the result demonstrated that pCI-pIL15 contributed to proliferation of spleen CD4+T,CD8+T cells,strengthened the production of PRV-gD gene vaccine specific neutralizing antibody.The experiment confirmed that Neijiang porcine IL-15 has the immunity adjuvant function.
     Ⅴ.Molecule cloning of Classical Swine Fever Virus E2 major-antigen protein coding gene and Prokaryotic expression reserch
     The CSFV-E2 complete gene was successfully cloned from CSFV proliferated in PK-15 cells by using RT-PCR technology.The CSFV-E2 gene contains a complete sequence coding E2 protein,includes 1119bp in total,and encodes 373aa.Construction of prokaryotic expression vector pET-mE2(pe),pET-E2(pe).Transformed them into host bacteria E.coli Rosetta-gami-TM(DE3) plysS,and then studied the expression of recombinant bacteria R/pET-mE2(pe) and R/pET-E2(pe).The results of SDS-PAGE electrophoresis and Western blot test show that mE2(pe),E2(pe) were expressed successfully have a certain degree of biological activity of the immune response.The successful prokaryotic expression of the main antigen sites(mE2) of CSFV-E2 lays theoretical basis for the further study of Classical Swine Fever virus gene vaccine.
     Ⅵ.Construction and expression of dual-genes fusion expression vectors of Neijiang porcine IL-15 and CSFV-E2 genes
     Combining Neijiang porcine IL-15 gene with the CSFV-E2 major-antigen protein encding gene by molecular biology technology to build a dual-genes fusion recombinant cloning plasmid pUCX-ME2-IL-15 and plasmid pUCX-dME2-IL-15.Construction of eukaryotic expression vector pEGFP-dME2-IL-15,transfected into Vero cells,The result of fluorescence detection confirmed the expression of enhanced green fluorescent fusion protein dME2-IL-15-EGFP,and the possibility of expression of the double-genes ME2-IL-15 in eukaryotic Vero cells.This provided theoretical basis for further study of the fusion dual-genes ME2-IL-15.Construction of recombinant eukaryotic expression vectors pCB-ME2-IL-15,pCC-ME2-IL-15,pCI-ME2-IL-15,transformed them into S.C500.The results of SDS-PAGE electrophoresis and Western-blot test showed the successful expression of the fusion dual-genes ME2-IL-15 in S.C500.The experiments confirmed that PnirB(CB),PpagC(CC) promoter in S.C500 could drive the ME2-IL-15 expression. Transfected pCB-ME2-IL-15,pCC-ME2-IL-15,pCI-ME2-IL-15 into Vero cells,the results of immunofiuorescence and ELISA confirmed that the Pcmv could drive expression of exogenous gene ME2-IL-15 in Vero cells.This provided a experimental basis for further study of the expression of dual-genes vaccines delivering by S.C500.
     Ⅶ.Stability and immunizing safety of fusion dual-genes vaccines using Salmonella choleraesuis S.C500 as transporter
     In order to investigate the stability of the integration of dual-genes vaccine expression vectors in S.C500 and its impact on invasiveness of the carrying bacteria,we built a systematic research of live recombinant vaccine.The results demonstrated that the vaccine expression vectors pCB-ME2-IL-15,pCC-ME2-IL-15,pCI-ME2-IL-15 didn't affect the biological characteristics and their characteristics of biochemical identification of the carrying bacteria S.C500.The drug-sensitivity of the recombinant bacteria were same to the carrying bacteria except the Amp resistance.The fusion gene ME2-IL-15 that was inserted into the gene vaccine expression vectors increased the stability of the expression vectors in the carrying bacteria S.C500.The gene vaccine declined the adhesion and invasion of the carrying bacteria to ST cell,cut down the proliferative ability of S.C500 in ST cells;and also influenced the immune response of the carrying bacteria.It's stable and safe to immune the 28-day-old BALB/c female mice at a certain degree.It could deliver the gene vaccines effectively to the immune cells of the mice.These studies provided a experimental basis for further study of the immune response of gene vaccine carrying by S.C500.
     Ⅷ.Preliminary study on immune response of the fusion dual-genes recombinant live vaccines delivered by S.C500 in rabbits
     A method of indirect ELISA of Salmonella choleraesuis was established to detect the level of antibodies against the S.C500 in rabbits serum.The experiment Established the optimal antigen concentration was 0.305μg/mL,and the optimal serum dilution was 1:40. Testing the value D_(492nm) of the serum sample,determined through a standard negative serum in accordance with the P/N ratio,P/N≥2.1 positive,1.5<P/N≤2.1 as suspicious,1.5 <P/N for negative.This indirectly reflected the level of antibody response.The results of testing the rabbits serum CSFV antibody showed that A group(oral PBS buffer) non-CSFV antibodies,but B group(oral S.C500/pCB-ME2-IL-15),C group(oral S.C500/pCC-ME2-IL-15),D group(oral S.C500/pCI-ME2-IL-15),E group(oral S.C500/pCI-ME2) CSFV antibodies emerged after the first 14 days.The level of antibodies were higher after the second and third immunization.The immune effect of B,C group is superior to that of D,E group.But the immune effect of C Group was better than B group, D groups better than E group.The development of general dual-functional gene vaccine expression vectors pCB-neo and pCC-neo have a certain advantage.The results of S.C500 antibody detection showed that the four recombinant strains groups by gavage produced a higher antibody level,while the control buffer PBS gavage group failed to detect specific antibodies against the existence of S.C500.
     The analysis of T lymphocyte proliferation of the immuned rabbits showed that the control A group of T lymphocyte proliferation in rabbits were lower than 15%after immuning three times,and there were little differences among each time.The T lymphocytes proliferation rate of B,C,D,E oral immunization group were higher than 18%.After 14 days from the last immunization,the proliferation rate of B group declined a little,while the proliferation rate of C,D,E groups enhanced in different levels.After 14d from the last immunization,to infect the rabbits with four copies of Classical Swine Fever Virus of rabbits spleen vaccine by intramuscular injection,to determine the standards for the thermal reaction,the protection rates were 0%,40%,60%,40%,25%.The result demonstrated that the classical swine fever gene vaccine carrying by S.C500 in rabbits could induce some protective anti-CSFV-specific antibodies,the protection rates of the antigen gene carried by the general dual-functional gene vaccine expression vector pCC-neo was higher.So the pCC-neo has certain advantages.The rabbits infected with 4×10~(10) CFU/dose of Salmonella paratyphi wild strain by oral inoculation.The results showed that the four recombinant strains were able to induce rabbits to produce a certain level of anti-pig wild strain of Salmonella protective specific antibodies.
引文
[1]陈弟诗,郭万柱,徐志文,等.猪霍乱沙门氏菌的分离与鉴定以及PCR检测方法的建立[J].安徽农业科学,2007,35(20):6020-6023.
    [2]陈弟诗.猪霍乱沙门氏菌携带的含APP apxⅡA基因的双启动子表达载体pEPR-apxⅡA的构建[D].雅安;四川农业大学,2007.
    [3]陈凯,徐亮.猪伪狂犬病病毒IE180、UL6、UL4基因功能研究[M].2007.
    [4]徐志文.猪瘟伪狂犬病重组病毒活疫苗的研究[D].雅安;四川农业大学,2003.
    [5]OSORIO M,WU Y,SINGH S,et al.Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge[J].Infect Immun,2009,77(4):1475-1482.
    [6]MOLLENKOPF H,DIETRICH G,KAUFMANN S H.Intracellular bacteria as targets and carriers for vaccination[J].Biol Chem,2001,382(4):521-532.
    [7]KOPECKO D J,SIEBER H,URES J A,et al.Genetic stability of vaccine strain Salmonella Typhi Ty21a over 25 years[J].Int J Med Microbiol,2009,299(4):233-246.
    [8]GARMORY H,BROWN K,TITBALL R.Salmonella vaccines for use in humans:present and future perspectives[J].FEMSMicrobiology Reviews,2002,26(4):339-353.
    [9]NEUTRA M R.M cells in antigen sampling in mueosal tissues[J].Curr Top Microbiol Immunol,1999,236(00):17-32.
    [10]VAZQUEZ-TORRES A,FANG F C.Cellular routes of invasion by enteropathogens[J].Curr Opin Microbiol,2000,3(1):54-59.
    [11]BANGERTER M,GRIESSHAMM R M,V TIRPITZ C,et al.Myelodysplastic syndrome with monosomy 7 after immunosuppressive therapy in Behcet's disease[J].Scand J Rheumatol,1999,28(2):117-119.
    [12]GERMANIER R,FUER E.Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi:a candidate strain for a live,oral typhoid vaccine[J].J Infect Dis,1975,131(5):553-558.
    [13]PICKETT T E,PASETTI M F,GALEN J E,et al.In vivo characterization of the murine intranasal model for assessing the immunogenicity of attenuated Salmonella enterica serovar Typhi strains as live mucosal vaccines and as live vectors[J].Infect Immun,2000,68(1):205-213.
    [14]梁雪芽,宋厚辉,江玲丽,等.沙门氏菌的基因工程减毒以及在DNA疫苗载体中的应用[J].中国兽医杂志,2002,38(7):35-37.
    [15]CURTISS R,HASSAN J.Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry[J].Veterinary immunology and immunopathology,1996,54(1-4):365-372.
    [16]CURTISS R,KELLY S.Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic[J].Infection and Immunity,1987,55(12):3035-3043.
    [17]KUBORI T,MATSUSHIMA Y,NAKAMURA D,et al.Supramolecular structure of the Salmonella typhimurium type Ⅲ protein secretion system[J].Science,1998,280(5363):602-605.
    [18]JOHNSTON C,PEGUES D A,HUECK C J,et al.Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily [J].Mol Microbiol,1996,22(4):715-727.
    [19]BAJAJ V,LUCAS R L,HWANG C,et al.Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression [J].Mol Microbiol,1996,22(4):703-714.
    [20]RODRIGUEZ A,REGNAULT A,KLEIJMEER M,et al.Selective transport of internalized antigens to the cytosol for MHC class Ⅰ presentation in dendritic cells[J].Nat Cell Biol,1999,1(6):362-368.
    [21]HEATH W R,CARBONE F R.Cross-presentation in viral immunity and self-tolerance[J].Nat Rev Immunol,2001,1(2):126-134.
    [22]CATIC A,DIETRICH G,GENTSCHEV I,et al.Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway ofmacrophages[J].Microbes Infect,1999,1(2):113-121.
    [23]GENTSCHEV I,DIETRICH G,SPRENG S,et al.Recombinant attenuated bacteria for the delivery of subunit vaccines[J].Vaccine,2001,19(17-19):2621-2628.
    [24]TUOMANEN E,JAIN V,MEKALANOS J.Use of lambda phage S and R gene products in an inducible lysis system for Vibrio cholerae-and Salmonella enterica serovar typhimurium-based DNA vaccine delivery systems[M].Am Soc Microbiol.2000:986-989.
    [25]DIETRICH G,BUBERT A,GENTSCHEV I,et al.Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes[J].Nat Biotechnol,1998,16(2):181-185.
    [26]张晓明,焦新安,唐丽华,等.鼠伤寒沙门氏菌SL7207 SifA~-突变株的构建和鉴定[J].微生物学报,2005,45(3):349-354.
    [27]DARJI A,GUZMAN C A,GERSTEL B,et al.Oral somatic transgene vaccination using attenuated S.typhimurium[J].Cell,1997,91(6):765-775.
    [28]DARJI A,ZUR LAGE S,GARBE A,et al.Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier[J].FEMS immunology and medical microbiology,2000,27(4):341-349.
    [29]VAZQUEZ-TORRES A,JONES-CARSON J,BAUMLER A J,et al.Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes[J].Nature,1999,401(6755):804-808.
    [30]RESCIGNO M,URBANO M,VALZASINA B,et al.Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria[J].Nat Immunol,2001,2(4):361-7.
    [31]YRLID U,WICK M J.Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells[J].J Exp Med,2000,191(4):613-624.
    [32]SMITH H W.The Immunization of Mice,Calves and Pigs against Salmonella Dublin and Salmonella Cholerae-Suis Infections[J].J Hyg(Lond),1965,63(00):117-135.
    [33]SLUZEWSKA M,TRUSZCZYNSKI M,KORDZIELEWSKI K.Investigations on live vaccine against pig salmonellosis[J].Pol Arch Weter,1975,18(2):161-174.
    [34]SLUZEWSKA M,TRUSZCZYNSKI M.Immunogenic properties ofS.choleraesuis for pigs[J].Pol Arch Weter,1975,17(4):599-608.
    [35]HANNA J,MCCRACKEN R,O'BRIEN J J.Evaluation of a live Salmonella choleraesuis vaccine by intranasal challenge[J].Res Vet Sci,1979,26(2):216-219.
    [36]ROOF M B,KRAMER T T,ROTH J A,et al.Characterization of a Salmonella choleraesuis isolate after repeated neutrophil exposure[J].Am J Vet Res,1992,53(8):1328-1332.
    [37]ROOF M B,KRAMER T T,KUNESH J P,et al.In vivo isolation of Salmonella choleraesuis from porcine neutrophils[J].Am J Vet Res,1992,53(8):1333-1336.
    [38]KRAMER T T,ROOF M B,MATHESON R R.Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine[J].Am J Vet Res,1992,53(4):444-448.
    [39]ROOF M,DOITCHINOFF D.Safety,efficacy,and duaration of immunity induced in swine by use of an avirulent live Salmonella choleraesuis-containing vaccine[J].Am J Vet Res(USA),1995,56(1):39-44.
    [40]WEIDE-BOTJES M,LIEBISCH B,SCHWARZ S,et al.Molecular characterization of Salmonella enterica subsp,enterica serovar choleraesuis field isolates and differentiation from homologous live vaccine strains suisaloral and SC-54[J].J Clin Microbiol,1996,34(10):2460-2463.
    [41]FOX B C,ROOF M B,CARTER D P,et al.Safety and efficacy of an avirulent live Salmonella choleraesuis vaccine for protection of calves against S dublin infection[J].Am J Vet Res,1997,58(3):265-271.
    [42]房晓文.仔猪副伤寒弱毒疫苗研究[J].研究报告汇辑,1978,4(00):1-11.
    [43]黄昌炳,冯文达,薛民权,等.仔猪副伤寒弱毒通气培养冻干苗口服免疫研究[J].中国农业科学,1981,6(00):89-94.
    [44]康凯.仔猪副伤寒活疫苗[J].中国兽药杂志,2003,37(2):49.
    [45]蒋桃珍,宁宜宝.21世纪我国兽医生物制品展望[J].中国兽医杂志,2000,26(8):3-4.
    [46]NNALUE N A,STOCKER B A.Some gale mutants of Salmonella choleraesuis retain virulence [J].Infect Immun,1986,54(3):635-640.
    [47]NNALUE N A,STOCKER B A.Vaccination route,infectivity and thioglycollate broth administration:effects on live vaccine efficacy of auxotrophic derivatives of Salmonella choleraesuis[J].Microb Pathog,1989,7(4):299-310.
    [48]KELLY S M,BOSECKER B A,CURTISS R,3RD.Characterization and protective properties of attenuated mutants of Salmonella choleraesuis[J].Infect Immun,1992,60(11):4881-490.
    [49]KENNEDY M J,YANCEY R J,JR.,SANCHEZ M S,et al.Attenuation and immunogenieity of Deltacya Deltaerp derivatives of Salmonella choleraesuis in pigs[J].lnfect Immun,1999,67(9):4628-4636.
    [50]KANEKO A,MITA M,SEKIYA K,et al.Association of a regulatory gene,slyA with a mouse virulence of Salmonella serovar Choleraesuis[J].Microbiol Immunol,2002,46(2):109-113.
    [51]CARDONA-CASTRO N,RESTREPO-PINEDA E,CORREA-OCHOA M.Detection of hilA gene sequences in serovars of Salmonella enterica subspecies enterica[J].Mem Inst Oswaldo Cruz,2002,97(8):1153-1156.
    [52]LICHTENSTEIGER C A,VIMR E R.Systemic and enteric colonization of pigs by a hilA signature-tagged mutant of Salmonella choleraesuis[J].Microb Pathog,2003,34(3):149-154.
    [53]LEE E,PLATT R,KANG S,et al.Chromosomal integration and expression of the Escherichia coli K88 gene cluster in Salmonella enterica set.Choleraesuis strain 54(SC54)[J].Vet Microbiol,2001,83(2):177-183.
    [54]STABEL T J,MAYFIELD J E,MORFITT D C,et al.Oral immunization of mice and swine with an attenuated Salmonella choleraesuis[delta cya-12 delta(crp-cdt)19]mutant containing a recombinant plasmid[J].Infect Immun,1993,61(2):610-618.
    [55]BELIAVSKAIA V A,TIMOFEEV I V,PERMINOVA N G,et al.Construction of an expression plasmid vector for accomplishing in vivo delivery of recombinant biologically active proteins Synthesis of HBcAG in a vaccine strain of Salmonella choleraesuis[J].Mol Gen Mikrobiol Virusol,2000,3(00):17-21.
    [56]LEE C H,WU C L,SHIAU A L.Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models[J].J Gene Med,2004,6(12):1382-1393.
    [57]LEE C H,WU C L,SHIAU A L.Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression,delayed tumor growth and prolonged survival in the murine melanoma model[J].Cancer Gene Ther,2005,12(2):175-184.
    [58]LEE C H,WU C L,TAI Y S,et al.Systemic administration of attenuated Salmonella choleraesuis in combination with cisplatin for cancer therapy[J].Mol Ther,2005,11(5):707-716.
    [59]SHIAU A L,CHEN Y L,LIAO C Y,et al.Prothymosin alpha enhances protective immune responses induced by oral DNA vaccination against pseudorabies delivered by Salmonella choleraesuis[J].Vaccine,2001,19(28-29):3947-3956.
    [60]SHIAU A L,CHEN C C,YO Y T,et al.Enhancement of humoral and cellular immune responses by an oral Salmonella choleraesuis vaccine expressing porcine prothymosin alpha[J].Vaccine,2005,23(48-49):5563-5571.
    [61]韩文瑜,黎诚耀,梁焕春,等.大肠杆菌K88ac与LT(A~-B~+)抗原基因质粒在猪霍乱沙门氏菌中的表达[J].兽医大学学报,1992,12(1):7-10.
    [62]韩文瑜,黎诚耀,侯万文,等.接种仔猪副伤寒.大肠杆菌腹泻双价基因工程菌苗妊娠母猪的抗体应答[J].中国畜禽传染病,1993,3(00):40-41.
    [63]陈陆平,韩文瑜,梁焕春.猪霍乱沙门氏菌-大肠杆菌K88ac,LT(A~-B~+)二联基因工程菌对仔猪的免疫保护试验[J].中国兽医学报,1995,15(2):195-196.
    [64]刘明秋,牛晓峰,严维耀,等.以减毒猪霍乱沙门菌为载体的抗O型口蹄疫病毒重组活菌苗在家兔体内免疫应答的初步研究[J].复旦学报(自然科学版),2005,44(4):484-489.
    [65]乔红伟,孙金福,韩文瑜,等.猪霍乱沙门菌载体介导猪瘟病毒DNA免疫研究[J].生物工程学报,2005,21(6):865-870.
    [66]徐引弟.猪霍乱沙门氏菌crp~-/asd~-缺失株平衡致死系系统地构建与应用[D].武汉;华中农业大学,2006.
    [67]徐引弟,郭爱珍,刘维红,等.绿荧光蛋白基因在猪霍乱沙门氏菌C500株asd~-缺失株平衡致死载体系统中的表达[J].中国兽医学报,2007,27(4):493-496.
    [68]赵战勤,徐引弟,吴斌,等.猪霍乱沙门氏菌△asdC500株的生物学特性及作为活疫苗表达载体的应用[J].生物工程学报,2009,25(1):29-36.
    [69]ZHAO Z,XUE Y,WU B,et al.Subcutaneous vaccination with attenuated Salmonella enterica serovar Choleraesuis C500 expressing recombinant filamentous hemagglutinin and pertactin antigens protects mice against fatal infections with both S.enterica serovar Choleraesuis and Bordetella bronchiseptica[J].Infect Immun,2008,76(5):2157-2163.
    [70]THIEL H J,STARK R,WEILAND E,et al.Hog cholera virus:molecular composition of virions from a pestivirus[J].J Virol,1991,65(9):4705-4712.
    [71]AYNAUD J,RIGAUD C,LE TURDU Y,et at.Peste porcine classique:les variations serologiques du virus en France et leur r?le dans l'evolution de la maladie sous sa forme sub-clinique ou chronique sur le terrain F[J].1974,5(1):57:85.
    [72]涂长春.猪瘟国际流行态势、我国现状及防制对策[J].中国农业科学,2003,36(8):955-960.
    [73]蔡宝祥.当前我国猪瘟防制中存在的问题和对策[J].畜牧与兽医,2002,34(11-12):1-4;3-6.
    [74]RIJNBRAND R,VAN DER STRAATEN T,VAN RIJN P A,et al.Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon[J].J Virol,1997,71(1):451-457.
    [75]SIZOVA D V,KOLUPAEVA V G,PESTOVA T V,et al.Specific interaction of eukaryotic translation initiation factor 3 with the 5' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs[J].J Virol,1998,72(6):4775-4782.
    [76]BEALES L P,HOLZENBURG A,ROWLANDS D J.Viral internal ribosome entry site structures segregate into two distinct morphologies[J].J Virol,2003,77(11):6574-6579.
    [77]FLETCHER S P,JACKSON R J.Pestivirus internal ribosome entry site(IRES) structure and function:elements in the 5' untranslated region important for IRES function[J].J Virol,2002,76(10):5024-5033.
    [78]VILCEK S,BELAK S.Organization and diversity of the 3'-noncoding region of classical swine fever virus genome[J].Virus Genes,1997,15(2):181-186.
    [79]BJORKLUND H V,STADEJEK T,VILCEK S,et al.Molecular characterization of the 3'noncoding region of classical swine fever virus vaccine strains[J].Virus Genes,1998,16(3):307-312.
    [80]XIAO M,GAO J,WANG Y,et al.Influence of a 12-nt insertion present in the 3' untranslated region of classical swine fever virus HCLV strain genome on RNA synthesis[J].Virus Res,2004,102(2):191-198.
    [81]CHEN Q,ADAMS C C,USACK L,et al.An AU-rieh element in the 3' untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation[J].Mol Cell Biol,1995,15(4):2010-2018.
    [82]MOORMANN R J,VAN GENNIP H G,MIEDEMA G K,et al.Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus[J].J Virol,1996,70(2):763-70.
    [83]RUMENAPF T,STARK R,MEYERS G,et al.Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity[J].J Virol,1991,65(2):589-597.
    [84]RUMENAPF T,UNGER G,STRAUSS J H,et al.Processing of the envelope glycoproteins of pestiviruses[J].J Virol,1993,67(6):3288-3294.
    [85]LIU J J,WONG M L,CHANG T J.The recombinant nueleocapsid protein of classical swine fever virus can act as a transcriptional regulator[J].Virus Res,1998,53(1):75-80.
    [86]KONIG M,LENGSFELD T,PAULY T,et al.Classical swine fever virus:independent induction of protective immunity by two structural glyeoproteins[J].J Virol,1995,69(10):6479-6486.
    [87]HULST M M,PANOTO F E,HOEKMAN A,et al.Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a eytopathogenic virus[J].J Virol,1998,72(I):151-157.
    [88]HULST M M,VAN GENNIP H G,MOORMANN R J.Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns)[J].J Virol,2000,74(20):9553-9561.
    [89]HULST M M,VAN GENNIP H G,VLOT A C,et al.Interaction of classical swine fever vires with membrane-associated heparan sulfate:role for virus replication in vivo and virulence[J].J Virol,2001,75(20):9585-9595.
    [90]BRUSCHKE C J,HULST M M,MOORMANN R J,et al.Glycoprotein Eros of pestiviruses induces apoptosis in lymphocytes of several species[J].J Virol,1997,71(9):6692-6696.
    [91]VAN RIJN P A,VAN GENNIP H G,DE MEIJER E J,et al.Epitope mapping of envelope glycoprotein E1 of hog cholera vires strain Brescia[J].J Gen Firol,1993,74(10):2053-2060.
    [92]WENSVOORT G,TERPSTRA C,DE KLUYVER E P.Characterization of porcine and some ruminant pestiviruses by cross-neutralization[J].Vet Microbiol,1989,20(4):291-306.
    [93]VAN RIJN P A,MIEDEMA G K,WENSVOORT G,et al.Antigenic structure of envelope glycoprotein E1 of hog cholera virus[J].J Virol,1994,68(6):3934-3942.
    [94]VAN RIJN P A,VAN GENNIP H G,LEENDERTSE C H,et al.Subdivision of the pestivirus genus based on envelope glyeoprotein E2[J].Virology,1997,237(2):337-348.
    [95]RISATTI G,HOLINKA L,LU Z,et al.Diagnostic evaluation of a real-time reverse transcriptase PCR assay for detection of classical swine fever virus[J].J Clin Microbiol,2005,43(1):468-471.
    [96]RUMENAPF T,STARK R,HEIMANN M,et al.N-terminal protease of pestiviruses:identification of putative catalytic residues by site-directed mutagenesis[J].J Virol,1998,72(3):2544-2547.
    [97]TRATSCHIN J D,MOSER C,RUGGLI N,et al.Classical swine fever vires leader proteinase Npro is not required for viral replication in cell culture[J].J Virol,1998,72(9):7681-7684.
    [98]RUGGLI N,TRATSCHIN J D,SCHWEIZER M,et al.Classical swine fever virus interferes with cellular antiviral defense:evidence for a novel function of N(pro)[J].J Virol,2003,77(13):7645-7654.
    [99]ELBERS K,TAUTZ N,BECHER P,et al.Processing in the pestivirus E2-NS2 region:identification of proteins p7 and E2p7[J].J Virol,1996,70(6):4131-4135.
    [100]XIAO M,WANG Y,CHEN J,et al.Characterization of RNA-dependent RNA polymerase activity of CSFV NSSB proteins expressed in Escherichia coli[J].Virus Genes,2003,27(1):67-74.
    [101]XIAO M,CHEN J,LI B.RNA-dependent RNA polymerase activity of Classical swine fever virus NS5B protein expressed in natural host cells[J].Acta Virol,2003,47(2):79-85.
    [102]XIAO M,GAO J,WANG W,et al.Specific interaction between the classical swine fever virus NSSB protein and the viral genome[J].Eur J Biochem,2004,271(19):3888-3896.
    [103]GILLESPIE J H,COGGINS L,THOMPSON J,et al.Comparison by neutralization tests of strains of virus isolated from virus diarrhea and mucosal disease[J].Cornell Vet,1961,51(00):155-159.
    [104]SAKODA Y,YAMAGUCHI O,FUKUSHO A.Anew assay for classical swine fever virus based on cytopathogenicity in porcine kidney cell line FS-L3[J].J Virol Methods,1998,70(1):93-101.
    [105]MEYERS G,THIEL H J,RUMENAPF T.Classical swine fever virus:recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles[J].J Virol,1996,70(3):1588-1595.
    [106]MOSER C,STETTLER P,TRATSCHIN J D,et al.Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus[J].J Virol,1999,73(9):7787-7794.
    [107]KUMMERER B M,TAUTZ N,BECHER P,et al.The genetic basis for cytopathogenicity of pestiviruses[J].Vet Microbiol,2000,77(1-2):117-128.
    [108]DE SCHWEINITZ E,DORSET M.Form of Hog Cholera Not Caused by Hog-cholera Bacillus [M].USGPO,1903.
    [109]HULST M M,WESTRA D F,WENSVOORT G,et al.Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera[J].J Virol,1993,67(9):5435-5442.
    [110]MITTELHOLZER C,MOSER C,TRATSCHIN J D,et al.Porcine cells persistently infected with classical swine fever virus protected from pestivirus-induced cytopathic effect[J].J Gen Virol,1998,79(12):2981-2987.
    [111]WIDJOJOATMODJO M N,VAN GENNIP H G,BOUMA A,et al.Classical swine fever virus E(rns) deletion mutants:trans-complementation and potential use as nontransmissible,modified,live-attenuated marker vaccines[J].J Virol,2000,74(7):2973-2980.
    [112]MAYER D,HOFMANN M A,TRATSCHIN J D.Attenuation of classical swine fever virus by deletion of the viral N(pro) gene[J].Vaccine,2004,22(3-4):317-328.
    [113]KLINKENBERG D,DE BREE J,LAEVENS H,et al.Within-and between-pen transmission of Classical Swine Fever Virus:a new method to estimate the basic reproduction ratio from transmission experiments[J].Epidemiol Infect,2002,128(2):293-299.
    [114]KLINKENBERG D,MOORMANN R J,DE SMIT A J,et al.Influence of maternal antibodies on efficacy of a subunit vaccine:transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age[J].Vaccine,2002,20(23-24):3005-3013.
    [115]PEETERS B,BIENKOWSKA-SZEWCZYK K,HULST M,et al.Biologically safe,non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky's disease and classical swine fever[J].J Gen Virol,1997,78(12):3311-3315.
    [116]MOORMANN R J,BOUMA A,KRAMPS J A,et al.Development of a classical swine fever subunit marker vaccine and companion diagnostic test[J].Vet Microbiol,2000,73(2-3):209-219.
    [117]HAMMOND J M,JANSEN E S,MORRISSY C J,et al.Oral and sub-cutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever vires gp55 gene[J].Arch Virol,2001,146(9):1787-1793.
    [118]VAN GENIP H G,VAN RIJN P A,WIDJOJOATMODJO M N,et al.Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea vires protect pigs against challenge with CSFV and induce a distinguishable antibody response[J].Vaccine,2000,19(4-5):447-459.
    [119]MOSER C,TRATSCHIN J D,HOFMANN M A.A recombinant classical swine fever virus stably expresses a marker gene[J].J Virol,1998,72(6):5318-5322.
    [120]DE SMIT A J,BOUMA A,VAN GENNIP H G,et al.Chimeric(marker) C-strain viruses induce clinical protection against virulent classical swine fever virus(CSFV) and reduce transmission of CSFV between vaccinated pigs[J].Vaccine,2001,19(11-12):1467-1476.
    [121]余兴龙,涂长春,李红卫,等.猪瘟病毒E2基因真核表达质粒的构建及基因疫苗的研究[J].中国病毒学,2000,15(3):264-271.
    [122]HAMMOND J M,JANSEN E S,MORRISSY C J,et al.A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever[J].Vet Microbiol,2001,80(2):101-119.
    [123]XU Y G,CUI L C,GE J W,et al.[Co-expression of CSFV T cell epitope E290 peptide and PPV VP2 protein in Lactobacillus easei and determination of specific antibodies in immunized mice][J].Wei Sheng Wu Xue Bao,2007,47(4):667-672.
    [124]KADEN V,SCHURIG U,STEYER H.Oral immunization of pigs against classical swine fever.Course of the disease and virus transmission after simultaneous vaccination and infection[J]. Acta Virol,.2001,45(1):23-29.
    [125]TERPSTRA C,TIELEN M J.Antibody response against swine fever following vaccination with C-strain virus[J].Zentralbl Veterinarmed B,1976,23(10):809-821.
    [126]SAMBROOK J,EASEL D,分子克隆.黄培堂,等译[M].第3版.北京:科学出版社.2002:1723.
    [127]CHATFIELD S N,CHARLES I G;MAKOFF A J,et al.Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine swains:development of a single-dose oral tetanus vaccine[J].Biotechnology(N Y),1992,10(8):888-892.
    [128]EVEREST P,FRANKEL G,LI J,et al.Expression of LacZ from the htrA,nirB and groE promoters in a Salmonella vaccine strain:influence of growth in mammalian cells[J].FEMS Microbiol Lett,1995,126(1):97-101.
    [129]ROBERTS M,LI J,BACON A,et al.Oral vaccination against tetanus:comparison of the immunogenicities of Salmonella strains expressing fragment C from the nirB and htrA promoters [J].Infect Immun,1998,66(7):3080-3087.
    [130]WANG H,ZHAO P,ZHANG M,et al.Cloning and functional analysis of promoter pagC from attenuated Salmonella typhimurium][J].Wei Sheng Wu Xue Bao,2003,43(3):308-314.
    [131]DUNSTAN S J,SIMMONS C P,STRUGNELL R A.Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var.Typhimurium[J].Infect Immun,1999,67(10):5133-5141.
    [132]GOMEZ-DUARTE O G,GALEN J,CHATFIELD S N,et al.Expression of fragment C of tetanus toxin fused to a carboxyl-terminal fragment of diphtheria toxin in Salmonella typhi CVD 908 vaccine strain[J].Vaccine,1995,13(16):1596-1602.
    [133]LEJONA S,AGUIRRE A,CABEZA M L,et al.Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica[J].J Bacteriol,2003,185(21):6287-6294.
    [134]CHATFIELD S N,CHARLES I G,MAKOFF A J,et al.Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains:development of a single-dose oral tetanus vaccine[J].Biotechnology(NY),1992,10(8):888-892.
    [135]VAN VELKINBURGH J C,GUNN J S.PhoP/PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp[J].Infect Immun,1999,67(4):1614-1622.
    [136]TERRY T D,DOWNES J E,DOWIDEIT S J,et al.Investigation of ansB and sspA derived promoters for multi-and single-copy antigen expression in attenuated Salmonella enterica var.typhimurium[J].Vaccine,2005,23(36):4521-4531.
    [137]FOYNES S,HOLLEY J L,GARMORY H S,et al.Vaccination against type F botulinum toxin using attenuated Salmonella enterica var Typhimurium swains expressing the BoNT/F H(C)fragment[J].Vaccine,2003,21(11-12):1052-1059.
    [138]GARMORY H S,TITBALL R W,BROWN K A,et al.Construction and evaluation of a eukaryotic expression plasmid for stable delivery using attenuated Salmonella[J].Microb Pathog,2003,34(3):115-119.
    [139]NARDELLI-HAEFLIGER D,RODEN R B,BENYACOUB J,et al.Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice[J].Infect Immun,1997,65(8):3328-3336.
    [140]CHATFIELD S,CHARLES I,MAKOFF A,et al.Use of the nirB Promoter to Direct the Stable Expression of Heterologous Antigens in Salmonella Oral Vaccine Strains:Development of a Single-Dose Oral Tetanus Vaccine[J].Bio/Technology,1992,10(8):888-892.
    [141]Sizemore D,Branstrom A,Sadoff J,et al.A.Expression of a fragment of the HIVIIB envelope gene in Salmonella typhimurium for the testing of immune responses[J]Abstr Gen Meet Am Soc Microbiol,1995,95:294.
    [142]GROSS M K,KAINZ M S,MERRILL G F.Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells[J].Mol Cell Biol,1987,7(12):4576-4581.
    [143]BUCHMAN A R,BERG P.Comparison of intron-dependent and intron-independent gene expression[J].Mol Cell Biol,1988,8(10):4395-4405.
    [144]HUANG M T,GORMAN C M.Intervening sequences increase efficiency of RNA 3'processing and accumulation of cytoplasmic RNA[J].Nucleic Acids Res,1990,18(4):937-947.
    [145]MEDINA E,PAGLIA P,ROHDE M,et al.Modulation of host immune responses stimulated by Salmonella vaccine carrier strains by using different promoters to drive the expression of the recombinant antigen[J].Eur J Immunol,2000,30(3):768-777.
    [146]MEDINA E,GUZMAN C A.Modulation of immune responses following antigen administration by mucosal route[J].FEMS Immunol Med Microbiol,2000,27(4):305-311.
    [147]NEWTON S M,KLEBBA P E,HOFNUNG M,et al.Studies of the anaerobically induced promoter pnirB and the improved expression of bacterial antigens[J].Res Microbiol,1995,146(3):193-202.
    [148]ISODA R,SIMANSKI S,STONE A,et al.Surface expression of HagB by an environmentally regulated promoter[J].Microbiology/Immunology and Infection Control,2004,00(4):401-412
    [149]CHABALGOITY J A,VILLAREAL-RAMOS B,KHAN C M,et al.Influence of preimmunization with tetanus toxoid on immune responses to tetanus toxin fragment C-guest antigen fusions in a Salmonella vaccine carrier[J].Infect Immun,1995,63(7):2564-2569.
    [150]HUANG Y,HAJISHENGALLIS G,MICHALEK S M.Induction of protective immunity against Streptococcus mutans colonization niter mucosal immunization with attenuated Salmonella enterica serovar typhimurium expressing an S.mutans adhesin under the control of in vivo-inducible nirB promoter[J].Infect Immun,2001,69(4):2154-2161.
    [151]GUO L,LIM K B,GUNN J S,et al.Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP/phoQ[J].Science,1997,276(5310):250-253.
    [152]KIER L D,WEPPELMAN R M,AMES B N.Regulation of nonspecific acid phosphatase in Salmonella:phoN and phoP genes[J].J Bacteriol,1979,138(1):155-161.
    [153]MILLER S I,KUKRAL A M,MEKALANOS J J.A two-component regulatory system (phoP/phoQ) controls Salmonella typhimurium virulence[J].Proc Natl Acacl Sci USA,1989,86(13):5054-5058.
    [154]GROISMAN E A,PARRA-LOPEZ C,SALCEDO M,et al.Resistance to host antimicrobial peptides is necessary for Salmonella virulence[J].Proc Natl Acad Sci USA,1992,89(24):11939-11943.
    [155]PULKKINEN W S,MILLER S I.A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein[J].J Bacteriol,1991,173(1):86-93.
    [156]王宏卫,赵平,张珉,et al.鼠伤寒沙门菌pagC启动子的克隆与活性分析[J].微生物学报,2003,43(3):308-314.
    [157]GARCIA VESCOVI E,SONCINI F C,GROISMAN E A.Mg~(2+) as an extracellular signal:environmental regulation of Salmonella virulence[J].Cell,1996,84(1):165-174.
    [158]GRABSTEIN K H,EISENMAN J,SHANEBECK K,et al.Cloning of a T cell growth factor that interacts with the beta chain of the intedeukin-2 receptor[J].Science,1994,264(5161):965-968.
    [159]NISHIMURA H,HIROMATSU K,KOBAYASHI N,et al.IL-15 is a novel growth factor for murine gamma delta T cells induced by Salmonella infection[J].J Immunol,1996,156(2):663-669.
    [160]FEHNIGER T A,CALIGIURI M A.Interleukin 15:biology and relevance to human disease[J].Blood,2001,97(1):14-32.
    [161]HIROMATSU T,YAJIMA T,MATSUGUCHI T,et al.Overexpression of interleukin-15 protects against Escherichia coli-induced shock accompanied by inhibition of tumor necrosis factor-alpha-induced apoptosis[J].J Infect Dis,2003,187(9):1442-1451.
    [162]EISENMAN J,AHDIEH M,BEERS C,et al.Interleukin-15 interactions with interleukin-15receptor complexes:characterization and species specificity[J].Cytokine,2002,20(3):121-129.
    [163]YAJIMA T,NISHIMURA H,ISHIMITSU R,et al.Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure[J].J Immunol,2002,168(3):1198-1203.
    [164]朱立平,陈学清.免疫学常用实验方法[M].北京;人民军医出版社.2000.P:84-87.
    [165]CANALS A,GRIMM D R,GASBARRE L C,et al.Molecular cloning of cDNA encoding porcine intedeukin-15[J].Gene,1997,195(2):337-339.
    [166]BAMFORD R N,DEFILIPPIS A P,AZIMI N,et al.The 5' untranslated region,signal peptide,and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control[J].J Immunol,1998,160(9):4418-4426.
    [167]WENG N P,LIU K,CATALFAMO M,et al.IL-15 is a growth factor and an activator of CD8memory T cells[J].Ann N Y Acad Sci,2002,975(00):46-56.
    [168]SMELTZ RB.Interleukin-15(IL-15) enhances,as well as increases the sensitivity of human CD8+ memory T cell subsets to stimulation by the pro-inflammatory eytokines IL-12 and Ik-18[J].The Journal of Immunology,2007,178(95):177-179.
    [169]PELLETIER M,GIRARD D.Differential effects of IL-15 and IL-21 in myeloid(CD11b+) and lymphoid(CD11b-) bone marrow cells[J].J Immunol,2006,177(1):100-108.
    [170]COMBE C L,MORETTO M M,SCHWARTZMAN J D,et al.Lack of IL-15 results in the suboptimal priming of CD4+ T cell response against an intracellular parasite[J].Proc Natl Acad Sci USA,2006,103(17):6635-6640.
    [171]ARINA A,MURILLO O,DUBROT J,et al.Intedeukin-15 liver gene transfer increases the number and function of IKDCs and NK cells[J].Gene Ther,2008,15(7):473-483.
    [172]GOMEZ-NICOLA D,VALLE-ARGOS B,PITA-THOMAS D W,et al.Interleukin 15expression in the CNS:blockade of its activity prevents glial activation after an inflammatory injury[J].Glia,2008,56(5):494-505.
    [173]ASHK.AR A A,ROSENTHAL K L.Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection[J].J Virol,2003,77(18):10168-10171.
    [174]KAGIMOTO Y,YAMADA H,ISHIKAWA T,et al.A regulatory role of interleukin 15 in wound healing and mucosal infection in mice[J].J Leukoc Biol,2008,83(1):165-172.
    [175]MARZEC M,HALASA K,KASPRZYCKA M,et al.Differential effects of interleukin-2 and interleukin-15 versus intedeukin-21 on CD4+ cutaneous T-cell lymphoma cells[J].Cancer Res, 2008,68(4):1083-1091.
    [176]ANDERSON I E,DEANE D,SWA S,et al.Production and utilization of intedeukin-15 in malignant catarrhal fever[J].J Comp Pathol,2008,138(2-3):131-144.
    [177]TAVIAN E G,DIAS-MELICIO L A,ACORCI M J,et al.Interleukin-15 increases Paracoccidioides brasiliensis killing by human neutrophils[J].Cytokine,2008,41(1):48-53.
    [178]RODRIGUEZ A,HODARA V,MORROW L,et al.Interleukin-15:Multiple roles in controlling HIV infection in chimpanzees[J].The Journal of Immunology,2007,178(00):143.
    [179]SAIKH K U,KISSNER T L,NYSTROM S,et al.Interleukin-15 increases vaccine efficacy through a mechanism linked to dendritic cell maturation and enhanced antibody titers[J].Clin Vaccine Immunol,2008,15(1):131-137.
    [180]PERERA L P,WALDMANN T A,MOSCA J D,et al.Development of smallpox vaccine candidates with integrated intefleukin-15 that demonstrate superior immunogenicity,efficacy,and safety in mice[J].J Virol,2007,81(16):8774-8783.
    [181]BERGAMASCHI C,ROSATI M,JALAH R,et al.Intracellular interaction of interleukin-15with its receptor alpha during production leads to mutual stabilization and increased bioactivity [J].J Biol Chem,2008,283(7):4189-4199.
    [182]殷震,刘景华.动物病毒学[M].北京;科学出版社.1997:P:652-644.
    [183]FAUQUET C,MAYO M,MANILOFF J,et al.Virus taxonomy:Eighth report of the International committee on taxonomy of viruses[M].Elsevier Academic Press London,2005.
    [184]TU C,LU Z,LI H,et al.Phylogenetic comparison of classical swine fever virus in China[J].Virus Res,2001,81(1-2):29-37.
    [185]MOENNIG V.Introduction to classical swine fever:virus,disease and control policy[J].Vet Microbiol,2000,73(2-3):93-102.
    [186]VAN RIJN P A,VAN GENNIP R G,DE MEIJER E J,et al.A preliminary map of epitopes on envelope glycoprotein E1 of HCV strain Brescia[J].Vet Microbiol,1992,33(1-4):221-230.
    [187]LOWINGS P,IBATA G,NEEDHAM J,et al.Classical swine fever virus diversity and evolution [J].J Gen Virol,1996,77(6):1311-1321.
    [188]MOENNIG V.The hog cholera virus[J].Comp Immunol Microbiol Infect Dis,1992,15(3):189-201.
    [189]RISATTI G R,HOLINKA L G,FERNANDEZ SAINZ I,et al.Mutations in the earboxyl terminal region of E2 glyeoprotein of classical swine fever virus are responsible for viral attenuation in swine[J].Virology,2007,364(2):371-382.
    [190]RISATTI G R,HOLINKA L G,FERNANDEZ SAINZ I,et al.N-linked glyeosylation status of classical swine fever virus strain Brescia E2 glyeoprotein influences virulence in swine[J].J Virol,2007,81(2):924-933.
    [191]SAINZ I F,HOLINKA L G,LU Z,et al.Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glyeoprotein affects virulence in swine[J].Virology,2008,370(1):122-129.
    [192]XU X G,LIU H J.Baeulovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse model[J].Vaccine,2008,26(43):5455-5460.
    [193]SANCHEZ O,BARRERA M,RODRIGUEZ M P,et al.Classical swine fever virus E2glycoprotein antigen produced in adenovirally transduced PK-15 cells confers complete protection in pigs upon viral challenge[J].Vaccine,2008,26(7):988-997.
    [194]DORTMANS J C,LOEFFEN W L,WEERDMEESTER K,et al.Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus[J].Vaccine,2008,26(9):1235-1242.
    [195]VAN RIJN P A,BOSSERS A,WENSVOORT G.et al.Classical swine fever virus(CSFV)envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge[J].J Gen Virol,1996,77(11):2737-2745.
    [196]PENG W P,HOU Q,XIA Z H,et al.Identification of a conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of Classical swine fever virus by phage-displayed random peptide library[J].Virus Res,2008,135(2):267-272.
    [197]ZHANG F,YU M,WEILAND E,et al.Characterization of epitopes for neutralizing monoclonal antibodies to classical swine fever virus E2 and Erns using phage-displayed random peptide library[J].Arch Virol,2006,151(1):37-54.
    [198]刘思国,马刚,余兴龙,等.猪瘟病毒E2糖蛋白抗原表位的预测,多肽合成及特性研究[J].中国免疫学杂志,2004,20(7):448-450.
    [199]CHEN N,HU H,ZHANG Z,et al.Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus:recent isolates branched away from historical and vaccine strains[J].Vet Microbiol,2008,127(3-4):286-299.
    [200]TANG F,PAN Z,ZHANG C.The selection pressure analysis of classical swine fever virus envelope protein genes Erns and E2[J].Virus Res,2008,131(2):132-135.
    [201]赵耘,王在时,王琴,等.23株猪瘟病毒E2基因主要抗原编码区序列差异分析[J].中国兽医科技,2002,32(3):3-7.
    [202]王琴,李博,王在时,等.猪瘟病毒强弱毒株和野毒株E2全基因序列测定及比较分析[J].微生物学报,2001,41(3):320-328.
    [203]王琴,王在时,赵耘,等.12株猪瘟病毒E2基因主要抗原区域的序列差异分析[J].微生物学报,2000,40(6):614-621.
    [204]李红卫,吕宗吉.异源猪瘟病毒C株E2基因保护性抗原编码区的序列分析与比较[J].中国兽医学报,1998,18(2):112-114.
    [205]刘伯华,刘湘涛,韩雪清,等.急、慢性猪瘟病毒分离株和疫苗株E2基因的序列分析[J].畜牧兽医学报,2001,32(6):568-575.
    [206]刘丽,徐琪.SAPGTP和PG为接头的5‘IL6-TNFα衍生物融合蛋白[J].中国生物化学与分子生物学报,1999,15(4):517-21.
    [207]KLIMKA A,BARTH S,DRILLICH S,et al.A deletion mutant of Pseudomonas exotoxin-A fused to recombinant human interleukin-9(rhIL-9-ETA') shows specific cytotoxicity against IL-9-receptor-expressing cell lines[J].Cytokines Mol Ther,1996,2(3):139-146.
    [208]来鲁华.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993,P:256-298.
    [209]武国军,王栋,王禾,等.四聚功能域提高前列腺特异抗体亲和力的作用[J].中华实验外科杂志,2006,23(5):585-587.
    [210]王栋,陈锦华,武国军,等.抗前列腺特异抗原/抗CD3双特异性单链抗体四聚体的活性研究[J].第四军医大学学报,2006,27(24):2245-2247.
    [211]CARRITHERS M D,LERNER M R.Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors[J].Chem Biol,1996,3(7):537-542.
    [212]倪剑锋,纪剑飞,吕安国,等.抗GD2单链抗体-IL-2融合蛋白基因的构建和表达[J].生物医学工程学杂志,2007,24(1):170-175.
    [213]孙强明,孙茂盛,易山,等.两种hIL-6/GM-CSF融合蛋白基因的构建、表达及活性比较[J]. 细胞与分子免疫学杂志,2004,20(1):104-108.
    [214]孙强明,戴长柏.huIL-6-GM-CSF(9-127)融合蛋白的表达及活性测定[J].免疫学杂志,2002,18(4):253-257.
    [215]张雪峰,葛忠良.rhGM-CSF/LIF融合蛋白基因的克隆及表达[J].生物化学与生物物理学报:英文版,1997,29(5):425-431.
    [216]张雪峰,葛忠良.rhGM-CSF/LIF融合蛋白的体外抗肿瘤效应研究[J].中国肿瘤生物治疗杂志,1997,4(2):111-114.
    [217]吴秋茜,姜宇飞,陈慰峰.hIL-7-GM-CSF(7-127)融合蛋白的构建和E.coli表达[J].中华微生物和免疫学杂志,1998,18(1):52-57.
    [218]CLARK-LEWIS I,LOPEZ A F.TO L B,et al.Structure-function studies of human granulocyte-macrophage colony-stimulating factor.Identification of residues required for activity[J].J Immunol,1988,141(3):881-889.
    [219]JONES S E,KHANDELWAL P,MCINTYRE K,et al.Randomized,double-blind,placebo-controlled trial to evaluate the hematopoietic growth factor PIXY321 after moderate-dose fluorouracil,doxorubicin,and cyclophosphamide in stage Ⅱ and Ⅲ breast cancer [J].J Clin Oncol,1999,17(10):3025-3032.
    [220]MILLER L L,KORN E L,STEVENS D S,et al.Abrogation of the hematological and biological activities of the interleukin-3/granulocyte-macrophage colony-stimulating factor fusion protein PIXY321 by neutralizing anti-PIXY321 antibodies in cancer patients receiving high-dose carboplatin[J].Blood,1999,93(10):3250-3258.
    [221]SUN Q M,JIAN H C,XU W M,et al.Retraction notice to "High-level expression and purification of recombinant huGM-CSF(9-127)/IL-6(29-184) fusion protein in Escherichia coli"[Protein Express.Purif.42(2005) 278-285][J].Protein Expr Purif,2007,52(2):486-493.
    [222]SUN Q M,JIANG H C,XU W M,et al.High-level expression and purification of recombinant huGM-CSF(9-127)/IL-6(29-184) fusion protein in Escherichia coil[J].Protein Expr Purif,2005,42(2):278-285.
    [223]卿玉玲,赵嘉将,任红.乙型肝炎HbsAg和GM-CSF融合表达质粒的构建及表达[J].免疫学杂志,2003,19(3):201-205.
    [224]NAKAJIMA D,SAITO K,YAMAKAWA H,et al.Preparation of a set of expression-ready clones of mammalian long cDNAs encoding large proteins by the ORF trap cloning method[J].DNA Res,2005,12(4):257-267.
    [225]CHIARABELLI C,VRIJBLOED J W,THOMAS R M,et al.Investigation of de novo totally random biosequences,Part Ⅰ:A general method for in vitro selection of folded domains from a random polypeptide library displayed on phage[J].Chem Biodivers,2006,3(8):827-839.
    [226]SUZUKI E,NAKAYAMA M.The mammalian Ced-1 ortholog MEGF10/KIAA1780 displays a novel adhesion pattern[J].Exp Cell Res,2007,313(11):2451-264.
    [227]王三虎,李祥瑞.猪瘟病毒E2基因DNA疫苗的试验研究[J].河南农业大学学报,2007,41(5):541-544.
    [228]邱元,黄复深,陈尔曼,等.GM-CSF与猪瘟病毒E2基因共表达载体的构建及其诱导的免疫应答[J].湖南农业大学学报:自然科学版,2007,33(2):200-204.
    [229]孙永科,杨玉艾,王养会,等.表达猪瘟病毒石门株E0和/或E2基因重组非复制型腺病毒疫苗的免疫保护试验[J].西北农林科技大学学报,2007,35(5):29-33.
    [230]程从升,王文成,李素,等.猪瘟DNA疫苗在猪体及环境的生物安全性研究[J].微生物学报,2005,45(2):292-297.
    [231]ZHAO H P,SUN J F,LI N,et al.Assessment of the cell-mediated immunity induced by alphavirus replicon-vectored DNA vaccines against classical swine fever in a mouse model[J].Vet Immunol Immunopathol,2009,129(1-2):57-65.
    [232]SUN Y,QI Q,LIANG B,et al.[Generation and immunogenicity of a recombinant adenovirus expressing the E2 protein of classical swine fever virus in rabbits][J].Sheng Wu Gong Cheng Xue Bao,2008,24(10):1734-1739.
    [233]SUN J,ZHAO H,LI N,et al.[Immune responses induced by the suicidal DNA vaccines co-expressing the GP5 protein of PRRSV and the E2 protein of CSFV in mice][J].Sheng Wu Gong Cheng Xue Bao,2008,24(10):1714-1722.
    [234]WANG Y H,LI P H,ZHANG M T,et al.[Construction of recombinant fowlpox virus expressing E0 gene of classical swine fever virus shimen strain and the animal immunity experiment][J].Bing Du Xue Bao,2008,24(1):59-63.
    [235]DARJI A,GUZMAN C A,GERSTEL B,et al.Oral somatic transgene vaccination using attenuated S.typhimurium[J].Cell,1997,91(6):765-775.
    [236]COCHLOVIUS B,STASSAR M J,SCHREURS M W,et al.Oral DNA vaccination:antigen uptake and presentation by dendritic cells elicits protective immunity[J].Immunol Lett,2002,80(2):89-96.
    [237]GALAN J E.Molecular genetic bases of Salmonella entry into host cells[J].Mol Microbiol,1996,20(2):263-271.
    [238]LEE C A,FALKOW S.The ability of Salmonella to enter mammalian cells is affected by bacterial growth state[J].Proc Natl Acad Sci USA,1990,87(11):4304-4308.
    [239]JONES B D,FALKOW S.Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization[J].Infect Immun,1994,62(9):3745-3752.
    [240]GALAN J E,CURTISS R,3RD.Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling[J].Infect Immun,1990,58(6):1879-1885.
    [241]COULSON N M,FULOP M,TITBALL R W.Effect of different plasmids on colonization of mouse tissues by the aromatic amino acid dependent Salmonella typhimurium SL 3261[J].Microb Pathog,1994,16(4):305-311.
    [242]DUNSTAN S J,SIMMONS C P,STRUGNELL R A.In vitro and in vivo stability of recombinant plasmids in a vaccine strain of Salmonella enterica var.Typhimurium[J].FEMS Immunol Med Microbiol,2003,37(2-3):111-119.
    [243]GARMORY H S,GRIFFIN K F,LEARY S E,et al.The effect of recombinant plasmids on in vivo colonisation of Salmonella enterica serovar Typhimurium strains is not reflected by in vitro cellular invasion assays[J].Vaccine,2002,20(27-28):3239-3243.
    [244]HOHMANN E L,OLETTA C A,LOOMIS W P,et al.Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity[J].Proc Natl Acad Sci USA,1995,92(7):2904-2908.
    [245]CHEN H,SCHIFFERLI D M.Enhanced immune responses to viral epitopes by combining macrophage-inducible expression with multimeric display on a Salmonella vector[J].Vaccine,2001,19(20-22):3009-3018.
    [246]SIZEMORE D R,BRANSTROM A A,SADOFF J C.Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization[J].Science,1995,270(5234):299-302.
    [247]PHALIPON A,SANSONETTI P.Live attenuated Shigella flexneri mutants as vaccine candidates against shigellosis and vectors for antigen delivery[J].Biologicals,1995,23(2):125-134.
    [248]YOSHIKAWA M,SASAKAWA C,OKADA N,et al.Construction and evaluation of a virG thyA double mutant of Shigella flexneri 2a as a candidate live-attenuated oral vaccine[J].Vaccine,1995,13(15):1436-1440.
    [249]SIZEMORE D R.,BRANSTROM A A,SADOFF J C.Attenuated bacteria as a DNA delivery vehicle for DNA-mediated immunization[J].Vaccine,1997,15(8):804-807.
    [250]GRILLOT-COURVALIN C,GOUSSARD S,HUETZ F,et al.Functional gene transfer from intracellular bacteria to mammalian cells[J].Nat Biotechnol,1998,16(9):862-866.
    [251]COURVALIN P,GOUSSARD S,GRILLOT-COURVALIN C.Gene transfer from bacteria to mammalian cells[J].C R Acad Sci Ⅲ,1995,318(12):1207-1212.
    [252]SIZEMORE D R,ROLAND K L,RYAN U S.Enterotoxigenic Escherichia coil virulence factors and vaccine approaches[J].Expert Rev Vaccines,2004,3(5):585-595.
    [253]BOT A,ANTOHI S,BONA C.Immune response of neonates elicited by somatic transgene vaccination with naked DNA[J].Front Biosci,1997,2(00):173-188.
    [254]PASETTI M F,ANDERSON R J,NORIEGA F R,et al.Attenuated deltagnaBA Salmonella typhi vaccine strain CVD 915 as a live vector utilizing prokaryotic or eukaryotic expression systems to deliver foreign antigens and elicit immune responses[J].Clin Immunol,1999,92(1):76-89.
    [255]SHIAU A L,CHU C Y,SU W C,et al.Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses[J].Vaccine,2001,19(23-24):3277-3284.
    [256]陈焕春.畜禽基因工程疫苗创制及应用前景分析[J].兽药市场指南,2006,12(00):10-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700