用户名: 密码: 验证码:
基于空调排风与墙体能量交换的建筑节能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题立足于建筑节能的目标与要求,在现有的建筑材料和建筑结构基础上,结合建筑设备,采用较为合理的节能方式和方法,达到建筑复合节能的目标。
     结合建筑围护结构本体和空调设备的排风热回收,提出了一种新型的建筑围护结构——夹层通风墙体,整体优化建筑节能,在回收空调排风能量的同时,墙体的热工性能得到改善,人体与墙体的热辐射减弱,提高了建筑物内人体的热舒适性,达到了节能环保的目的。本文针对基于空调排风与墙体能量交换的建筑节能问题,采用理论结合实验的研究方法对夹层通风墙体进行了研究,主要研究内容包括:
     (1)采用有限元法对夹层通风墙体内的气流的温度场和速度场进行模拟分析计算,讨论其最佳的参数设计,分析了在实验室条件下和实际工程中,不同建筑层高情况下的空气夹层设计时的厚度与高度的最佳比值,经模拟计算,最佳取值为1/55;讨论了通风墙体夹层的进风口风速对节能效果的影响情况,确定其最佳取值范围为0.6~1.0m/s;进出风口高度对速度场和温度场的影响情况,进出风口高度小于200mm时,对整个夹层的通风效果影响不大,当风口高度为250-500mm时,对夹层通风效果影响较大,需合理安排。
     (2)搭建模拟实验房对夹层通风墙体对空调排风的能量回收以及建筑空调负荷节能情况进行实验研究,实测了夹层通风墙体内的速度场与温度场的变化情况,同时实测普通墙体的各种热工参数,并进行比较;通过实验研究验证数值模拟结果基本符合实际,实测了夹层通风墙体的内墙温度与室内空气温度之间的差值,实测了夹层通风墙体空调节能值为0.05KW/KW制冷(热)量。
     (3)通过对我国不同传热系数外墙的办公建筑的空调冷热负荷进行模拟计算,讨论了墙体传热系数对空调负荷的影响情况,模拟结果表明,应根据各地不同的气候条件选择合理的建筑外墙结构。对于北方寒冷地区,应尽量采用传热系数小的外墙以达到减少空调热负荷的目的;对于南方以空调冷负荷为主的建筑,盲目追求传热系数小的外墙对夏季空调节能反而会起到相反的效果。
     (4)对夹层通风墙体的工程应用化进行了讨论,进行了夹层通风墙体节能的技术经济分析,分析结果表明,采用夹层通风墙体,投资回收期较短,在本文算例中,上海地区典型办公建筑的投资回收期为4年。分析了夹层通风墙体的工程适用条件,夹层通风墙体适用于外墙面积大、新风量大、空调负荷大的建筑。结合医院的手术洁净室空调采用夹层通风墙体的实例,论证了其工程应用的合理性和可行性。
     本课题主要根据上海地区的气候地域特点对基于空调排风与墙体能量交换的建筑节能进行了理论与应用研究,所得出的方法与结论可供相关的建筑节能理论、研究、设计参考。
The objective of this subject is based on the purpose and requirement of building energy saving. On the bases of the building materials and construction, by combining the building facilities, using the most reasonable methods and modes of building energy saving, achieve the compound building energy saving aims.
     An innovation envelope– interlayer ventilation wall has been put forwarded combining the wall and air exhaust recycling of air conditioning equipments to optimized building energy saving integrally. While the recycling air exhaust, energy can be recovered, the thermal characteristics of interlayer ventilation wall can be improved, the radiation can also be reduced between the body and internal wall surface, increasing the thermal comfort of human being inside the building, and the purpose of energy saving and environmental protection can be achieved.
     (1)The air current temperature field and velocity field of the interlayer ventilation wall have been analog calculated and analyzed by finite element method. After reviewing the optimum parameters design, the optimum design thickness and height ratio of the air interlayer is 1/55. The optimum inlet air velocity of the interlayer ventilation wall is from 0.6m/s to 1.0m/s, and how the inlet air velocity effects energy saving. The influence is little for interlayer ventilation when the height of inlet less than 200mm, the influence is obvious when the height is from 250mm to 500mm, and the position should be placed reasonably.
     (2)The air exhaust energy recovery of interlayer ventilation wall and energy saving of building air conditioning loads have been researched by setting up the experimental analog buildings. The numerical simulation results have met the reality certificated by experimental research. The result about the energy saving of air conditioning system is 0.05KW/KW refrigerating (heating) output.
     (3)Using the simulating software DeST to calculate the air conditioning cool and heat loads of office buildings with different heat transmission coefficient envelope in six cities of China. The results show that the lower the heat transmission coefficient of building envelope, the lower the air conditioning loads, the better energy saving of building in winter. Inverse, the lower the heat transmission coefficient of building envelope, the higher the air conditioning loads, the worse energy saving of building in summer. The air conditioning loads varied with different proportion when the indoor set temperature was higher or lower 1℃. So there exists an optimized temperature setting for satisfaction human. The influence of the outdoor meteorological parameter was greater than the envelope heat transmission coefficient to building fractional energy saving.
     (4)The engineering application of interlayer ventilation wall has been discussed. Technical and economical analysis of interlayer ventilation wall has been done. Based on the buildings in Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was needed. The relevance conditions of interlayer ventilation wall are big envelope, big fresh air and big air conditioning loads buildings. The air conditioning cooling and heating loads of office buildings with different heat transmission coefficient envelope in six cities of China have been calculated. How envelope heat transmission coefficient influenced air conditioning loads has been discussed.
     The building energy saving theory and application has been researched based on the energy exchange between air exhaust and envelope according to Shanghai’s climate and local features. The methods and conclusions may be useful to building energy efficiency theories, research and design.
引文
[1]龙惟定.试论建筑节能的新观念.暖通空调,1999(1).
    [2]狄育慧.采暖建筑中墙体节能的探讨.北京节能,2000(6):29-30.
    [3]王如竹.关于建筑物节能及复合能量系统的几点思考.太阳能学报,2002, 23(3): 322-335.
    [4]王如竹.丁国良等著.最新制冷空调技术.科学出版社,2002.
    [5]陈超,渡边俊行,日本的建筑节能概念与政策,暖通空调,2002, 32 (6):40- 42
    [6]M .Ta heri,S .Sh afie. A case study on the reduction of energy use for the heating of buildings. Renewable Energy. 1995,6(7):673-678
    [7] Ann McNicholl. J.Owen Lewis. Energy efficiency and solar energy in European office buildings: a mid-career education initiative, Energy and Buildings 33(2001):213-217
    [8]M.Bauer. A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings. Energy and Buildings.27 (1998):147-154
    [9]陈春燕.今夏上海电力缺口继续增大.解放日报,2004.3.22
    [10]Mousa S. Mohsen, Bilal A.Akash. Some prospects of energy saving in building. Energy Conservation & Managerment,2001(42):1307-1315
    [11]何雪冰,刘宪英.中央空调节能有关问题的探讨.重庆建筑大学学报,1999(4):40-42
    [12]吴学.浅轮中央空调系统节能.建筑热能通风空调,2002(3):62-63
    [13] Humphreys MH. Outdoor temperatures and comfort indoors. Building Research and Practice 1978;6(2):92–105.
    [14] Szokolay SU. Thermal comfort in warm humid tropics. ANZAScA 1997:7–11.
    [15] Rajapaksha I, Nagai H, Okumiya M. Indoor thermal modification of a ventilated courtyard house in the tropics. International Journal of Architectural Institute of Japan, Journal of Asian Architecture and Building Engineering 2002;1(1):84–97.
    [16] Lorsch HG, Kau.man KW, Denton JC. Thermal energy storage for heating and air conditioning, future energy production system. Heat Mass Transfer Proc 1976;1:69–85.
    [17]李成志,李界家,刘宁峰,张静.空调技术发展及展望.沈阳建筑大学学报,2005:25-28.
    [18] Jessica Henryson, Teresa Ha kansson, Jurek Pyrko, Energy efficiency in buildings through information - Swedish perspective, Energy Policy,2000(28):169-180
    [19] Guo Qiao,Xu Qing-wei. Analysis and Modeling of the Central Air-Conditioning System in Intelligent Buildings. Journal of Beijing Institute ofTechnology,2002(3):295-297
    [20] Schmidt FW, Willmott AJ. Thermal energy storage and regeneration. Hemisphere Publishing Corporation,New York, 1981.
    [21] Pedro D. Silva*, L.C. Gonc alves, L. Pires.Transient behaviour of a latent-heat thermal energy store: numerical and experimental studies. Applied Energy,2002(73):83-98
    [22] Laouadi A, Lacroix M. Thermal performance of a latent-heat energy storage ventilated panel for electric load management. Int Journal of Heat and Mass Transfer 1999;42:275–86.
    [23] Farid MM, Husian RM. An electrical storage heater using the phase-change method of heat storage.Energy Convers Mgmt 1990;30(3):219–30.
    [24] Jamal O. Jaber ,Prospects of energy savings in residential space heating,Energy and Building,2002(34):311-319
    [25] M. Siddhartha Bhatt, Energy conservation in refrigeration and air conditioning systems through system simulation, Technical Report No. 292, Central Power Research Institute, Bangalore-560094, India, (1996), pp. 40-102.
    [26] M. Siddhartha Bhatt, Energy conservation in refrigeration and air conditioning systems through system simulation, CPRI News 58 (1996) 2±4 Central Power Research Institute, Bangalore-560094, India.
    [27] W.F. Stoecker, J.W. Jones, Refrigeration and Air Conditioning, McGraw-Hill, Singapore, 1984.
    [28] M. Siddhartha Bhatt. Energy audit case studies IIDair conditioning (cooling) systems,Applied Thermal Engineering, 2000(20):297-307
    [29] JAY ALTHOF ,EUGENE SMITHART,JANE SIDEBOTTOM1The HVAC Response to the Energy Change [J ] . ASHARE Journal ,2001 , (5) :40 - 43.
    [30] OFER PITTEL ,PAUL EHRLICH1New Guidelines for Specifying DDC Systems[J ] . ASHARE Journal , 2001 ,(7) :31 - 33.
    [31] Mats Fehrm a,*, Wilhelm Reiners b, Matthias Ungemach b. Exhaust air heat recovery in buildings. Refrigeration, 2002(25):439-449
    [32]陈赤,杨靖,周晓燕.排风热回收系统地探讨,应用能源技术,2001(4):22-23
    [33]孙志高,马荣升,李舒宏.空调系统热回收节能分析,北京节能,2000(2):19-21
    [34]秦伶俐,李洪芳.转轮式全热交换器——一种高效的热回收装置,制冷,1998(3):20-23
    [35]张小松,李舒宏,赵开涛等.板翅式换热器用于空调排风能量回收的研究,通风除尘,1998(3):4-7
    [36]J R Hooper. Piots from Closed Solution for Plate Fin Heat Exchangers Core Volume. Heat Transfer Engineering,1989(2)
    [37]H Kazeminejad. Analysis of One-dimensional Fin Assembly Heat Transfer with Dehumidification, Int. J. Heat Transfer, 1995(3)
    [38]徐伟.应用于新排风系统的热泵热回收装置的研究,
    [39]干卫国,姜守忠.适配式热回收热泵空调系统的节能研究,制冷空调与电力机械,2002(1):54-56
    [40]松下冷机株式会社.中央空调系统UMX系列&UM4系列Engineering DATA[Z].ORDER No.PACD990801CO.
    [41] Archie W Culp1Principles of energy conversion1McGraw– Hill Book Company ,1999
    [42] Harrysson C. Exhaust air heat pumps for domestic hot water and space heating in new single-family houses. Report to the Swedish Council for Building Research, 1995, Proj. No. 850370-8, Swedish.
    [43]G.M., Cotter T.P., Erikson G.F., Structure of very high thermal conductance. J. Appl. Phys., 1964, 35(6):1990~1991.
    [44] Busse C.A., Theory of the ultimate hat transfer limit of cylindrical heat pipes. Int. J. Heat Mass Transfer, 1973,16(1): 169~186.
    [45] Tien, C.L., Rohani A.R., Theory of two-component heat pipes. ASME J. Heat Transfer, Series C, 1972, 94(4):479~484.
    [46] Tien, C.L., Rohani A.R., Analysis of the effect of vapour pressure drop on heat pipes performance. Int. J. Heat Mass Transfer, 1974, 17(1): 61~68.
    [47] Tien, C.L., Sun K.H., Minimun menscus radius of heat pipe wicking materials. Int. J. Heat Mass Transfer, 1971,14(11): 1853~1855.
    [48] Sun K.H, Tien C.L., Simple conduction model for steaty-state heat pipe performance. AIAA J., 1972, 10(8):1051~1057.
    [49] Babin B.R., Peterson G.P., Wu D., Steady-state modeling and testing of a micro heat pipe. ASME J. Heat Transfer,1990, 112(3): 595~601.
    [50] Longtin J.P., Badran B, Gerner F.M., A one-dimensional model of a micro heat pipe during steady-state operation.ASME J. Heat Transfer, 1994, 114(3):709~715.
    [51] Swanson L.W., Peterson G.P., The interfacial thermodynamics of micro heat pipes. ASME J. HeatTransfer, 1995, 115(1): 195~201.
    [52]李亭寒,李劲东等.微型热管的稳定模化分析及其实验研究.中国空间科学技术, 1997, (12): 22~27, 44.
    [53] Vafai K., Wang Y., Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe.Int. J. Heat Mass Transfer, 1992, 35(19): 2087~2099.
    [54]邹炎,商宏伟.浅谈建筑墙体的节能技术.应用能源技术,2000(1),PP.21-22.
    [55] M.S. Mohsen, B.A. Akash, Some prospects of energy savings in buildings, Energy Conversion Management 42 (2001) 1307–1315.
    [56]陆善明,刘明明,王吉霖.混凝土小型空心砌块建筑EPS外保温墙体热工性能研究.混凝土与水泥制品,2003(3):45-47
    [57]上海市发展新型墙体保温材料办公室,上海市墙体材料与建筑节能(围护结构)“十五”计划及2010年发展规划纲要,墙体革新与建筑节能,2001(2):17-19
    [58]王平,周晋张,国强.既有建筑节能改造.大众用电. 2007(9):34-36
    [59]王志勇,刘泽华,王汉青,寇广孝.基于建筑环境的空调系统设计及节能分析.建筑热能通风空调. 2004年4月,第23卷第2期:55-57
    [60]A Y. Li, M. Sandberg, L. Fuchs, Effects of thermal radiation on airflow with displacement ventilation: an experimental investigation. Energy and Buildings 19 4 1993 249–251.
    [61]Davies, M.G.,A time-domain estimation of wall conduction transfer function coefficients, ASHRAE Transactions,1996,102(1):328-343
    [62]Martin Erlandsson, Per Lerin. Energy and Enviromental Consequences of an Additional Wall Insulation of a Dwelling. Building and Enviroment,1997(2):129-136
    [63]Zaheer-uddin M. Temperature control of mutlizone indoor spaces based on forecast and actual loads. Building and Environment 1994;29(4):485±93.
    [64]王花枝,田斌守.在建筑围护结构上用新材设计空气层应注意的问题.墙体革新与建筑节能,2000(2):26-27
    [65]J.O. Jaber, R.F. Babus’Haq, S.D. Probert, Energy management and environmental protection in Jordan: economic impact, International Journal of Global Energy Issues 5 (1993) 155–168.
    [66] Hasnain SM. A review on sustainable thermal, energy storage technologies, part II: cool thermal storage. Energy Conversion and Management D International Journal 1998;39(11):1139±53.
    [67] M. F. Zedan and A. M. Mujahid. Laplace Transform Solution for Heat Transfer in Composite Walls with Periodic Boundary Conditions [ J ] . Journal of Heat Transfer ,1993 , (115) :263~265.
    [68]周子义,刘营利.BBF建筑外(内)保温技术.建筑技术开发,2001(3):27-28
    [69]Hassall DNH. Reflective insulation and the control of thermal environments. Australia: ACI Insulation, 1977.
    [70]旬和生,陈维.苏州市推广节能建筑初探.保温材料与建筑节能,1999(3):11-13
    [71]孙世钧,金虹,赵运泽.节能外墙构造的探讨.哈尔滨建筑大学学报,2002(8):84-86
    [72]刘喻石,田丰.关于建筑热工环境的设计.工业建筑,2000(12):4-10
    [73] Rodrigues AM, Canha da Piedade A, Lahellec A, Grandpeix JY. 2000. Modelling natural convection in a heated vertical channel for room ventilation. Building and Environment, 35: 455-69.
    [74] R. Letan, V. Dubovsky, G. Ziskind. 2003. Passive ventilation and heating by natural convection in a multi-story building. Building and Environment, 38:197-208.
    [75] G. Ziskind, V. Dubovsky, R. Letan. 2002. Ventilation by natural convection of a one-story building. Energy and Buildings, 34: 91-102.
    [76] Guohui Gan. 1998. A parametric study of Trombe walls for passive cooling of buildings. Energy and Buildings, 27(1): 37-43.
    [77] Z. D. Chen, P. Bandopadhayay, J. Halldorson, C. Byrjalsen, P. Heiselberg, Y. Li. 2003. An experimental investigation of a solar chimney model with uniformwall heat flux. Building and Environment, 38: 893-906.
    [78] U.STRITIH, P. NOVAK. 1996. Solar heat storage wall for building ventilation. Renewable Energy 8(1-5): 268-271.
    [79]Shane West.Improving the sustainable development of building stock by the implementation of energy effcient, climate control technologies. Building and Environment,2001(36):281-289
    [80] Hyunjae Changa;., Shinsuke Katob, Tomoyuki Chikamotoc Effects of outdoor air conditions on hybrid air conditioning based on task/ambient strategy with natural and mechanical ventilation in office buildings. Building and Environment,2004(39):153-164
    [81]Hunt GR, Linden PF. The mechanics of natural ventilation-displacement ventilation by buoyancy-driven assisted by wind. Building and Environment 1999(34):707–20.
    [82]Li Y, Delsante A. Natural ventilation induced by combined wind and thermal forces. Building and Environment 2001(36):59–71.
    [83]Kato S, Murakami S, Kobayashi H. New scale for evaluating ventilation efficiency as affected by supply and exhaust openings based on spatial distribution of contaminants. ISRACVE (Tokyo) 1992;321–32.
    [84]郁文红.建筑节能的理论分析与应用研究,[博士学位论文],天津,天津大学,2004
    [85]赵镇南.传热学.高等教越出版社,北京,2002
    [86] Herbert L S, Sterns U J. Heat transfer in vertical tubes-interaction of forced and free convection. The Chemical Engineering Journal,1972,4:46-52
    [87]杨世铭,陶文铨.传热学.高等教育出版社,北京,1998
    [88]阎丽萍,王路威,王琼.空心墙体建筑的节能及经济性分析.南京工业大学学报,Vol. 26,2004,20-22
    [89] Gan Guohui. Thermal Transmittance of Multiple Glazing: Computational Fluid Dynamics Prediction. Thermal Engineer[J]. 21(2001) 1583~1592
    [90]钟水库,胡东南.被动式太阳房隔热墙体的绝热热阻.可再生能源. Vol. 126,2006,10-12
    [91] Jinmei Feng, Zhiwei Lian, Zhijian Hou. An innovation wall model based on interlayer ventilation, Energy Conversion and Management, 2008,48:1271-1282
    [92]赵晓宇,李永振,徐珍喜.暖通空调系统能量计量的仪表选用和精度探讨.低压电器[J].2008.8:18~21
    [93] Jinmei Feng, Zhiwei Lian, Zhijian Hou. Study on energy saving of interlayer ventilated wall used in clean operating rooms, ICEBO,2006
    [94]张泠,张楠,汤广发,邓启红.共轭传热室内环境数值预测模型.湖南大学学报(自然科学版) [J]. Journal of Hunan University(Natural Sciences Edit. 2002,29(4):92~97
    [95]王雪锦,潘志信,李德英.新型节能墙体传热研究.新型节能墙材[J]. 2006.10:24~26
    [96] [英]T·A·马克斯E·N·莫里斯著,陈士麟译.建筑物·气候·能量[M].中国建筑工业出版社. 1990
    [97]陈友明,王盛卫.多层墙体瞬时热负荷计算新模型.上海理工大学学报[J]. J. University of Shanghai for Science and Technology. 2001,23(3):225~228
    [98]赵荣义,范存养,薛殿华,等.空气调节[M].3版.北京:中国建筑工业出版社,1994
    [99]陈沛霖,曹叔维.空气调节负荷计算理论与方法[M].上海:同济大学出版社. 1987
    [100]郑爱平.空气调节工程[M].北京:科学技术出版社,2002
    [101]许兵.上海汽车工业技术中心发动机试验室空调设计.上海汽车[J]. 1996.1
    [102]马最良,姚杨.民用建筑空调设计[M].北京:化学工业出版社,2003
    [103]孔祥谦,有限单元法在传热中的应用,北京:科学出版社,1998
    [104]唐兴伦,范群波,张朝晖,ANSYS工程应用教程一热与电磁篇,北京:中国铁道出版社,2003.1
    [105]蔡增基,龙天渝.流体力学泵与风机[M].4版.中国建筑工业出版社. 1999
    [106] [2]甄兰平,李成.建筑耗能、环境与寿命周期节能设计.工业建筑[J]. 2003(2):19~22
    [107] Adalberth K. Energy demand during the life cycle of a building. CIB Symposium Energy Mass and Flow in the life Cycle of building,Vienna. 1996.
    [108]涂逢祥.关于中国建筑节能的跨越式发展.建筑节能[J].中国建工出版社.北京,2001
    [109]江亿.建筑环境系统模拟分析方法-DeST[M].北京:中国建筑工业出版社,2005,1~5
    [110]黄翔.空调工程[M].北京:机械工业出版社,2006,
    [111]袁明鹏,胡艳,庄越.北京:清华大学出版社. 2007
    [112]陈娜琳,于浩峰,孙连弟.双层玻璃幕墙的节能计算公式和设计方案.煤炭技术. 2003(7): 39-41
    [113] Gan Guohui. A parametric study of Trombe walls for passive cooling of buildings [J]. Energy and Buildings,1998,27(1):37~43
    [114]周谟仁.流体力学泵与风机[M].3版.北京:中国建筑工业出版社,1994
    [115]彦启森.空气调节用制冷技术[M].2版.北京:中国建筑工业出版社,1997
    [116]陈雪芬,涂光备,凌继红等,现有洁净手术室的运行与管理问题,洁净与空调技术,2004,vol.3:42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700