用户名: 密码: 验证码:
夹层结构振动声辐射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,由于军用、民用舰船均朝着高速、轻量化发展,比强度大、比重量轻的复合材料层合结构开始受到关注。但在国内的船舶与海洋工程领域,层合结构的各方面研究还不深入,与国际先进水平还存在着一定的差距;层合结构在船舶与海洋结构物上的应用方面亦相当薄弱。此外,振动和噪声大大破坏了舰船的隐蔽性和舒适性,结构振动和噪声预报及其控制研究对民船和军船都是一项十分重要的研究课题。本文主要采用有限元和声学边界元方法,对层合结构中的夹层结构振动和声辐射特性进行数值分析,完成的主要工作和创新性成果如下:
     现有的夹层板理论大多仅考虑了芯板的垂向剪切应变和应力,很少考虑芯板的垂向正应变和正应力。而实际工程中,夹层板的芯板与面板相比其厚度要大得多,其弹性模量则要小很多,在变形过程中很容易产生垂向压缩或拉伸变形。因此忽略芯层垂向正应力和正应变的夹层板理论是不尽合理的。同时,对于夹层板结构,结构在低频时主要以弯曲振动的形式向外辐射噪声,当结构受到高频激励时,结构会以压缩波的形式向外辐射噪声。以往的夹层板理论由于忽略了芯层的垂向正应变,将不能体现结构的垂向压缩振动模式,即夹层板对称模态,这与结构的实际变形是不相符合的。为了消除上述不足,本文构造了一个新的考虑芯板压缩变形影响的夹层板单元。将上下面板分别采用基于一阶剪切理论的Mindlin板进行模拟,采用选择积分技术,消除了计算时的剪切闭锁问题;芯板位移和挠度沿厚度方向非线性变化,并用面板位移表示。该单元不仅考虑了芯板和面板的垂向剪切变形,还计及了芯板的垂向压缩变形的影响。推导了相应的位移应变关系,根据Halmiton原理建立了动力有限元方程,由能量守恒定律推导了夹层板的阻尼矩阵。数值计算结果表明本文所提出的夹层板位移模式是正确有效的;对于具有厚、软芯板的夹层板的自由振动和动力特性研究,考虑芯板的横向压缩变形的影响是合理的,并且夹层板的芯板厚度相对越大,弹性模量相对越小,芯板横向压缩变形的影响就越大。
     耦合损耗因子是统计能量分析重要参数之一,通常只能在模态密度足够大的高频领域通过传统的波动方法求得。本文在前人工作的基础上给出了一种夹层板间耦合损耗因子表达式,它可以由耦合夹层板的模态信息完全表示,且无需计算夹层板的响应,能够在低频领域计算夹层板的耦合损耗因子。计算结果表明本文方法是正确有效的,且简便易行,不仅为统计能量分析在低频域应用提供了可能,也给出了一种表征夹层板间能量传输损耗大小的简单参数。
     在夹层板有限元分析的基础上,应用声学边界元法对夹层板在空气中的声辐射特性进行研究,计算了不同物理和几何芯板参数下夹层板的声辐射特性,探讨了夹层板芯板参数对其声辐射特性的影响。
     在本文夹层板有限元分析工作的基础上建立了一种考虑芯板垂向压缩变形影响的夹层加筋板有限元模型,其中加强筋采用Timoshenko梁模型模拟,给出了夹层加筋板的动能和势能,根据Hamilton原理推导了其控制微分方程,求解了夹层加筋板的固有频率和响应。
     推导了考虑芯层垂向压缩变形影响的夹层梁的动态刚度矩阵。为动态刚度矩阵方法提供了一种新的单元类型。首先给出了一种考虑夹层梁芯层垂向压缩变形影响的夹层梁位移模式,推导了相应的夹层梁动能和势能,根据Hamilton原理推导了其控制微分方程,然后按照动态刚度矩阵的一般推导过程推导了考虑芯层垂向压缩变形影响的夹层梁动态刚度矩阵。计算结果证明本文推导的夹层梁动态刚度矩阵是正确可靠的。在夹层梁的动态刚度矩阵推导和高频计算中考虑芯层垂向压缩变形是合理的。
Sandwich structures have been used in aerospace applications for more than 50 years due to their high stiffness-to-weight and strength-to-weight ratios. Recently, with the development of civil ships and naval vessels in high speed and lightweight direction, new attention is focusing on using of sandwich structures in marine applications. Reduction of vibration and acoustic noise of marine structures is an important issue to designers. So it's very crucial to study sandwich structures' characteristics of vibration and radiation. This dissertation addresses an intensive study on numerical analysis of vibration and radiation of sandwich structures. The major contributions and conclusions are as follows.
     Most of the sandwich plate theories developed in the past did not take account of the effect of transverse normal deformation of the core. When such sandwich plate theories are applied to analyze thick core, sandwich plates or to analyze high frequency vibration of sandwich plates, reasonable results could not be obtained due to ignoring of transvers normal deformation of the core. In this paper, a new composite sandwich plate (shell) element is developed which includes the transverse normal deformation in addition to the transverse shear deformation in the core. The two face layers are considered as Mindlin plates with shear and bending resistance. Nonlinear variation of displacements through the thickness of the core is assumed based on thick plates theory. The displacements of the core are expressed in terms of the displacements of two face plates. The governing equation of the sandwich plate system is derived based on Hamilton principle and is expressed in terms of the face plates' displacements. Numerical results show that the presented model is valid and the consideration of transverse normal deformation in the core is necessary and reasonable for dynamical response analysis.
     Traditionally, CLF can only be calculated in high frequency band because of the need of high model density and modal overlap. In this paper, a theoretical study of CLF for two L-shaped sandwich plates which can make accurate results in low frequency band, is presented using finite element method (FEM) model characteristics. The numerical results are compared with those of the commercial software AUTOSEA, and it exhibits a good agreement between them.
     The acoustic radiation power of the sandwich plate is calculated by boundary element method based on the finite element method results. The necessity of the consideration of transverse normal deformation as well as the effect of geometry and material parameters for the core in the analysis is discussed.
     A finite element model is presented for the vibration of stiffened sandwich plates with moderately thick viscoelastic cores. The two face layers are considered as Mindlin plates with shear and bending resistance. Nonlinear variation of displacements through the thickness of the core is assumed based on thick plate theory. Meanwhile, the effect of transverse normal deformation of the core is taken into account. The stiffeners are modeled by Timoshenko beam. The displacements of the core and stiffeners are expressed in terms of the displacements of two face plates. The governing equation of the stiffened sandwich plate system is derived based on Hamilton principle and is expressed in terms of the face plates' displacements. Numerical results indicate the validation of presented model and show that the consideration of transverse normal deformation in the core is necessary for the vibration analysis of stiffened sandwich plate.
     An accurate dynamic stiffness model for a three-layered sandwich beam of unequal thicknesses is developed and subsequently used to investigate its free vibration characteristics. Each face layer of the beam is idealized by the Timoshenko beam theory. Linear variation of displacements through the thickness of the core is assumed, so that the transverse normal deformation is taken into account. The combined system is reduced to a twelfth-order system using symbolic computation. An exact dynamic stiffness matrix is then developed by relating amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out the free vibration analysis of a few illustrative examples.
引文
[1]Plantema F J.Sandwich construction:the bending and buckling of sandwich beams,plates and shells[M].New York:Wiley,1966.
    [2]Vinson J R.The behaviour of sandwich structures of isotropic and composite materials.USA:Technomic Publishing Company,1999.
    [3]Bose P,Reddy J N.Analysis of composite plates using various plate theories.Part 1: Formulation and analytical solutions[J]. Struct Engng Mech, 1998, 6(6):583 - 612.
    [4] Bose P, Reddy J N. Analysis of composite plates using various plate theories. Part 2:Finite element model and numerical results[J]. Struct Engng Mech,1998, 6(7):727-46.
    
    [5] E. Reissner. The effect of transverse shear deformation on the bending of elastic plate, Transactions of the American Society of Mechanical Engineers[J]. Journal of Applied Mechanics, 1945(12):69-77.
    
    [6] Mindlin R D. Influence of rotary inertia and shear in flexural motion of isotropic, elastic plates, Transactions of the American Society of Mechanical Engineers[J]. Journal of Applied Mechanics, 1951(18):31-38.
    
    [7] Reddy J N. A simple high-order theory for laminated composite plates, Transactions of the American Society of Mechanical Engineers[J]. Journal of Applied Mechanics, 1984(51):745-752.
    [8] Lewinski T. A note on recent developments in the theory of elastic plates with moderate thickness[J]. Rozprawy Inz, 1986, 34(4):531 - 42.
    [9] Rohwer K. Application of higher-order theories to the bending analysis of layered composite plates[J]. Int J Solids Struct, 1992,29(1):105-19.
    [10] L C Shiau and J T Chang. Transverse shear effect on vibration of laminated plate using higher order plate element[J]. Computers & Structures, 1991(39):735-740.
    [11] Murakami H. Laminated composite plate theory with improved in-plane response[J]. Trans. ASME. Journal of applied mechanicas, 1986,53(3):661-666.
    [12] Reissner E. Finite deflections of sandwich plates[J]. J. Aeronaut. Sci, July, 1948, 34(4): 435-440.
    [13] Liaw B D,Little R W. Theory of bending multilayer sandwich plates[J]. AIAA J. 1967, 5(1), :301-304.
    [14] Azar J J. Bending theory of multilayer orthotropic sandwich plates[J]. AIAA J., 1968, 6(2):2166-2169.
    [15] Khatua T P and Cheung Y K. Bending and vibration of sandwich beams and plates[J]. Int. J. numer. Meth, 1973, 6(4), :11-24.
    [16] O' Connor D J. A finite element package for the analysis of sandwich construction[J]. Compos. Struct., 1987, 8(5), :143-161.
    [17] Kanematsu H H, Hirano Y, Iyama H. Bending and vibration of CFRP-faced rectangular sandwich plates[J]. Composite Structures, 1988, 10(32), :145-163.
    [18] Noor A K, Burton W S, Bert C W. Computational models for sandwich panels and shells[J]. Appl Mech Rev, 1996, 49(3):155 - 199.
    [19] Meunier M, Shenoi R A. Free vibration analysis of composite sandwich plates[J]. Proc ImechE,Part C:J Mech Engng Sci,1999,213(7):715-727.
    [20]陈美霞,骆东平,彭旭等.敷设阻尼材料的双层圆柱壳声辐射性能分析[J].声学学报,2003,28(6):486-490.
    [21]Laulagnet B and Guyader J L.Sound radiation from a finite cylindrical shell covered with a compliant layer[J].Traps ASME,Journal of Sound and Vibration,1991,113(2):267-272.
    [22]Laulagnet B and Guyader J L.Sound radiation from finite cylindrical coated shells,by means of asymptotic expansion of three-dimensional equations for coating[J].Acoust.Soc.Am.,1994,96(1):277-286.
    [23]Laulagnet B and Guyader J L.Sound radiation from finite cylindrical shells,partially covered with longitudinal strips of compliant layer[J].Journal of Sound and Vibration,1995,186(5):723-742.
    [24]Yang P C,Norris CH.Stavsky Y.Elastic wave propagation in heterogeneous plates[J].Int J Solids Struct,1966(2):665-684.
    [25]Noor A K.Free vibration of multilayered composite plates[J].AIAA J,1973,11(4):1038-1039.
    [26]Bert C W,Chen TLC.Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates[J].Int J Solids Struct,1978,14(4):65-73.
    [27]Reddy J N.Free vibration of antisymmetric,angle-ply laminated plates including transverse shear deformation by the finite element method[J].Journal of Sound and Vibration,1979,66(4):65-76.
    [28]Sinha P K,Rath AK.Vibration and buckling of cross-ply laminated circular cylindrical panels[J].Aeronaut Q,1975,26(7):211-218.
    [29]Carrera E.The effect of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite shells[J].Journal of Sound and Vibration,1991,150(23):405-433.
    [30]Lim C W,Liew K M.Vibration of shallow conical shells with shear flexibility:a first-order theory[J].Int J Solids Struct,1996,33(4):451-468.
    [31]Chakravorty D,Bandyopadhyay JN,Sinha PK.Finite element free vibration analysis of doubly curved laminated composite shells[J].Journal of Sound and Vibration,1996,191,4:491-504.
    [32]Zienkiewicz O C,Taylor RL,Too JM.Reduced integration technique in general analysis of plates and shells[J].Int J Numer Meth Engng,1971,3(1):275-290.
    [33]Hughes T J R,Cohen M,Haroun M.Reduced and selective integration techniques in the finite element analysis of plates[J].Nucl Engng Des,1978,46(22):203-222.
    [34]Hughes T J R,Tezduyar T E.Finite elements based upon Mindlin plate theory with particular reference to the four node bilinear isoparametric element[J].J Appl Mech, Trans ASME,1981,48(9):587-596.
    [35]MacNeal R H.A simple quadrilateral shell element[J].Comput Struct,1978,8(1):175-183.
    [36]Huang H C,ninton E.A nine node Lagrangian Mindlin plate element with enhanced shear interpolation[J].Engng Comput,1984,1(2):369-379.
    [37]Simo J C,Hughes T J R.On the variational foundations of assumed strain methods[J].J Appl Mech,Trans ASME,1986,53(7):51-54.
    [38]Kant T,Owen D R J,Zienkiewicz O C.A refined higher order C_0 plate bending element[J].Computers &Structures,1982,15(6):177-183.
    [39]Reddy J N.A simple higher-order theory for laminated composites[J].ASMEJ Appl Mech,1984,51:745-752.
    [40]Reddy J N,Phan N D.Stability and vibration of isotropic,orthotropic and laminated plates according to a higher-order shear deformation theory[J].Journal of Sound and Vibration,1985,98(2):157-170.
    [41]Khdeir A A.Free vibration and buckling of symmetric cross-ply laminated plates by an exact method[J].Journal of Sound and Vibration,1988,126(3):447-461.
    [42]Kant T.Mallikarjuna vibrations of unsymmetrically laminated plates analyzed by using a higher order theory with a C_0 finite element formulation[J].J Sound Vibr,1989,134(12):1-16.
    [43]Bhimaraddi A.A higher order theory for free vibration analysis of circular cylindrical shells[J].Int J Solids Struct,1984,20(7):623-30.
    [44]Matsunaga H.Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory[J].Compos Struct,2000,48:231-44.
    [45]Reddy J N,Khdeir A A.Buckling and vibration of laminated composite plates using various plate theories[J].AIAA J,1989,27(12):1808-1817.
    [46]Wang W W,Lin K.free vibration of laminated plates using a finite strip method based on a higher-order plate theory[J].Computers & Structures,1994,53(6):1281-1289.
    [47]Mukherjee A.Free vibration of laminated plates using a higher order element[J].Computers & Structures,1991,40(6):1387-1393.
    [48]Shankara C A,Iyengar NGR.A Co element for the free vibration analysis of laminated composite plates[J].Journal of Sound and Vibration,1996,194(5):721-38.
    [49]Maiti D K,Sinha PK.Bending,free vibration and impact response of thick laminated composite plates[J].Computers &Structures,1996,59(1):115-29.
    [50]吴文伟,冷文浩,沈顺根.具有等间距相同加强筋板的声辐射[J].中国造船,1999,40(3):72-81.
    [51]何祚镛.结构振动与声辐射[M].哈尔滨:哈尔滨工程大学出版社,2001.
    [52]Junger M C.Sound scattering by thin elastic shells[J].J.Acoust.Soc.Am.,1952,24(6):366-373.
    [53]汤渭霖,范军.水中弹性球壳的共振声辐射理论[J].声学学报,2000,25(4):308-312.
    [54]陈军明,黄玉盈,陈云新.水中加肋球壳振动和声辐射研究[J].华中科技大学学报(自然科学版),2003,31(5):110-113.
    [55]Stepanishen P R.Modal coupling in the vibration of fluid-loaded cylindrical shells[J].J.Acoust.Soc.Am.,1982,71(4):813-823.
    [56]Burroughs C B.Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports[J].J.Acoust.Soc.Am.,1984,75(3):715-722.
    [57]Laulagnet B,Guyader J L.Modal analysis of a shell's acoustic radiation in light and heavy fluids[J].Journal of Sound and Vibration,1989,131(3):397-415.
    [58]Laulagnet B,Guyader J L.Sound radiation by finite cylindrical ring stiffened shells[J].Journal of Sound and Vibration,1990,138(2):173-191.
    [59]Harari A,Sandman B E.Analytical and experimental determination of the vibration and pressure radiation from a submerged,stiffened cylindrical shell with two end plates[J].J.Acoust.Soc.Am.,1994,95(6):3360-3368.
    [60]骆东平,徐治平.环肋柱壳在流场中振动特性分析[J].中国造船,1990,2:67-79.
    [61]骆东平,谭林森.用纵筋加强的环肋柱壳静动力性能分析[J].中国造船,1993,1:72-85.
    [62]谢官模,骆东平.环肋圆柱壳在流场中辐射声场压力的解析解[J].应用数学和力学,1995,16(12):1061-1066.
    [63]谢官模,李军向,罗斌等.环肋、舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学,2004,8(2):101-108.
    [64]左迎涛,张小铭,徐慕冰.流体声介质中无限长薄圆柱壳的频散特性[J].华中理工大学学报,1997,25(6):37-39.
    [65]吴成军,陈花玲,黄协清.浸没圆柱薄壳远场辐射声场的理论预估[J].西安交通大学学报,1999,33(1):107-110.
    [66]汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001,26(1):1-5.
    [67]刘涛,范军,汤渭霖.水中弹性圆柱壳的共振声辐射[J].声学学报,2002,27(1):62-66.
    [68]刘涛,汤渭霖,何世平.数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J].船舶力学,2003,7(4):99-104.
    [69]曾革委,黄玉盈,马运义.舱壁和环肋加强的无限长圆柱壳声弹祸合模型及其声特性[J].固体力学学报,2002,23(3):269-279.
    [70]刘雁梅,黄协清.阻尼复合圆柱壳体声振特性研究进展与现状[J].振动与冲击,2000,19(2):40-43.
    [71]杨少红,王安稳.潜艇耐压壳动力学响应和声辐射研究概况与趋势[J].海军工程大学学报,2001,13(5):104-109.
    [72]Markus S.Damping properties of layered cylindrical shells,vibrating in axially symmetric modes[J].Journal of Sound and Vibration,1976,48(4):511-524.
    [73]Alam N.Vibration and damping analysis of a multilayered cylindrical shells,part Ⅰ:Theoretical analysis[J].AIAA J.,1984,22(6):803-810.
    [74]Alam N.Vibration and damping analysis of a multilayered cylindrical shells,part Ⅱ:Numerical results[J].AIAA J.,1984,22(7):975-981.
    [75]Laulagnet B,Guyader J L.Sound radiation from a finite cylindrical shell covered with a compliant layer[J].ASME Transactions,J.Vib.Acoust.,1991,113:267-272.
    [76]Laulagnet B,Guyader J L.Sound radiation from finite cylindrical coated shells,by means of asymptotic expansion of three-dimensional equations for coating[J].J.Acoust.Soc.Am.,1994,96(1):277-286.
    [77]Laulagnet B,Guyader J L.Sound radiation from finite cylindrical shells,partially covered with longitudinal strips of compliant layer[J].Journal of Sound and Vibration,1995,186(5):723-742.
    [78]Guo Y P.Attenuation of helical wave radiation from cylindrical shells by viscoelastic layer[J].J.Acoust.Soc.Am.,1995,97(1):298-308.
    [79]谢官模.粘弹性阻尼材料对环肋圆柱壳声辐射的影响[J].武汉工业大学学报,1995,17(2):97-99.
    [80]吴成军,黄协清,陈花玲.复合圆柱形薄壳在重质流体中声辐射的建模与理论预估(Ⅰ)[J].西安交通大学学报,1998,32(7):76-79.
    [81]吴成军,黄协清,陈花玲.复合圆柱形薄壳在重质流体中声辐射的建模与理论预估(Ⅱ)[J].西安交通大学学报,1998,32(9):84-88.
    [82]殷学文.敷设消声瓦的双层加肋圆柱壳的振动和声辐射研究[D].中国船舶科学研究中心,2001.
    [83]王安稳,李竹影,章向明.复合材料层合圆柱壳的动力响应与层间应力[J].海军工程大学学报,2000,4(2):1-10.
    [84]杨少红,王安稳.粘弹加筋层合圆柱壳的阻尼振动和层间应力[J].船舶力学,2003,7(4):77-85.
    [85]陈炜,骆东平等.敷设阻尼材料的环肋柱壳声辐射性能分析[J].声学学报,2000,25(1):27-32.
    [86]陈美霞,骆东平,彭旭等.敷设阻尼材料的双层圆柱壳声辐射性能分析[J].声学学报,2003,28(6):486-493.
    [87]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1997.
    [88]Zienkiewicz.The Finite Element Method[M],3rded.,McGRAW-HILL,Inc,1977.
    [89]Damodar Maity,Sriman Kumar Bhattacharyya.A parametric study on fluid-structure interaction problems[J].Journal of Sound and Vibration,2003,263(1):917-935.
    [90]王旌生.粘弹性复合材料结构水中振动和声辐射特性研究[D].上海交通大学,2007.
    [91]杨瑞梁,汪鸿振.声无限元进展[J].机械工程学报,2003,39(11):82-89.
    [92]邹元杰.水中阻尼复合壳体结构声振特性的数值分析[D].大连理工大学,2003.
    [93]Chen L H,Schweikert D G.Sound radiation from an arbitrary body[J].J.Acoust.Soc.Am.,1963,35(6):1626-1632.
    [94]Baron M L,Mccormick J M.Sound radiationfrom submerged cylindrical shells of finite length[J].ASME.Trans.Ser,1963,88(7):393-405.
    [95]Ursell F.On the exterior problems of acoustics[J].Proc.Cambridge Philos.Soc.,1973,74(5):117-125.
    [96]Coply L G.Fundamental results concerning integral representations in acoustic radiation[J].J.Acous.Soc.Am.,1968,44(1):28-32.
    [97]Seybert A F,Soenarko B,Rizzo F J,Shippy D J.Application of the BIE method to sound radiation problems using an isoparametric element[J].ASME Transactions,J.Vib.Acoust.Stress Rel.Dsgn.,1984,106(7):414-420.
    [98]Seybert A F,Soenarko B.,Rizzo F J,Shippy D J.An advanced computational method for radiation and scattering of acoustic waves in three dimensions[J].J.Acoust.Soc.Am.,1985,77(8):362-368.
    [99]Seybert A F,Soenarko B,Rizzo F J,Shippy D J.A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions[J].J.Acoust.Soc.Am.,1986,80(12):1241-1247.
    [100]Seybert A F,Soenarko B.Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space[J].ASME Transactions,J.Vib.Acoust.Stress Rel.Dsgn.,1988,110(7):112-117.
    [101]刘钊,陈心昭.用样条边界元计算振动体的三维稳态声辐射[J].振动与冲击,1996,15(2):28-32.
    [102]张胜勇,陈心昭.应用三次B样条函数插值的边界元方法计算结构振动声辐射问题[J].声学技术,1998,17(1):20-23.
    [103]Ziekiewicz 0 C,Kelly D W,Bettess P.The coupling of the finite element method and boundary solution procedures[J].Int.J.Numer.Meth.Engng.,1977,11(3):355-375.
    [104]Wilton D T.Acoustic radiation and scattering from elastic structures[J].Int.J.Numer.Meth.Engng.,1978,13(2):123-138.
    [105]Mathews I C.Numerical techniques for three-dimensional steady-state fluid-structure interaction[J].J.Acoust.Soc.Am.,1986,79(5):1317-1325.
    [106]Everstine G C,Henderson F M.Coupled finite element/boundary element approach for fluid-structure interaction[J].J.Acoust.Soc.Am.,1990,87(5):1938-1947.
    [107]Seybert A F,Wu T W,Li W L.A coupled FEM/BEM for fluid-structure interaction using Ritz vectors and eigenvectors[J].ASME TPANS,J.Vib.Acoust.,1993,115:152-158.
    [108]Giordano J A,Koopmann G H.State space boundary element-finite element coupling for fluid-structure interaction analysis[J].J.Acoust.Soc.Am.,1995,98(1):363-372.
    [109]Cunefare K,Rosa S D.An improved state-space method for coupled fluid-structure interaction analysis[J].J.Acoust.Soc.Am.,1990,105(1):206-210.
    [110]Tournour M,Atalla N.Vibroacoustic behavior for an elastic box using state-of-the-art FEM-BEM approaches[J].Noise Conrtol Eng.J.,1998,46(3):83-90.
    [111]Wu C J.Double-layer structural-acoustic coupling for cylindrical shell by using a combination of WDA and BIE[J].Applied Acoustics,2002,63(7):1143-1154.
    [112]张敬东,何祚镛.传递矩阵-边界元方法预报水下旋转薄壳振动和声辐射[J].哈尔滨船舶工程学院学报,1989,10(4):435-444.
    [113]张敬东,何祚镛.有限元+边界元-修正的模态分解法预报水下旋转薄壳的振动和声辐射[J].声学学报,1990,15(1):12-19.
    [114]崔宏武,赵德有,罗志雍等.结构振动的水中声辐射计算[J].中国造船,1990,31(4):49-54.
    [115]黎胜,赵德有.用有限元/边界元方法进行结构声辐射的模态分析[J].声学学报,2001,26(2):174-179.
    [116]沈顺根,李琪华,王大云等.加肋旋转壳结构噪声声辐射水弹性研究[J].中国造船,1992,253-62.
    [117]俞孟萨,史小军,陈克勤.采用有限元和边界元方法分析弹性加肋圆柱壳的声学相似性[J].中国造船,1999,3:65-71.
    [118]纪刚,张纬康,周其斗.有限元/边界元法求解多连通域声辐射问题[J].水动力学研究与进展,2003,18(4):408-413.
    [119]商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析[J].声学学报,2001,26(3):193-201.
    [120]徐张明,汪玉等.船舶结构的建模及水下振动和辐射噪声的FEM/BEM计算[J].船舶力学,2002,6(4):89-95.
    [121]徐张明,沈荣稼等.利用FEM/IBEM计算流体介质中的壳体的结构声祸合问题[J].振动工程学报,2002,15(3):363-367.
    [122]徐张明,汪玉等.双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算[J].中国造船,2002,43(4):39-44.
    [123]童宗鹏,王国治.舰艇结构水下振动和声辐射特性研究[J].华东船舶工业学院学报(自然科学版),2003,17(2):18-22.
    [124]彭旭,骆东平.船舶结构建模及水下振动和辐射噪声预报[J].噪声与振动控制,2003,6(1):9-12.
    [125]邹春平,陈端石,华宏星.船舶水下辐射噪声特性研究[J].船舶力学,2004,8(1):113-124.
    [126]杨德庆,郑靖明,王德禹等.基于SYSNOISE软件的船舶振动声学数值计算[J].中国造船,2002,43(4):32-37.
    [127]杨德庆,王德禹,刘洪林等.舰艇振动声学特性数值分析[J].上海交通大学学报,2002,36(11)1537-1543.
    [128]杨德庆,王德禹,刘洪林等.某型艇近场噪声和自噪声数值计算[J].声学学报,2003,28(5):421-424.
    [129]Lyon R H,Maidanik G.Power flow between two coupled oscillators[J].J.Acou s,Soc.A m.,1962,34(11):627-639.
    [130]Tso Y K,Hansen C H.An Investigation of The Coupling Loss Factor for a Cylinder/Plate Structure[J].Journal of Sound and Vibration,1997,199(4):629-643.
    [131]盛美萍,王敏庆,孙进才.非保守耦合系统的耦合损耗因子[J].声学学报,1999,24(5):550-556.
    [132]明瑞森,R.J.M.Cralk.建筑结构间耦合损耗因子测量的新方法[J].声学学报,1996,21(2):107-115.
    [133]王宏伟,赵德有.平板与周期加筋板间耦合损耗因子的研究[J].船舶力学,2001,5(2):55-61.
    [134]孙进才,王冲,孙朝晖.间接耦合机械结构之间的耦合损耗因子[J].声学学报,1995,20(1):33-41.
    [135]孙进才.复杂结构的损耗因子和耦合损耗因子的测量方法[J].声学学报,1995,20(2):127-134
    [136]Kolousek V.Anwendung des gesetzes der virtuellen verschiebungen und des reziprozitatssatzes in der stabwerksdynamik[J].Ingenieur-Archiv,1941,12(7):363-370.
    [137]Wittrick W H,Williams F W.A general algorithm for computing natural frequencies of elastic structures[J].Quarterly Journal of Mechanics and Applied Mathematics,1971,24(3):263-284.
    [138]Mohsin M E,Sadek E A.The distributed mass-stiffness technique for the dynamical analysis of complex frameworks[J].The Structural Engineer,1968,46(11):345-351.
    [139]Cheng F Y.Vibrations of Timoshenko beams and frameworks[J].Journal of the Structural Division,1970,3:551-571.
    [140]Howson W P,Williams F W.Natural frequencies of frames with axially loaded Timoshenko members[J].Journal of Sound and Vibration,1973,26(4):503-515.
    [141]Swannell P,Tranberg C H.Procedures for the forced,damped vibration analysis of structural frames using distributed parameter models[J].Computer Method in Applied Mechanics and Engineering,1978,16(3):291-302.
    [142]Lunden R,Akesson B A.Damped second-order Rayleigh-Timoshenko beam vibration in space an exact complex dynamic member stiffness matrix[J].International Journal for Numerical Methods in Engineering,1983,19:431-449.
    [143]Banerjee J R.Coupled bending-torsional dynamic stiffness matrix for beam elements[J]. International Journal for Numerical Methods in Engineering, 1989,28(6):1283-1289.
    [144] Banerjee J R, Fisher S A. Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements[J]. International Journal for Numerical Methods in Engineering, 1992, 33(1):739-751.
    
    [145] Li Jun, Shen RongYing, Jin XianDing et al. Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams including warping effects[J]. Applied Acoustics, 2004, 65 (1):153-170.
    [146] Banerjee J R, Williams F W. Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements[J]. Computers & Structures, 1992, 42(2):301-310.
    [147] Banerjee J R, Williams F W. Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element[J]. International Journal of Solids and Structures, 1994, 31(7):749-762.
    [148] Banerjee J R, Guo S, Howson W P. Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping[J]. Computers & Structures, 1996,59(4):613-621.
    [149] Li Jun, Shen RongYing, Jin XianDing et al. Bending-torsional coupled dynamic response of axially loaded composite Timoshenko thin-walled beam with closed cross-sect ion [J]. Composite Structures, 2004, 64(7):23-35.
    [150] Banerjee J R. Free vibration of sandwich beams using the dynamic stiffness method[J]. Computers & Structures, 2003, 81(1):1915-1922.
    
    [151] Banerjee J R. Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam[J]. Journal of Sound and Vibration, 2004, 270(8): 379-401.
    
    [152] Banerjee J R Williams F W. Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams[J]. International Journal for Numerical Methods in Engineering, 1985, 21(12):2289-2302.
    [153] Leung A Y T, Zhou W E. Dynamic stiffness analysis of non-uniform Timoshenko beams [J]. J Sound and Vibr, 1995,181(23):447-456.
    [154] Williams F W, Kennedy D. Exact dynamic members stiffness for a beam on an elastic foundation[J]. Earthquake Engineering Structural Dynamics, 1987,15(3):133-136.
    [155] Leung A Y T. Natural shape functions of a compressed Vlasov element [J]. Thin-walled Structures, 1991,11(1):431-438.
    
    [156] Gupta S, Manohar C S. Dynamic stiffness method for circular stochastic Timoshenko beams: response variability and reliability analyses[J]. Journal of Sound and Vibration, 2002, 253(5):1051-1085.
    
    [157] Akesson B. PFVIBAT. A computer program for plane frame vibration analysis by exact method[M]. International Journal for Numerical in Methods in Engineering, 1976, 10(8): 1221-1231.
    [158] Akesson B,Tagnfors H. SFVIBAT. A computer program for space frame vibration analysis[M]. Pub. 27, Chalmers University of Technology, Division of Solid Mechanics, Gothenburg, 1980.
    [159] Gustafsson T, Carlsson K G. PFVIBAT—DAMP:computer program for harmonic vibration of plane frames considering damping[M]. Report T47, Division of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden, 1977.
    [160] Akesson B, Tagnfors H, Lunden R et al. SFVIBAT-DAMP:a computer program for damped space frame vibration analysis[M]. Pub. 29, Chalmers University of Technology, Division of Solid Mechanics, Gothenburg,1987.
    [161] Banerjee J R, Williams F W. User's guide to the computer program BUNVIS (Buckling or Natural Vibration of Space Frames). Department of Civil Engineering and Building Technology, University of Wales Institute of Science and Technology, Report No. 5,1982.
    [162] Anderson M S,Williams F W, Banerjee J et al. User manual for BUNVIS-RG: an exact buckling and vibration program for lattice structures with repetitive geometry and substructuring option, NASA Technical Memo 87669,1986.
    [163] Banerjee J R. Use and capability of CALFUN-a program for calculation of flutter speed using normal modes[J]. Proc. Int. 84 Athens Summer Conf. on Modelling and Simulation, Athens, Greece, 1984:27-29.
    [164] Wittrick W H. General sinusoidal stiffness matrices for buckling and vibration analyses of thin flat-walled structures[J]. International Journal of Mechanical Sciences, 1968,10(6):949-966.
    [165] Wittrick W H, Williams F W. Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings [J]. International Journal of Mechanical Sciences, 1974,16(4):209-239.
    [166] Langley R S. Application of the dynamic stiffness method to the free and forced vibration of aircraft panels[J]. Journal of Sound and Vibration, 1989, 135(24) :319-331.
    [167] Bercin A N, Langley R S. Application of the dynamic stiffness technique to the in-plane vibration of plate structures[J]. Computers & Structures, 1996, 59(5):869-875.
    [168] Bercin A N. Analysis of energy flow in thick plate structure [J]. Computers & Structures, 1997,62(4):747-756.
    [169] Williams F W. Computation of natural frequencies and initial buckling stresses of prismatic plate assemblies[J]. Journal of Sound and Vibration, 1972, 21(1):87-106.
    
    [170] Anderson M S, Stround W J, Durling B J et al. PASCO: structural panel analysis and sizing code—users manual[J]. NASA Technical Memorandum 80182, Washington, D. C., 1980.
    
    [171]周平,赵德有.动态刚度矩阵法的研究概况[J].振动与冲击, 2006,25(4):104-108.
    [172] Leung A Y T, Zhou W E. Dynamic Stiffness Analysis of Laminated Composite Platse[J]. Thin-Walled Structures, 1996, 25(2):109-133.
    [173] LangleV R S. A Dynamic Stiffness Technique for the vibration Analysis of Stiffened Shell Structures[J]. Journal of Sound and Vibration, 1992,156(8):521-540.
    [174] Bercin A N. Natural Frequencies of Cross-ply Laminated Singly Curved Panels M echanics Research Communications[J]. Composite Structures, 1996,23(2):165-170.
    [175] Banerjee J R. Free Vibration of Sandwich Beams Using the Dynamics Stiffness Method[J]. Computers and Structures, 2003, 81 (7): 1915—1922.
    
    [176] Howson W P, Zare A. Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams[J]. Journal of Sound and Vibration, 2005, 282 (34): 753-767.
    
    [177] Banerjee J R, Sobey A J. Dynamic stiffness formulation and free vibration analysis of a three layered sandwich beam[J]. International Journal of Solids and Structures, 2005,42(21) :2181-2197.
    
    [178] Li Jun, Shen Rongying, HuaHongxing, Jin Xianding. Bending-Torsional Coupled Dynamic Response of Axially Loaded Composite Timoshenko Thin-walled Beam with Closed Cross section[J]. Composite Structures, 2004, 64(3):23-35.
    
    [179]Banerjee J R,Cheung C W, Morishima R, Perera M, Njuguna J. Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment[J]. International Journal of Solids and Structures,2007,44(15):7543 - 7563.
    [180] Casimir J B, Nguyen M C, I. Tawf iq. Thick shells of revolution: Derivation of the dynamic stiffness matrix of continuous elements and application to a tested cylinder[J]. Computers & Structures, 2007, 85(1):1845-1857.
    
    [181] Banerjee J R, H. Sua, C. Jayatunga. A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings[J]. Computers & Structures, 2008, 86(2):573-579.
    
    [182] Luis G. Arboleda-Monsalve, David G. Zapata-Medina, J. Darlo Aristizabal-Ochoa. Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector[J]. Journal of Sound and Vibration, 2008, 310(77):1057-1079.
    
    [183] Jun L, Hongxing H. Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory[J/OL]. Composite Structures, (2008). doi:10. 1016/j. compstruct. 2008.09.002.
    
    [184] 周平,赵德有.带有加强筋Mindlin板动态刚度阵法[J].振动与冲击,2007,26(6): 139-145.
    
    [185] Wittrick W H, Williams F W. A General Algorithm for Computing Natural Frequencies of Elastic Structures. Quarterly Journal ofMechanics and Applied Mathematics, Aug. 1971,24(3):263-284.
    [186]Simpson A.On the Solution of S(ω)x=0 by a Newtonian Procedure[J].Journal of Sound and Vibration,1984,97(1):153-164.
    [187]Williams F W,Kennedy D.Reliable Use of Determinants to Solve Nonlinear Structural Eigenvalue Problems Efficiently[J].International Journal for Numerical Methods in Engineering,1988,26(5):1825-1841.
    [188]Qi Zhaohui,Kennedy D,Williams FW.An AccurateMethod for Transcendental Eigenproblems with a New Criterion for Eigenfrequencies[J].International Journal of Solids and Structures,2004,41(9):3225-3242.
    [189]胡仲根,恽伟君,段根宝.动态子结构法中的非线性特征值计算[J].船舶工程,1982,2(1):13-20.
    [190]叶建乔.二次特征矩阵表示的特征值有界性分析[J].力学学报,1995,27(3):326-335.
    [1]Reddy J N.On refined computational models of composite lafninates[J].Int.J.Numer.Methods Eng.,1989,27(1):361-382.
    [2]Liu G R,Peng X Q,Lam K Y.Vibration control simulation of laminated composite plates with integrated piezoelectrics[J].Journal of Sound and Vibration,1999,220(5):827-846.
    [3]Samanta B,Ray M C,Bhattacharyya R.Finite element model for active control of intelligentstructures[J].AIAA Journal,1996,34(9):1885-1893.
    [4]顾元宪,曾庆纲.一种新的四边形层合板与夹层板单元[J].大连理工大学学报,1997,37(4):392-397.
    [5]郑是,朱菊芬.四节点Co类连续膜板(壳)单元[J].上海力学,1997,18:277-283.
    [6]朱菊芬,郑是.带旋转自由度Co类任意四边形板(壳)单元[J].计算力学学报,2000,17(3):287-292.
    [7]Prathap G,Somashekar B.R.Field-and edge-consistency synthesis of a 4-noded quadrilateral plate bending element[J].Int.J.Numer.Methods Eng.,1988, 26(11):1693-1708.
    [8]Ciskowski R D,Brebbia C A.Boundary element methods in acoustics[M].Southampton:ComputationalMechanics Publications,1991.
    [9]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京,清华大学出版社,1996.
    [10]Zienkiewcz O C.有限元法[M].科学出版社,2005.
    [11]龙驭球,龙志飞,岑松.新型有限元论[M].北京,清华大学出版社,2004.
    [12]王慧彩.约束阻尼夹层板动态特性研究[D].大连,大连理工大学,2003.
    [13]朱菊芬,郑罡.带旋转自由度C_0类任意四边形板(壳)单元.计算力学学报,2000,17(3):287-292.
    [14]Long Y Q,Xu Y.Generalized conforming quadrilateral membrane element with vertex rigid rotational freedoms.Computer and structures,1994,52(1):749-756.
    [15]Ashwell D G,Gallagher R H.Finite elements for thin shells and curved members[M].Wiley,London,1976.
    [16]Johnson C D,Kienholz D A.Finite element prediction of damping in structures with constrained layers.AIAA J.,1982,120(9):1284-1290.
    [1]中国科学院北京力学研究所.夹层板壳的弯曲稳定和振动[M].北京:科学出版社,1977.
    [2]Libove C,Batdorf S A.General Small Deflection Theory for Flat Sandwich Plates[M].NACA Rep,899,1948.
    [3]Reissner E.Finite deflection of sandwich plates[J].Journal of Aero space science.1948,15(7):435-440.
    [4]Reissner E.On Bending of Elastic Plates[J].Quarterly Applied Math,1947,5(1):23-28.
    [5]Libove C,Batdorf S.Elastic Constants for Corrugated Core Sandwich Plates[J].NACA TN,2289,1951.
    [6]Yu Y Y.A new theory of elastic sandwich plates-one dimensional case[J].Journal of Applied Mechanics,1959,26(1):415-421.
    [7]Liaw B D,Little R W.Theory of bending multilayer sandwich plates[J].AIAA J.1967,5:301-304.
    [8]Azar J J.Bending theory of multilayer orthotropic sandwich plates[J].AIAA J.1968,6(3):2166-2169.
    [9]Allen H G.Analysis and Design of Structural Sandwich Panels[M].Pergamon Press,Oxford,UK.1969.
    [10]Kanematsu H H,Hirano Y,Iyama H.Bending and vibration of CFRP-faced rectangular sandwich plates[J].Computers &Structures,1988,10(2):145-163.
    [11]Lee K H,Xavier P B,Chew C H.Static response of unsymmetrical sandwich beams using an improved zig-zag model[J].Composites Engineering,1993,3(3):235-248.
    [12]Lee L J,Fan Y J.Bending and vibration analysis of composite sandwich plates[J].Computers & Structures,1996,60(1):103-112..
    [13]邓年春,邹振祝,杜华军等.约束阻尼板的有限元动力分析[J].振动工程学报,2003,16(4):489-492.
    [14]钱振东,陈国平等.约束阻尼层板的振动分析[J].南京航空航天大学学报,1997,29(5):517-522.
    [115]师俊平,刘协会,越巨才等.复合材料夹层板的振动及阻尼分析[J].应用力学学报,1996,13(2):132-136.
    [16]曹志远,杨晟田.厚板动力学理论及其应用[M].北京:科学出版社,1983.
    [17]Bai J M,Sun C T.The effect of viscoelastic adhesive layers on structural damping of sandwich beams[J].Mechanics of Structures and Machinery,1995,23(1):1-16.
    [18]张阿舟等.实用振动工程(2):振动控制与设计.北京:航空工业出版社,1997.
    [19]戴德沛等.阻尼技术的工程应用[M].北京:清华大学出版社,1991.
    [20]孙庆鸿等.振动与噪声的阻尼控制[M].北京:机械工业出版社,1993.
    [21]刘棣华.粘弹阻尼减振降噪应用技术[M].北京:宇航出版社,1990.
    [22]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [23]Bagley Ronald L,Torvik Peter J.Fractional Calculus A Different Approach to the Analysis of Viscoelstic ally Damped Structures[J].AIAAJ.,1983,21(4):741-748.
    [24]Bagley Ronald L,Torvik Peter J.Fractional Caleulus in The Transient Analysis of Viscoelastic ally Damped Structures[J].AIAAJ.,1985,23(7):918-925.
    [25]Sakakibara S.Properties of Vibration with Fractional Derivative Damping of order1/2[J].JSME Int.J.1997,40(3):393-399.
    [26]陈前.弹性-粘弹性复合结构动力学研究[D].南京:南京航空学院博士论文,1987.
    [27]Lu Y P,Everstine G C.More on Finite Element Modeling of Damped Composite Systems[J].Journal of Sound and Vibration,1980,69(4):199-205.
    [28]Lu Y P,Killian J W,Everstine G C.Vibrations of Three Layered DamPed Sandwich Plate Composites[J].Journal of Sound and Vibration,1979,64(1):63-71.
    [29]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2001.
    [30]Zhang Q J,Sainsbuy M G.The Galerkin elementmethod applied to the vibration of rectangular damped sandwich plates[J].Computers & Structures,2000,74(6):717-730.
    [1]Lyon R H.Statistical energy analysis of dynamical system:theory and applications[M].Cambridge,MIT Press,1975.
    [2]NORTON M P,盛元生.程噪声和振动分析基础[M].北京.航空工业出版社,1993.
    [3]王宏伟,赵德有.弹性-粘弹性复合板模态密度研究[J].大连理工大学学报,2001,1(4):81-84.
    [4]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995.
    [5]Maxit L,Guyader J L.Estimation of SEA Coupling Loss Factors Using a Dual Formulation and FEM Modal Information,Part Ⅰ:Theory[J].Journal of Sound and Vibration,2000,239(5):907-930.
    [6]Maxit L,Guyader J L.Estimation of SEA Coupling Loss Factors Using a Dual Formulation and FEM Modal Information,PartⅡ:Numerical Applications[J].Journal of Sound and Vibration,2001,239(5):931-948.
    [1]Wennhage.Structura-Acoustic Optimization of sandwich panels[R].Sweden,2001.
    [2]俞程亮,赵洪伦,蒋伟明.夹层板结构的特性及其在轨道车辆中的应用.铁道车辆,2005,43(10):29-31.
    [3]Zienkiewicz.The Finite Element Method[M].3rd ed.,McGRAW-HILL,Inc,1977.
    [4]Wilton D T.Acoustic radiation and scattering from elastic structures[J].Int.J.Numer.Meth.Engng.,1978,13(6):123-138.
    [5]Mathews I C.Numerical techniques for three-dimensional steady-state fluid-structure interaction[J].J.Acoust.Soc.Am.,1986,79(5):1317-1325.
    [6]Giordano J A,Koopmann G H.State space boundary element-finite element coupling for fluid-structure interaction analysis[J].J.Acoust.Soc.Am.,1995,98(1):363-372.
    [7]Ciskowski R,Brebbia C A.Boundary element methods in acoustics.SouthamPton:Computational Mechanics Publications,1991.
    [8]邹元杰.水中阻尼复合壳体结构声振特性的数值分析[D].大连:大连理工大学,2004.
    [1]张少实,庄茁.复合材料与粘弹性力学[M].机械工业出版社,2004.
    [2]Alavandi Bhimaraddi,Athol J,Carr,Peter J.Moss.Finite element analysis of laminated shells of revolution with laminated stiffeners[J].Computers & Structures,1989,33(1):295-305.
    [3]Biswal K C,Ghosh A K.Finite element analysis for stiffened laminated plates using higher order shear deformation theory[J].Computers & Structures,1994,53(1):161-171.
    [4]Edward A.Sadek,Samer A.Tawfik.A finite element model for the analysis of stiffened laminated plates[J].Computers & Structures,2000(75):369-383.
    [5]Yuan W X,Dawe D J.Free vibration and stability analysis of stiffened sandwich plates [J].Composite Structures,2004(63):123-137.
    [6]Guanghui Qing,JiajunQiu,Yanhong Liu.Free vibration analysis of stiffened laminated plates[J].International Journal of Solids and Structures,2000(43):1357-1371.
    [7]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2001.
    [1]Banerjee J R.Free vibration of sandwich beams using the dynamic stiffness method[J].Computers and Structures,2003,81(1):1915-1922.
    [2]Banerjee J R,Sobey A J.Dynamic stiffness formulation and free vibration analysis of a three layered sandwich beam[J].International Journal of Solids and Structures,2005,42(23):2181-2197.
    [3]Howson W P,Zare A.Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams[J].Journal of Sound and Vibration,2005,282(5):753-767.
    [4]Banerjee J R,Cheung C W,Morishima R,et al.Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment[J].International Journal of Solids and Structures,2007,44(12):7543-7563.
    [5]Banerjee J R,Sua H,Jayatunga C.A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings[J].Computers &Structures,2008,86(18):573-579.
    [6]Jun L,Hongxing H,Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory,Compos Struct(2008),doi:10.1016/j.compstruct.2008.09.002.
    [7]周平.船舶与海洋结构动力分析中的动态刚度阵法研究[D].大连:大连理工大学博士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700