用户名: 密码: 验证码:
利用压电陶瓷的智能混凝土结构健康监测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的不断发展,各种大型复杂工程结构不断涌现,土木工程结构健康监测技术逐渐成为学术界的研究热点。近十几年来,智能材料结构在工程领域中的成功应用,为实现真正意义上的结构健康监测提供了有效的途径。以压电陶瓷为代表压电智能材料具有集传感和驱动一体化的优越特性,适合于结构健康监测领域。同时,压电材料还具有响应速度快、线性关系好、能耗低、造价低廉且易加工成型等优点。因此,将压电材料作为基本元件,研发一套方便、实用的结构健康监测系统也符合我国当前的国情。本论文基于上述背景,对利用压电陶瓷材料进行混凝土结构健康监测的相关技术进行详细研究,具体工作包括以下几个方面:
     (1)针对混凝土结构的特点以及压电陶瓷片的材料特性,研制开发了一种新型的、适用于混凝土结构的压电陶瓷传感器件——“智能骨料”。它既是混凝土结构健康监测的智能元件,又具有普通骨料的功能,很好地解决了压电传感器与主体结构相结合时出现的各种实际问题。在此基础上,对压电智能混凝土结构损伤主动监测系统的线性性能、灵敏度、重复性及频率响应特性等基本性能进行了试验研究。结果表明,该系统具有良好的性能,这为进一步开展健康监测研究奠定了试验基础。
     (2)依据应力波在固体中的传播特点,提出了考虑几何扩散影响的修正衰减系数公式,并对应力波在混凝土介质中传播的衰减规律和以压电陶瓷片作为声源的声场在混凝士介质中的分布规律等问题进行了研究。结果表明,应力波在混凝土介质内传播,衰减系数与频率之间近似满足三次多项式关系;同时以压电陶瓷片作为声源,其声场在混凝土内部的分布较为分散。该试验结果为合理布置传感器提供了依据。
     (3)对利用波动法的混凝土结构主动损伤识别技术进行了研究。通过研究混凝土构件裂缝损伤及其发展对主动监测信号的幅值、频率及相位等参量的影响,找出各参数随损伤程度增加的变化规律。结果表明,信号幅值对裂缝损伤的变化最为敏感,且随损伤程度的不断增加呈现出不断衰减的趋势。因此,利用波动法的压电智能混凝土结构损伤主动识别技术中,主动监测信号的幅值可作为损伤识别的主要特征参量。在此基础上进一步从理论上证明了信号幅值作为损伤特征参量的有效性。
     (4)在以信号幅值作为特征参量的基础上,提出了利用信号能量衰减的损伤程度判定方法。针对混凝土结构形体较大的特点,提出利用传感器列阵的损伤近似定位方法。对混凝土构件进行了损伤监测试验,结果证明提出的损伤识别方法的有效性。同时通过主被动损伤监测对比试验,表明本文提出的方法适合用于混凝土结构的长期健康临测领域。
     (5)以dSPACE系统为平台搭建了压电智能混凝土结构的健康监测系统。结合压电智能混凝土结构长期健康监测的特点,提出了相应的结构健康监测策略,为大型混凝土结构健康监测提供必要的技术支持。在此基础上,对荷载作用下的压电智能混凝土框架结构的进行了健康监测试验。试验结果表明,通过分析传感器采集到的监测数据能够有效的反映存在的损伤以及结构健康状态的发展趋势。
Nowadays, various kinds of large and complex engineering structures have constantly appeared with the continuous development in economy and society of our country. The technology of structural health monitoring (SHM) has become the research hotspot in the civil engineering fields. In decades, the successful application for smart material and structure (SMS) technology in the civil engineering has opened a successful path to realize the real and meaningful SHM.
     Smart piezoelectric materials such as the piezoelectric ceramic have a superior characteristic of dual functions of actuating and sensing which make it suitable for the SHM technology. Meanwhile, the piezoelectric materials have many other advantages of fast response, good linear relationship, low energy consumption, low cost and easy processing. Therefore, developing a convenient and practical SHM system based on piezoelectric materials will accord well with Chinese conditions. In the background, the SHM technology for concrete structures using piezoelectric ceramic is researched in details in the paper and the work includes as follows:
     Firstly, a kind of new sensor which is named "smart aggregate" and suitable for health monitoring in concrete structures is researched and developed according to the characteristic of the concrete and the piezoelectric ceramic. The new smart sensor has the functions of both smart elements and the normal aggregate in concrete materials and can be used to solve problems caused by the combination of two materials. On this basis, an experimental research designed for validating the system of the active structural health monitoring (ASHM) for smart piezoelectric concrete is finished. The results show that many indexes of the system such as linearity, sensitivity, frequency response characteristic and repeatability are very good and it is helpful to establish the foundation for further development in the SHM field.
     Secondly, according to the characteristic of wave propagation in the concrete, an attenuation coefficient considering the geometrical attenuation during the wave spreading was proposed. Furthermore, the law of the stress wave propagating in the concrete media and the sound field distribution generating by the vibration of PZT patches in the concrete are experimentally researched. The results show that the attenuation coefficient is the function of the cubic polynomial of frequency and the sound field around the PZT patch are scattered. The results also lay a basis for reasonably placing the sensors in the monitored structure.
     Thirdly, the active damage identification technology for concrete structures was researched. The variable law of amplitude, frequency and phase of the detecting signal caused by the increase of the damage level are established by the parameter research of the concrete crack damage. The results show that the amplitude of the stress signal is the best sensitive to the change of damage among the parameters and it will gradually decay with the increase of damage degree. Therefore, the amplitude of the signal can be used as the most important characteristic parameter for the active damage identification technology based on wave method. The effectiveness for the amplitude of signal being used as the characteristic parameter has been proved by a theoretical analysis approach.
     Fourthly, a damage degree identification method based on the energy attenuation is proposed on the basis of the signal amplitude being used as characteristic parameter. A damage locating method based on the transducers array is also proposed for the huge scale property of concrete structure. The damage detection tests for the concrete specimens are carried on to validate the efficiency of the array. The results show that the proposed damage identification method is very effective and that it's suitable for the long-term health morning by compare of the results between the active and the passive monitoring tests.
     Fifthly, a health monitoring system for smart piezoelectric concrete structure based on the dSAPCE software is set up. Combining the property of the long term health monitoring and the smart piezoelectric concrete structure, a relevant SHM strategy was also proposed to provide a technical support and a guideline for the large scale concrete structure health monitoring. Then, a health morning test for a large scale RC frame structure is carried on in the laboratory. The experimental results show that the damage state and the development tendency of the monitored structure could also be effectively reflected by analyzing the data collected from the long term used sensors.
引文
[1]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [2]McCann D M,Forde M C.Review of NDT methods in the assessment of concrete and masonry structures[J].NDT & E International.2001.34(2):71-84.
    [3]李光海.声发射检验技术的发展[J].南昌航空工业学院学报.2001,15(2):39-43.
    [4]关云隆.超声检测[M].北京:国防工业出版社,1986.
    [5]千力.基于声发射技术的混凝土损伤评估[D].武汉:华中科技大学土木工程与力学学院,2005.
    [6]王金枝.基于超声方法的混凝土早期损伤识别的试验研究[D].武汉:武汉理工大学交通学院,2007.
    [7]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
    [8]孙明清,李卓球,侯作富.压电材料在土木工程结构健康监测中的应用[J].混凝土,2003,161(3):22-24.
    [9]欧进萍.土木工程结构用智能感知材料、传感器与监测系统的研发现状[J].功能材料信息,2005,2(5):12-22.
    [10]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [11]杨亲民.智能材料的研究与开发[J].功能材料,1999,30(6):575-581.
    [12]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究[J].建筑技术,2002,33(4):270-272.
    [13]李宏男,赵晓燕.压电智能传感结构在土木工程中的研究和应用[J].地震工程与工程振动,2004,24(6):165-172.
    [14]Shi Yan,Hao Zhang.Numerical analysis and control for cantilever flexible beams using PZT patches [C].Proceedings of SPIE,San Diego,2008.
    [15]阎石,张浩.利用压电陶瓷作动器对柔性悬臂梁正位反馈控制试验[J]-沈阳建筑大学学报,2008,24(3):362-365.
    [16]吴克恭.埋入压电材料的智能复合材料结构振动主动控制理论和实验研究[D].西安:西北工业大学力学与土木建筑学院,2003.
    [17]赵大海.基于压电摩擦阻尼器的结构振动控制理论与试验研究[D].大连:大连理工大学土木水利学院,2008.
    [18]崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报,2005,25(1):86-94.
    [19]吴波,李惠,孙科学.形状记忆合金在土木工程中的应用研究[J].世界地震工程,1999,15(3):1-13.
    [20]王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析[J].土木工程学报,2000,33(1):56-62.
    [21]Mazzolani F M,Mandara A.Modern trends in the use of special metals for the improvement of historical and monumental structures[J].Engineering Structures,2002,(24):843-856.
    [22]Indirli M,Castellano M G,Clemente P.Demo-application of shape memory alloy devices:the rehabilitation of the S.Giorgio Church Bell-Tower[C].Proceedings of SPIE,San Diego,2001.
    [23]任勇生.智能材料在土木结构监测和振动控制中的应用[J].太原理工大学学报,2000,31(5):486-493.
    [24]邓宗才,李庆斌.形状记忆合金对混凝土梁驱动效应分析[J].土木工程学报,2002,35(2):41-47.
    [25]肖尔田,韩玉林,李爱群.基于形状记忆合金超弹性阻尼器的结构振动控制和地震时程分析[J].东南大学学报,2003,33(5):605-609.
    [26]李成英,袁惠群,周卓.我国稀土超磁致伸缩材料研究与应用开发概况[J].辽宁工学院学报,1999,19(3):14-20.
    [27]贾宇辉,谭久彬.超磁致伸缩材料微位移驱动系统的研究[J].仪器仪表学报,2000,19(1):38-41.
    [28]薛伟辰,郑乔文,刘振勇,李杰.结构振动控制智能材料研究及应用进展[J].地震工程与工程振动,2006,26(5):213-217.
    [29]Yah Shi,Zheng Wei,Song G B.Intelligent wind vibration control of high-rise buildings using MR dampers[C].Proceedings of SPIE,San Diego,2007.
    [30]郑伟,阎石.基于遗传算法的高层建筑MR阻尼器优化布置[J].沈阳建筑大学学报,2005,21(6):606-611.
    [31]阎石,宁欣,王宁伟.磁流变阻尼器在受控结构中的优化布置[J].地震工程与工程振动,2004(3):175-178.
    [32]丁睿.工程健康监测的分布式光纤传感技术及应用研究[D].成都:四川大学水利水电学院,2005.
    [33]孙丽.光纤光栅传感技术与工程应用研究[D].大连:大连理工大学土木水利学院,2006.
    [34]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学土木水利学院,2008.
    [35]张巍,吕志涛.光纤传感技术用于桥梁监测[J].公路交通科技,2003,20(3):91-95.
    [36]Idriss R L.Monitoring of a smart bridge with embedded sensors during manufacturing,construction and service[C].Proceedings of the 3rd international workshop on structural health monitoring,Standford University,2001.
    [37]李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展[J].地震工程与工程振.2002,22(6):78-86.
    [38]陶宝棋,熊克.智能材料结构的定义及应用前景[J].中国科学基金,1995,5(2):40-46.
    [39]曹照平,王社良.智能材料结构在土木工程中的应用.重庆建筑大学学报,2001,23(1):108-113.
    [40]Chen P W,Chtmg D D L,Improving the bonding between old and new concrete by the addition of carbon fibers to the new concrete[J].Cement Concrete Research,1995,5(3):491-496.
    [41]李惠,欧进萍.智能混凝土与结构[J].工程力学,2007,24(增刊):45-61.
    [42]余海湖,赵愚,姜德生.智能材料与结构的研究和应用[J].武汉理工大学学报,2001,23(1):37-41.
    [43]冯若,刘忠齐,姚锦钟.超声诊断设备原理与设计[M].北京:中国科技医药出版社,1990.
    [44]钟俊辉.国外压电材料的发展概况[J].电子材料,1995,10(2):1-5.
    [45]张传忠.压电陶瓷的新应用及新工艺[J].压电与声光,2002,22(2):90-94.
    [46]徐红星,骆英,柳祖廷.PVDF压电薄膜的应用进展[J].江苏理工大学学报,1999,20(5):88-91.
    [47]孙慷,张福学.压电学(上)[M].北京:国防工业大学出版社,1986.
    [48]张福学.现代压电学(上)[M].北京:科学出版社,2001.
    [49]周智,欧进萍.土木工程智能健康监测与诊断系统[J].传感器技术,2001,20(11):1-4
    [50]施晓亮.基于振动模态分析和神经网络技术的结构损伤辨识[D].西安:西北工业大学航空学院,2005
    [51]Housner G W,Bergman L A,Caughey T K,et al.Structural control:past,present,and future[J].Journal of Engineering Mechanics,ASCE,1997,123(9):897-971
    [52]Shahawy M A,Arocklasamy M.Analytical and measured strains in sunshine skyway bridge Ⅱ[J].Journal of Bridge Engineering,1996,1(2):87-97.
    [53]Curran P and Tilly G.Design and monitoring of the flintshire bridge[J].Structural Engineering International,1999,9(3):225-228.
    [54]Abild J,Andersen E Y,Rosbjerg D.Climate of extreme winds at Great Belt[J].Journal of Wind Engineering and Industrial Aerodynamics,1993,41(10),521-532.
    [55]Slowik V,Evelyn S,Thomas K.Fiber Bragg grating sensors in concrete technology[J].Laser,1998,(3):109-119.
    [56]刘正光,黄钊猷.香港缆索桥结构健康监测系统[J].市政技术,2000.23(增刊),2005,23-25.
    [57]符欲梅,朱永,陈伟民,黄尚廉.大佛寺长江大桥远程状态监测系统开发及实现[J].公路,2005,(12):105-109.
    [58]谭永朝,郑翰献,俞菊虎,杨骊先,孙炳楠.钱江四桥桥梁实时健康监测系统开发研究[J].公路交通科技,2004,12(111):43-46.
    [59]何旭辉,陈政清.南京长江大桥安全监测和状态评估的初步研究[J].振动与冲击,2003,22(1):75-78.
    [60]缪长青,李爱群,韩晓林,李兆霞,吉林,杨玉东.润扬大桥结构健康监测策略[J].东南大学学报,2005,35(5):780-785.
    [61]Hideaki I,Keiji S,Nobuo T.Structural health monitoring system using FBC-based sensor for a damage tolerant building[C].Proceeding of SPIE,San Diego,2003.
    [62]Hideaki I,Hiroshi Y,Akira M.Health monitoring system using FBG-based sensors for a 12-story building with column dampers[C].Proceeding of SPIE,Newport Beach,2001.
    [63]Habel W.Complex measurement system for long-term monitoring of pretressed railways bridges in the New Lehrter Bahnhof in Berlin[C].Proceeding of SPIE,San Diego,2002.
    [64]Schwesinger P.One Year experience in bridge testing using the loading truck BELFA[C].Proceeding of SPIE,San Diego,2002.
    [65]Mooney M A.Health monitering during vibratory plate compaction of soil[C].Proceeding of SPIE,San Diego,2002.
    [66]Whelan M.Remote structural monitoring of the cathedral of como using an optical fiber bragg sensor system[C].Proceeding of SPIE,San Diego,2002.
    [67]史学涛.结构健康监测系统研究[M].上海:同济大学出版社,2006.
    [68]肖诗轶.结构健康智能监测系统集成研究[M].武汉:武汉理工大学出版社,2004.
    [69]欧进萍,肖仪清.海洋平台结构实时安全监测系统[J].海洋工程,2001,119(12):1-6.
    [70]郭建.基于小波分析的结构损伤识别方法研究[D].杭州:浙江大学建筑工程学院,2004.
    [71]焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展[J].防灾减灾工程学报,2006,26(1):102-108.
    [72]Park G,Gyuhae P,Imman D J,Damiel J I.Impedance-based health monitoring of civil structural components[J].Journal of Iinfrastructure Systems,2000,6(4):153-160.
    [73]Crawley E F Anderson E H.Detailed models of piezoceramic actuation of beams[J].Journal of Intelligent Material Systems and Structures,1990,1(1):4-25.
    [74]Sun F P,Chaudhry Z,Liang C,Rogers C A.Truss structure integrity identification using PZT sensor-actuator[J].Journal of Intelligent material systems and structures,1995,16(2):134-139.
    [75]Giurgiutiu V,Zagrai A N.Embedded self-sensing piezoelectric active sensors for online structural identification[J].Journal of Vbrition and Acoustic.2002,124(1):116-125.
    [76]Xu Y G,Liu G R.A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches[J].Journal of Intelligent Material Systems and Structures,2002,13(6):389-396.
    [77]Ayres J W,Lalande F,ChaudhryZ,Rogers C A.Qualitative impedance-based health monitoring of civil infrastructures[J].Smart Materials and Structures,1998,7(5):599-605.
    [78]Giurgiutiu V,Reynolds A,Rogers C A.Experimental investigation of E/M impedance health monitoring for spot-welded structural.joints[J].Journal of Intelligent Material Systems and structure,2000,10(10):802-812.
    [79]Esteban J,Rogers C A,Wave localization due to material damping[J].Computer Methods in Applied Mechanics and Engineering,1999,177(1):93-107.
    [80]Sob C K,Tseng K K,Bhalla S,Gupta A.Performance of smart piezoceramic patches in health monitoring ofa RC bridge[J].Smart Materials and Structures,2000,9(4):533-542.
    [81]Tseng K K,Wang L S.Smart piezoelectric transducers for in situ health monitoring of concrete[J].Smart Materials and Structures,2004,13(5):1017-1024.
    [82]Bhalla S,Soh C K.Structural impedance based damage diagnosis by piezo-transducers[J].Earthquake Eng.Struct.Dyn.,2003,32(12):1897-1916.
    [83]Bhalla S,Sob C K.Structural health monitoring by piezo-impedance transducers Ⅰ:modeling[J].Journal of Aerospace Engineering,2004,17(4):154-165.
    [84]徐茂华.结构损伤检测PZT法的理论与试验研究[D].武汉:华中科技大学土木工程与力学学院,2005.
    [85]王丹生.基于反共振频率和压电阻抗的结构损伤检测[D].武汉:华中科技大学土木工程与力学学院,2006.
    [86]孙威,阎石,张莺.基于压电陶瓷传感器的混凝土结构健康监测技术的数值模拟研究[J].混凝土,2008,220(2):34-38.
    [87]Shi Yan,Wei Sun.Numerical simulation for concrete structure health monitoring based on smart piezoelectric transducer array[J].Advance in Science and Technology,2008,56:469-476.
    [88]Kessler S S,Spearing S M,Soutis C,Damage detection in composite materials using Lamb wave methods[J].Smart Materials and Structures,2002,11(2):269-278.
    [89]Toyama N,Noda J,Okabe T.Quantitative damage detection in cross-ply laminates using Lamb wave method[J].Composites Science and Technology,2003,63(10):1473-1479.
    [90]Diamanti K,Hodginson J M,Soutis C.Detection of low-velocity impact damage in composite plates using Lamb waves[J].Structural Health Monitoring,2004,3(1):33-41.
    [91]Staszewski W J,Lee B C,Mallet L,Scarpa F.Structure health monitoring using scanning laser vibrometry:Ⅰ.Lamb wave sensing[J].Smart Materials and Structures,2004,13(2):251-260.
    [92]Staszewski W J,Lee B C,Mallet L,Scarpa F.Structure health monitoring using scanning laser vibrometry:Ⅱ.Lamb wave for damage detection[J].Smart Materials and Structures,2004,13(2):261-269.
    [93]Tua P S,Quek S T,Wang Q.Detection of cracks in plates using piezo-actuated lamb waves[J].Smart Materials and Structures,2004,13(4):643-660.
    [94]王帮峰,李迎,施益峰.复合材料结构健康主动监测中激励信号的优化[J].南京航空航天大学学报,2006,38(5):613-617.
    [95]严刚,周丽,孟伟杰.基于Lamb波与时频分析的复合材料结构损伤监测和识别[J].南京航空航天大学学报,2007,39(3):397-402.
    [96]彭鸽,袁慎芳,徐颖娣.基于主动Lamb波和小波变换的二维结构小波变换研究[J].振动工程学报,2004,17(4):488-493.
    [97]汤珺.主动多激励结构健康监测系统的研制与应用[D].哈尔滨:哈尔滨工业大学航天学院,2003.
    [98]刘洋.基于Lamb波的主动健康监测系统研究[D].武汉:华中科技大学土木工程与力学学院,2005
    [99]Kawiecki G.Feasibility of applying distributed piezotransdueers to structural damage detection[J].Journal of Intelligent Material Systems and Structures,1998(3):189-197.
    [100]Wang C S,Wu F,Chang F K.Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete[J].Smart Materials and Structures,2001(3):548-522.
    [101]Saafi M M,Sayyah T.Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers[J].Composites Part B:Engineering,2001,32(4):333-342.
    [102]Song G,Gu H,Mo Y L,Hsu T,Dhonde H.Concrete structural health monitoring using embedded piezoceramic transducers[J].Smart Materials and Structures,2007,16(4):959-968.
    [103]Gu H,Song G,Dhonde H,Mo Y,Yan S.Concrete early-age strength monitoring using embedded piezoelectric transducers[J].Smart materials and structures,2006,15(2):1837-1845.
    [104]文玉梅,李平,刘双林,李文军.压电机敏混凝土原理[J].压电与声光,2002,24(3):196-198.
    [105]陈雨,文玉梅,李平,郭浩.混凝土中压电陶瓷在变荷载作用下的特性研究[J].压电与声光,2005,27(6):700-703.
    [106]孙明清,李卓球,刘清平.力电效应机敏混凝土梁模型[J].混凝土,2002,148(2):26-28.
    [107]孙明清,李卓球.压电陶瓷-混凝土机敏结构研究[J].混凝土,2004,172(2):5-9.
    [108]孙明清,Staszewski W J,Swamy R N,李卓球.压电陶瓷片,混凝土复合机敏结构中的表面波法[J].建筑材料学报,2004,7(2):145-149.
    [109]王锐.压电陶瓷对混凝土梁疲劳累积损伤主动监测试验研究[D].哈尔滨:哈尔滨工业大学土木工程学院。2005.
    [110]Song G,Olmi C,Gu H.An overheight vehicle-bridge collision monitoring system using piezoelectric transducers[J].Smart Materials and Structures,2007,16(2):462-468.
    [111]郑旭锋.桥梁振动检测系统的研究和应用[D].重庆:重庆大学土木工程学院,2002.
    [112]杨晓明.土木工程结构的性能监测系统与损伤识别方法研究[J].天津:天津大学建筑工程学院,2006.
    [113]赵晓燕,李宏男.应用压电陶瓷传感器对钢筋混凝土框剪模型振动台试验地震损伤监测[J].振动与冲击,2006,25(4):82-84.
    [114]纪洪广,裴广文,单晓云.混凝土材料声发射技术研究综述[J].应用声学,2002,21(4):1-5.
    [115]耿荣生.声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28.
    [116]刘国华.声发射信号处理关键技术研究[D].杭州:浙江大学信息科学与工程学院,2008.
    [117]张东,吴科如,李宗津.2-2型水泥基压电机敏复合材料的研制[J].压电与声光,2002,24(3):217-220.
    [118]Dong Biqin,Li Zongjin.Cement-based piezoelectric ceramic smart composites[J].Composites science and technology,2005,65(9):1363-1371.
    [119]赵晓燕.基于压电陶瓷的结构健康监测和损伤诊断[D].大连:大连理工大学土木水利学院,2008.
    [120]陈雨.混凝土压电陶瓷敏感模块特性研究[D].重庆:重庆大学土木工程学院,2006.
    [121]许肖梅.声学基础[M].北京:科学出版社,2003.
    [122]杜功焕,朱哲民,龚秀芬.声学基础[M].北京:科技出版社,2001.
    [123]何祚庸,赵玉芳.声学理论基础[M].北京:国防工业出版社,1981.
    [124]国家建筑工程质量监督检验中心.混凝土无损检测技术[M].北京:中国建材工业出版社,1996.
    [125]周文委.结构混凝土压电机敏监测技术的基础研究[D].重庆:重庆大学土木工程学院,2003.
    [126]吴慧敏.结构混凝土现场检测新技术-混凝土非破损检测[M].长沙:湖南大学出版,1998.
    [127]过镇海.混凝土的强度和变形-试验基础和本构关系[M].北京:清华大学出版社,1997.
    [128]郑拯宇.压电混凝土基础设施健康安全主动监测技术的基础研究[D].重庆:重庆大学土木工程学院,2003.
    [129]兰凯.钻孔桩砼灌面超声波测量的关键技术及其实现[D].武汉:中国地质大学工程学院,2008.
    [130]Alnumi A N.Modeling ultrasonic transducer in homogeneous and on-homogeneous media using DPSM method[D].University of Arizona,2004
    [131]林维正.土木工程质量无损检测技术[M].北京:中国电力出版社,2007.
    [132]薛年喜.Matlab在数字信号处理中的应用[M].北京:清华大学出版社,2008.
    [133]华容.信号分析与处理[M].北京:高等教育出版社,2008.
    [134]周凯.超声混凝土构件检测系统的研究与试验分析[D].长沙:中南大学土木建筑学院,2007.
    [135]尹容.超声波测早期混凝土强度探讨[J].无损检测,1999,21(5):210-219.
    [136]李骁春,吴胜兴.早期混凝土超声波测试研究进展[J].混凝土与水泥制品,2006,149(3):11-13.
    [137]王世一.数字信号处理技术[M].北京:北京理工大学出版社,1997.
    [138]罗鹏飞,张文明.随机信号分析与处理[M].北京:清华大学出版社,2006.
    [139]刘波,文忠,曾崖.Matlab信号处理[M].北京:电子工业出版社,2006.
    [140]李勇,徐霞.Matlab辅助现代工程数字信号处理[M].北京:电子工业出版社,2006.
    [141]吴湘淇,肖熙,郝晓莉.信号、系统与信号处理的软硬件实现[M].北京:电子工业出版社,2002.
    [142]刘光焰.钢筋混凝土结构的健康诊断和加固技术研究[D].南宁:广西大学土木建筑工程学院,2003
    [143]戎贤.高强钢筋混凝土构件裂缝控制试验研究及有限元分析[D].天津:天津大学建筑工程学院,2005.
    [144]佟荣祝,李小雷.混凝土表面裂缝的危害及处理措施[J].河北水利水电技术,2003,(5):30-31.
    [145]罗云光,李江域,韩方景.基于FFT实现短波扩频系统载波频差估计[J].电子信息对抗技术,2008,23(3):22-25.
    [146]李宁,张平,段庆伟,Swoboda G.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报,2002,21(11):1579-1584.
    [147]伊文.W.N.层状介质中的弹性波[M].北京:科学出版社,1996.
    [148]王卫华,李夕兵,周子龙,张义平.不同应力波在张开节理处的能量传递规律[J].中南大学学报,2006,37(2):376-380.
    [149]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1996.
    [150]张顺详.混凝土轴心受拉Kaiser效应试验研究[D].南京:河海大学土木工程学院,2007.
    [151]纪宏广,李造鼎.混凝土材料凯塞效应与Felicity效应的研究[J].应用声学,1997,16(6):30-33.
    [152]徐宜和,丁勇春.结构抗震拟动力试验混合控制方法研究[J].建筑科学,2005,21(5):11-15.
    [153]周安.结构拟动力试验的位移控制[J].合肥工业大学学报,2004,27(7):787-791.
    [154]石文龙,肖勇,李国强,叶志明.梁柱组合节点的混合拟动力试验研究[J].地震工程与工程振动,2008,28(6):124-133.
    [155]袁爱民,戴航,李延和.EI法和MAC法在模态试验传感器优化布置中的应用比较[J].工业建筑,2007,38(增刊):344-347.
    [156]何浩祥,颜维明,张爱林.面向结构健康监测传感器数量及位置优化研究[J].振动与冲击,2007,27(9):131-134.
    [157]谢建宏.压电智能结构损伤检测及其传感器优化配置的研究[D].南京:东南大学仪器科学与工程学院,2005.
    [158]谢建宏,张为公.压电智能结构损伤检测传感器优化配置的遗传神经网络方法[J].传感技术学报,2007,20(2):413-418.
    [159]万鹏,朱杰,陈贻范.移动平均法的数字滤波特性分析[J].海洋技术,1997,16(3):29-31.
    [160]陈亮亮,郭杭,吴代赦.移动平均法用于GPS多路径效应的分析[J].工程勘察,2007,(3):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700