用户名: 密码: 验证码:
基于分层约简模型的接地网腐蚀故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了对接地网的导体支路进行腐蚀故障诊断,及时发现接地网的缺陷,确保人身安全、设备安全、电力系统安全和生产安全,本文开展了下列工作:
     提出了接地网的分层约简模型,根据接地网的拓扑结构和可及节点分布,将接地网分为实际接地网、元版块网、可及接地网和本征接地网等4个层次,能够清楚地反映腐蚀故障诊断中不确定性发生的原因和所影响的范围,为判断接地网支路的可测性和进行故障诊断奠定基础。
     提出了一系列自动生成接地网的分层约简模型的新算法,包括准元版块分解算法、元版块分解和元版块网生成算法、元网络分解和可及接地网生成算法以及本征接地网生成算法,并建议了一种适合于接地网的分层约简模型的数据结构。
     将接地网支路定义为电阻可以唯一确定的明晰支路和电阻不能唯一确定的不确定支路两类,基于分层约简模型,提出了一种在充分测试方案下,采用规则和数值方法相结合的接地网支路诊断前可测性判断方法和流程,根据支路腐蚀状态提出了诊断后可测性的转化规则,结合实例深入论证了提出方法的必要性和可行性。
     提出了一种基于分层约简模型的接地网故障诊断方法,能够得出明晰支路的实际电阻,并以不确定支路组为单位,分别估计出各条不确定支路电阻的可能取值范围及其概率分布。在此基础上,提出了计算不确定支路、不确定支路组和接地网的信息熵的方法,从而对不确定支路的不确定程度和接地网的诊断效果进行了客观评价。
     探讨了接地网故障诊断测试方案的选取问题。提出并证明了最大电压定理的3个推论,指出在量测位置给定的条件下,若要使量测电压对某条支路电阻的变化最敏感,则激励电流源必须加在该支路上;当激励电流源加在某条支路上时,该支路两端电压对该支路电阻的变化最敏感。在此基础上,提出了一种抗干扰性强的最优测试方案,并针对接地引下线自身电阻影响的实际问题,讨论了解决方案。
     在一个60支路实验接地网上以及330kV沣河变电站的实际大型接地网上进行了可测性分析、腐蚀故障诊断和信息熵评价,诊断结果表明本文理论和所提出的方法是正确的和可行的。
In order to diagnose the corrosion of the grounding grids, find out the defects in time and ensure the safty of power apparatus, electric power system and the personal safty, the following contributions have been made:
     A hierarchical simplification model for grounding grids is proposed. According to the topology and the distribution of touchable nodes, a grounding grid is simplified into four levels,such as Actual Grounding Grid (AGG)、Circuit Blocks Grid (CBG)、Touchable Grounding Grid (TGG) and Intrinsic Grounding Grid (IGG). The model can clearly reflect the reasons of uncertainty and the influencing ranges in corrosion diagnosis of the grounding grids. It forms the foundation of the testability evaluation and corrosion diagnosis of grounding grids.
     A series of novel algorithms are proposed to establish the hierarchical simplification model automatically,including the Quasi-Circuit Block dividing algorithm, the Circuit Block dividing and CBG generating algorithm, the Block Grid dividing and TGG generating algorithm and the IGG generating algorithm. The date structure which is appropriate for the proposed hierarchical simplification model of grounding grids is suggested.
     The branches of a grounding grid are classified into two kinds such as clear branches and uncertain branches. The resistance of a clear branch is unique whereas the resistance of an uncertain branch is not unique. A hybrid approach based on the rules and numerical methodology to evaluate the testability of branches of a grounding grid is proposed while the testing scheme is complete. The rules of transforming some uncertain branches into clear branches after diagnosis are analysed. The necessity and feasibility of the proposed approach are discussed with examples.
     A novel approach is presented to diagnose the corrosion of a grounding grid based on the hierarchical simplification model. The actual resistances of clear branches are obtained. The possibility resistance ranges and the corresponding probability distribution of uncertain branches are estimated within one uncertain branch group by another. The entropies of the uncertain branches, the uncertain branch groups and the grounding grid are formulated. Consequently, the uncertain degrees of the uncertain branches and the effectiveness of the diagnosis can be evaluated objectively.
     To determine the testing scheme for corrosion diagnosis of a grounding grid, three inferences of maximum voltage theorem are put forward and proved. It is pointed out that to make the measured voltage most sensitive to the change of resistance of a certain branch, the constant DC current exciter should be added on the corresponding branch. It is also pointed out that in case of the constant DC current exciter added on a branch, the voltage on the branch is the most sensitive to the change of resistance of the branch. Based on above theory, the theoretical best testing scheme is proposed. To avoid the influence of lead line resistances in the practice, some solutions are suggested.
     Based on the proposed model and approach, an experimental grounding grid with sixty branches and the grounding grid of Fenghe 330kV Substation are tested and diagnosed, respectively. The diagnose results show that the proposed approaches and algorithms are correct and feasible.
引文
[1]张丽萍,袁建生,李中新.变电站接地网模拟计算[J],中国电机工程学报,1999,19(5): 76-79
    [2]蔡崇积.电力交流接地网损坏原因调研与分析[J],电力设备, 2005, 6(4): 20-22
    [3]国家电网公司.国家电网公司十八项电网重大反事故措施[R],2005.6
    [4]廖学军.变电站停电事故的分析与防范[J],沿海企业与科技,2006,11:124-125
    [5]柯东敏.变电站地网的运行、维护及改造的探讨[J],引进与咨询,2005,4:48-49
    [6]王东烨,董刚.大型变电所地网评估若干问题的探讨[J],高电压技术.2001,27(2):64-65
    [7]肖新华,刘华,陈先禄等.接地网腐蚀和断点的诊断理论分析[J],重庆大学学报,2001, 24(3):72-75
    [8]刘宝成,低电压大电流法检测接地网技术研究[J],华北电力技术,1999, 2:7-8
    [9]侯景韩译.接地工程[M],第一版,北京:人民邮电出版社,1988.
    [10]王森,朱小明,安宗贵等.变电站综合缺陷诊断方法的研究[J],陕西电力,2006,34(1):23-26
    [11] F.P.Dawalibi, A.Pinho,Computerized Analysis of Power Systems and Pipelines Proximity Effects[J], IEEE Transaction on Power Delivery,1986,1(2): 40-47
    [12] F.P.Dawalibi.Electromagnetic Fields Generated by Overhead and Buried Short Conductors[J], IEEE Transaction on Power Delivery,1986,1(4):105-119
    [13] L.Grcev, F.P.Dawalibi, An Electromagnetic Model for Transients in Grounding Systems[J], IEEE Transaction on Power Delivery, 1990, 5(4):1773-1781
    [14] W. Xiong, F.P.Dawalibi, Transient Performance of Substation Grounding Systems Subjected to Lighting and Similar Surge Current[J], IEEE Transaction on Power Delivery, 1994, 9(3): 1412-1420
    [15] Jinxi Ma, F. P. Dawalibi, Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities[J], IEEE Transaction on Power Delivery, 2002, 17(2):596-602
    [16] Jinxi Ma, F.P.Dawalibi.Influence of Inductive Coupling between Leads on Ground Impedance Measurements using the Fall-of-potential Method[J], IEEE Transaction on Power Delivery, 2001,16(4): 739-743
    [17] Jinxi Ma,F.P.Dawalibi, Influence of inductive coupling between leads on soil resistivity measurements in multilayer soils [J], IEEE Transaction on Power Delivery, 1998,13(4): 999-1004
    [18] Li Yexu,Ma Jinxi,F.P.Dawalibi,et al.Power grounding safety: Copper groundingsystems vs. steel grounding systems[C], Proceeding of 2006 International Conference on Power System Technology, Oct.,2006, Chongqing, China, p4115884
    [19] Ma Jinxi,F.P.Dawalibi,et al. Grounding analysis of a large electric power station[C], Proceeding of 2006 International Conference on Power System Technology, Oct.,2006, Chongqing, China ,p 4116396
    [20] www.sestech.com/products/SoftPackages/CDEGS.htm
    [21] B.Thapar,V.Gerez,A.Balakrishnan,et al.Evaluation of ground resistance of a grounding grid of any shape[J],IEEE Transactions on Power Delivery,1991,6(2):640-644
    [22] B.Thapar,V.Gerez,A.Balakrishnan,et al.Simplified equations formesh and step voltages in an AC substation[J],IEEE Transactions on Power Delivery,1991,6(2):601-605
    [23] J.M.Nahman,V.B.Djordjevic.Resistance to ground of combined grid-multiple rods electrodes[J],IEEE Transactions on Power Delivery,1996,11(3):1337-1342
    [24] J.M.Nahman,V.B.Djordjevic.Nonuniformity correction factors for maximum mesh and step-voltage of grounding grids and combined grounding electrodes[J],IEEE Transactions on Power Delivery,1995,10(3):1263-1269
    [25] Y.L.Chow,M.M.A.Salama.A Simplified Method for Calculating the Substation Grounding Grid Resistance[J], IEEE Transactions on Power Delivery,1994,9(2): 736-741.
    [26] M.M.A.Salama,Y.L.Chow.A Formula for Resistance of Substation Grounding Grid in two-layer soil[J], IEEE Transactions on Power Delivery,1995,10(3): 1255-1261.
    [27] Y.L.Chow,J.Yang.Complex Images for Electrostatic Field Computation in Multilayered Media[J], IEEE Transactions on Microwave Theory and Techniques, 1991,39(7): 1120-1125
    [28] L.D.Grcev. Computer Analysis of Transient Voltages in Large Grounding Systems[J], IEEE Transaction on Power Delivery, 1996,11(2): 815-823
    [29] Markus Heimbach, L.D.Grcev, Grounding System Analysis in Transients Programs Applying Electromagnetic Field Approach[J], IEEE Transaction on Power Delivery, 1997, 12(1): 186-193
    [30] A.F.Otero, J.Cidras,J.L.D.Alamo,Frequency-Dependent Grounding System Calculation by Means of a Conventional Nodal Analysis Technique[J], IEEETransaction on Power Delivery, 1999, 14(3): 873-878
    [31] J.Cidras, A.F.Otero, C.Garrido,Nodal Frequency Analysis of Grounding Systems Considering the Soil Ionization Effect[J], IEEE Transaction on Power Delivery, 2000,15(1): 103-107
    [32] H.Anton,T.Mladen,P.Joze.The influence of an additional substance in the trenches surrounding the grounding grid's conductors on the grounding grid's performance[J], IEEE Transactions on Magnetics, 2007, 43(4):1257-1260
    [33] Pappas S.S.,Ekonomou L., Karampelas P.,etal. Modeling of the grounding resistance variation using ARMA models[J].Simulation Modelling Practice and Theory, 2008, 16(5):560-570
    [34] Chen Li-Hsiung,Chen Jiann-Fuh,Liang Tsorng-Juu,et al.Calculation of ground resistance and step voltage for buried ground rod with insulation lead[J],Electric Power Systems Research, 2008, 78(6): 995-1007
    [35] Thomas,E.S.,Dagenhart,J.B.,Barber,R.A.etal. Distribution system grounding fundamentals[J],IEEE Industry Applications Magazine, 2005,11(5):67-76
    [36] Sekioka S.,Lorentzou M. I.,Philippakou M.P.,et al.Current-dependent grounding resistance model based on energy balance of soil ionization[J],IEEE Transactions on Power Delivery, 2006, 21(1):194-201.
    [37] Gillies D.A.,Stewart R.P, Randolph J.D.,etal.Current North American assessment and refurbishment practices of substation grounding systems[J],IEEE Transactions on Power Delivery, 2005,20(3):1886-1889
    [38] Tommasini R.,Pons E.,Toja, S..MV ground fault analysis and global grounding systems[C],Proceedings of the Seventh IASTED International Conference on Power and Energy Systems, Clearwater Beach, FL, United States. Nov., 2004,p285-290
    [39] Novak, Thomas.Analysis of very-high-resistance grounding in high-voltage longwall power systems[J],IEEE Transactions on Industry Applications, 2001,37(1):104-111
    [40] Durham M.O.,Durham R.A.Data quality and grounding[J],IEEE Industry Applica- tions Magazine, 2006,12(3):67-73
    [41] Guemes J.A., Hernando F.E.,Rodriguez F.,et al.A practical approach for determining the ground resistance of grounding grids[J],IEEE Transactions on Power Delivery, 2006, 21(3):1261-1266
    [42] Visacro Silverio.A comprehensive approach to the grounding response to lightning currents[J],IEEE Transactions on Power Delivery, 2007,22(1):381-386
    [43] Choi J.K.,AhnY.H.,Woo J.W.,et al.Evaluation of grounding performance of energized substation by ground current measurement[J],Electric Power Systems Research, 2007,77(11):1490-1494
    [44] IEEE Std80-2000, IEEE guide for safety in AC substation grounding [S].NewYork: IEEE ,2000
    [45]谢广润.电力系统接地技术[M],北京:水利电力出版社,1991
    [46]文习山.接地体接地参数的数值计算与模拟实验[D],武汉水利电力大学硕士学位论文,1985
    [47] Lan Wei,Wen Xishan.Effective grounding resistance measurement system of large grounding grid[C],Proceedings of the 1st International Conference on Insulation Condition Monitoring of Electrical Plant, Sep.,2000, Wuhan, China,p300-302
    [48] Jiansheng Yuan, Huina Yang, Liping Zhang, Simulation of Substation Grounding Grids with Unequal-Potential[J], IEEE Transactions on Magnetics, 2000, 36(4): 1468-1471
    [49] Li Zhong-Xin,Fan Jian-Bin.Numerical calculation of grounding system in low-frequency domain based on the boundary element method[J],International Journal for Numerical Methods in Engineering, 2008,73(5):685-705
    [50]颜怀梁,陈先禄,李定中等.接地计算方法及应用不均匀网孔改善地网电位分布的计算研究[J],重庆大学学报,l985,4:130-139
    [51] L. Huang, Chen X.L, Yan H. Study of Unequally Spaced Grounding Grids[J], IEEE Transactions on Power Delivery, 1995, 10(2): 716-722
    [52] HeJinliang,GaoYanqing,Zeng Rong,etal.Optimal design of grounding system considering the influence of seasonal frozen soil layer[J],IEEE Transactions on Power Delivery, 2005,20(1):107-115
    [53] He Jinliang, YuGang; Yuan Jingping , etal.Decreasing grounding resistance of substation by deep-ground-well method[J],IEEE Transactions on Power Delivery, 2005, 20(2):738-744
    [54] Zeng Rong, He Jinliang, Lee Jaebok,et al.Influence of overhead transmission line on grounding impedance measurement of substation[J],IEEE Transactions on Power Delivery, 2005, 20(2):1219-1225
    [55] ZengRong,Kang Peng,HeJinliang,et al. Lightning transient performance analysis of substation based on complete transmission line model of power network and grounding systems[J],IEEE Transactions on Magnetics, 2006, 42(4): 875-878
    [56] Zeng Rong,GongXuehai,He Jinliang,et al. Lightning impulse performances of grounding grids for substations considering soil ionization[J],IEEE Transactions on Power Delivery, 2008, 23(2):667-675
    [57]张波,崔翔,赵志斌等.大型变电站接地网的频域分析方法[J],中国电机工程学报, 2002,22(9):59-63
    [58]张波,崔翔,赵志斌等.计及导体互感的复杂接地网的频域分析方法[J],中国电机工程学报,2003,23(4):77-80
    [59] Chen Fan,Zhang Bo,He, Jinliang.Influence of coke bed on HVDC grounding electrode heat dissipation[J],IEEE Transactions on Magnetics, 2008, 44(6):826-829
    [60] Qi Lei,Cui Xiang,Zhao Zhibin,et al.Grounding performance analysis of the substation grounding grids by finite element method in frequency domain[C].12th Biennial IEEE Conference on Electromagnetic Field Computation, Miami, FL, United States, Apr., 2006, p1633052
    [61]张波.变电站接地网频域电磁场数值计算方法研究及其应用[D],华北电力大学博士学位论文,2003.
    [62]鲁志伟,陈慈营.任意形状接地网接地电阻的计算[J],中国电力,1994,3:19-20
    [63]鲁志伟,陈慈营.矩形地网跨步电压的计算[J],高电压技术,1996,22(1):12-14
    [64]潘文霞,陈慈营.地网接触电势和跨步电势的简化计算[J],中国电机工程学报,1990, 19(2):47-53
    [65]鲁志伟,陈慈营.矩形地网接触电压的计算[J],高电压技术,1997,23(3):46-48
    [66]鲁志伟.大型地网跨步电势的简化计算[J],高电压技术,1992,18(2):38-44
    [67]鲁志伟.双层土壤地网接地电阻的简化计算[J],高电压技术,1996,22(4):30-31
    [68]鲁志伟.大型接地网工频接地参数的计算和测量[D],武汉大学博士学位论文,2004.
    [69]中华人们共和国电力行业标准DL\T 621-1997,交流电气装置的接地[S],北京:中国电力出版社,1998.
    [70] P.R.Pillai,E.P.Dick.A Review on Testing and Evaluating Substation grounding systems[J],IEEE Transactions on Power Delivery,1992,7(l):53-61
    [71] F. Dawalibe, D. Mukhedkar, Optimum Design of Substation Grounding in Two-layer Earth Structure[J],IEEE Trans. Power Apparatus and Systems, 1975,94(2): 252-272
    [72]曾嵘,何金良,高延庆等.垂直双层土壤中测试电极布置对变电站接地电阻量测值的影响[J],电网技术,2000,242(10);36-39
    [73]曾嵘.高土壤电阻率地区发变电站接地技术研究[D],清华大学博士学位论文,1999
    [74]庄池杰,曾嵘,张波等.高土壤电阻率地区变电站接地网设计思路[J],高电压技术,2008,34 (5):893-897
    [75]于刚,邹军,郭剑等.基于矢量矩阵束方法的大型接地网暂态分析[J],清华大学学报(自然科学版),2004 ,44 (4):458-461
    [76]何金良,余绍峰,曾嵘.变电所附近地下构筑物对接地电阻测量的影响[J],高压电器,2004,40 (1):1-2
    [77]王晶晶,何金良,邹军.季节性冻土对变电站接地系统分流系数的影响[J],电网技术,2006,30 (2):41-45
    [78]窦鑫,何金良,曾嵘.变电所接地阻抗的感性分量分析[J],高压电器,2004,40(4):245- 246
    [79]ZengRong,HeJinliang,GuanZhicheng.Novel measurement system for grounding impedance of substation[J],IEEE Transactions on Power Delivery, 2006,21(2): 719-725
    [80]何金良,曾嵘,高延庆.电力系统接地技术研究进展[J],电力建设,2004,25(6):1-3
    [81]鲁志伟.双层土壤中接地极接地电阻的量测[J],电网技术,1998,22(5):56-58
    [82]鲁志伟,常树生,东方等.引外接地对降低接地网接地阻抗的作用分析[J],高电压技术,2006,32 (6):119-121
    [83]付龙海,吴广宁,王颢.青藏铁路接地网设计中的遗传优化神经网络[J],高电压技术,2006,32 (5):90-92
    [84]付龙海,吴广宁,王灏等.青藏铁路格拉段变电站立体接地网的分析研究[J],高电压技术,2005,31(3):28-30.
    [85]付龙海,吴广宁,王灏等.用于青藏铁路格拉段接地系统的新型装置[J],铁道学报,2006,28(2):44-47
    [86]肖如泉,何金泉.高电压试验工程[M].北京:清华大学出版社,2001
    [87]周文俊,文习山,汪广武等.有效消除地网干扰的接地电阻变频测量法[J],高电压技术,1998,24(3):51-53
    [88]陈鹏云,刘晋,吴伯华等.大型地网接地电阻异频测量方法[J],高电压技术,2002,28(6): 46-47
    [89]张丹丹,尹小根,陈俊武等.多电极布置法测量接地电阻[J],高电压技术,2002,28(5): 19-20
    [90]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007
    [91]陈先禄.接地[M].重庆:重庆大学出版社,2002
    [92]王洪泽,杨丹,王梦云.电力系统接地技术手册[M].北京:中国电力出版社,2007
    [93] Zhang Bo, Zhao Zhibin, Cui Xiang et al. Diagnosis of breaks in substation’s grounding grid byusing the Electromagnetic method[J]. IEEE Trans on Magnetic,2002, 38(2): 473-476
    [94]刘洋,崔翔,卢铁兵.变电站接地网的断点诊断方法[J].电网技术,2008,32(2):21-25
    [95]刘庆珍,蔡金锭.电力系统接地网故障的无伤检测方法[J].高电压技术, 2003,29 (6): 47-51
    [96] Hu Jun, Zhang Rong, He Jinliang. Novel method of corrosion diagnosis for grounding grid[C].Proceedings of the 2000 International Conference on Power System Technology, Perth, Australia, 2000, 3: 1365-1370
    [97]张晓玲,陈先禄.优化技术在发、变电所接地网故障诊断中的应用[J].高电压技术, 2000, 26(4): 64-66
    [98]张晓玲,黄青阳.电力系统接地网故障诊断[J].电力系统及其自动化学报, 2002, 14(1) : 48-51
    [99]刘渝根,滕永禧,陈先禄.接地网腐蚀的诊断方法研究[J].高电压技术, 2004, 30(6): 19-21
    [100]刘渝根,滕永禧,陈先禄.接地网导体状态的诊断方法[J].重庆大学学报, 2004,27(2):92-95
    [101]王硕,刘渝根,游建川.大型接地网腐蚀优化诊断[J].重庆大学学报,2006, 29(8): 33-35
    [102]刘渝根,吴立香,王硕.大中型接地网腐蚀优化诊断实用化分析[J].重庆大学学报2008,31(4): 417-420.
    [103]黄文武,文习山,朱正国.接地网腐蚀与断点诊断软件系统的开发[J].高电压技术, 2005, 31(7): 42-44
    [104]何智强,文习山,潘卓洪.一种地网腐蚀故障诊断的新算法[J].高电压技术, 2007, 33(4): 83-87
    [105]刘健,王建新,王森.一种改进的接地网故障诊断算法及测试方案评价[J].中国电机工程学报, 2005, 25(3):71-77
    [106]刘健,王建新,王森.测量误差对接地网故障诊断影响的分析[J].高电压技术,2006,32 (4):95-110
    [107] Liu Jian,Wang Jianxin,Wang Sen.A Corrosion Diagnosis Approach for Grounding Grids Based on Tabu Search Algorithm[C]. Proceding of 2006 International Conference on Machine Learning and Cybernetics 2006:1088-1091
    [108]陕西省电力科学研究院技术报告XDY/KF-09-02-2004.变电站地网缺陷综合诊断系统的研制[R],陕西省电力科学研究院,2006
    [109]付龙海,吴广宁,王颢,青藏铁路变电站接地网腐蚀断裂点的判断[J].电力系统及其自动化学报,2006,18(1): 20-23
    [110]江修波.接地网故障诊断的一种新方法[J].福州大学学报, 2005, 33(6):749-752.
    [111]王萍,刘浔.变电站地网故障诊断理论与实验方法[J].水电能源科学, 2006, 24(3): 79-81
    [112]彭珑,郭洁,李晓峰.微量处理法在变电站接地网腐蚀诊断中的应用[J].高电压技术, 2007, 33(7):199-202
    [113]王福胜,张可村,申培萍.电力系统中地网腐蚀诊断的一种新的数学模型及其仿真计算[J].高校应用数学学报, 2007,22(2):141-152
    [114]郭林.接地装置腐蚀故障诊断实例[J] ,西北电力技术,2003.6:71-72
    [115]黄立虹.接地网上各引下节点间电阻值的测量及故障诊断[J],广东电力,2007,20(7): 13-15.
    [116]王建新,刘健,王树奇等.基于蒙特卡罗的接地网故障诊断可测性分析[J].电测与仪表, 2008,45(506):53-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700