用户名: 密码: 验证码:
介孔材料SBA-15负载钯催化剂的制备、表征及其在Heck反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有机合成中,钯催化的Heck反应是合成碳—碳键的实用方法,受到人们广泛关注。传统的Heck反应催化剂主要是Pd(OAc)_2、PdCl_2等均相催化剂,尽管这类催化剂活性较高,但它们很难从反应体系中分离和回收再用,高温下稳定性差,这些因素严重影响了Heck反应的工业应用。负载型钯催化剂,因有可能克服这些缺点,而得到了人们的重视。其中,介孔材料负载金属催化剂由于稳定性高、腐蚀性小、易从反应体系中分离回收、可重复使用、具有较高的催化活性和立体选择性,而受到了催化界工作者的关注。SBA-15介孔分子筛是具有较大比表面积、规整孔道结构的新型有序介孔硅材料,在催化和吸附分离等领域具有很好的应用前景。本文旨在将钯颗粒组装在SBA-15介孔分子筛孔道中,制备钯活性组分高度隔离和分散的新型催化剂,掌握钯颗粒在SBA-15介孔分子筛孔中的组装方法,研究SBA-15介孔分子筛中负载钯颗粒的结构特征,探索催化剂的结构与催化活性的关系。
     首先,利用传统离子交换法制备Pd/SBA-15复合材料。通过调节碱性钯阳离子的pH值,得到具有高达5.21 wt%金属负载量的复合物。金属前驱物的嵌入效率达到65%以上,这种制备方法比较简单、有效。该催化剂在空气中对活性卤代苯Heck反应具有较高的催化活性,高产率生成一系列反式产物,均在1-3 h内完成反应。催化剂的稳定性较好,可循环使用,是活性卤代苯Heck反应的高效催化剂,具有一定的应用前景。
     利用双氨基修饰法制备具有高负载量的和高分散度的钯负载SBA-15复合材料(Pd-SBA-15)。首先采用表面接枝法,以氨乙基氨丙基三甲氧基硅烷(ATMS)来修饰SBA-15;被修饰过的介孔材料在氯化钯溶液中吸附钯离子,后用水合肼还原钯离子。复合物的钯含量是4.30 wt%,钯的分散度为35%。对复合物中合适的胺基/Pd比率对Heck反应活性及溶液中钯残留的研究,发现N/Pd为2/1时起催化活性最强,钯的残留量较小。通过催化剂的Heck反应,发现这种复合物不仅对于活性卤代苯有很高的催化活性,而且对于溴苯这种活性较差的卤代烃也有较高的催化活性。催化剂通过简单的分离洗涤,可以重复使用多次。对已经重复使用的催化剂表征发现其活性下降是由于在反应过程中钯的损失和反应过程中钯分散度的少许降低(七次使用后的催化剂钯分散度降低为28%)。
     采用两步法,在表面活性剂存在下先生成钯纳米颗粒,钯颗粒尺寸在6-10 nm之间,然后以包裹了钯颗粒的表面活性剂为模板剂生成介孔SBA-15复合物。对复合物进行表征发现6-10 nm的钯颗粒均匀的分散于介孔材料的孔道中。虽然这种催化剂的钯的分散度不高(17%),但是其表面积和孔体积较大,其催化活性仍然较高。通过催化剂的Heck反应,发现这种复合物不仅对于活性较大的碘苯,而且在催化剂用量增加下,对于溴苯这种活性较差的卤代烃也有较高的催化活性。对催化剂催化Heck反应的机理进行了探讨,发现催化剂确实为非均相催化剂。
     采用原位生成法,生成SBA-15-Pd复合物。将厌水性的钯有机物氯仿溶液增溶于介孔材料生成所必需的表面活性剂胶束中,然后将预水解的正硅酸乙酯加入表面活性剂溶液中。水热反应后,将产物过滤、干燥、煅烧,氢气还原后生成单分散的钯颗粒嵌入介孔材料SBA-15孔道中。大于85%的金属前驱物嵌入到介孔材料孔道中。在小的金属嵌入量下(1.46 wt%),介孔材料的骨架没有被破坏;而在高含量下(3.02 wt%),介孔材料骨架遭到一定程度的破坏。对小的金属嵌入量的催化剂(1.46wt%)进行表征发现钯颗粒均匀分散于介孔材料孔道中,而且在介孔材料外部没有发现钯颗粒。通过Heck反应,发现这种复合物不仅对于活性较大的碘苯,而且在催化剂用量较少的情况下,对于溴苯这种活性较差的卤代烃也有较高的催化活性。催化剂的可以重复利用很多次。
     总体比较所制得的催化剂的结构和催化活性发现,影响催化剂活性的因素很多,诸如钯的分散度,催化剂的孔体积和比表面积等。
Palladium-catalyzed Heck reactions have received considerable attention in recent years, as they offer a versatile method for the generation of new C-C bonds in organic synthesis. These reactions are normally carried out with the homogeneous palladium catalyst such as Pd(OAc)_2 and PdCl_2. These catalysts have high catalytic activity for Heck reactions; however, they suffer from severe problems related with the separation, recovery, and the instability of the homogeneous catalysts at high temperatures. These problems have so far precluded the wide industrial applications of Heck reactions. These problems can be solved, however, by the use of heterogeneous catalysts made up of supported-palladium catalysts. Among the supported-palladium catalysts, palladium supported on mesoporous silica is a more catalytically active, selective, and stable catalyst. At the same time, they can be easily recycled and have little causticity for equipments. For these reasons, palladium supported on mesoporous silica has always attacted great attention. SBA-15, a kind of mesoporous silica with large surface area and uniform hexagonal channels, has attracted considerable attention due to its potential applications in catalysis and adsorption. In this work, the preparations of well dispersed and isolated Pd nanoparticles in SBA-15 mesoporous silica are described with four different synthesis methods such as ion-exchange method, diamine functional method, two-step method, and in-situ formation method. The formation mechanism and structure characteristics of Pd nanoparticles encapsulated in SBA-15 as well as the relationship between catalysts structure and catalytic activity were investigated.
     First, Pd nanoparticles supported on mesoporous silica SBA-15 (or Pd/SBA-15 nanocomposites) were prepared by traditional ion-exchange method with cationic Pd precursor in an alkaline solution. The high Pd loading in these nanocomposites can be achieved up to 5.21 wt% by adjusting the pH value of the solution. Using this method higher than 65% of the Pd precursor in the solution was incorporated into the mesoporous SBA-15. Therefore, this method is simple and highly effective for the preparation of Pd nanoparticles encapsulated in SBA-15. The Pd/SBA-15 nanocomposites exhibit excellent catalytic activities for the Heck reactions of actived aryl halide in air. The resulting trans-isomers were obtained in high yield at 1-3 h. The catalyst is stable and can be recycled for many times. Therefore, the catalyst is highly effective and would have a potential in industrial applications.
     Pd supported on SBA-15 (or Pd-SBA-15) with high Pd loading and high Pd dispersion was prepared by functionalizing SBA-15 with [3-(2-aminoethyl aminopropyl)] trimethoxysilane, grafting palladium ions on the functionalized SBA-15, and reducing palladium ions in the functionalized SBA-15 with hydrazine hydrate. The Pd-SBA-15 nanocomposite has a Pd loading of the 4.30 wt% and a Pd dispersion of 35%. The test of catalytic activity and Pd leaching as a function of N to Pd molar ratio shows the optimum N/Pd molar ratio is 2:1. The catalyst with controlled molar ratio of amino groups to palladium provides excellent catalytic activity for Heck reactions not only for activated aryl halides but also for non-activated aryl halide in air. The recycling reaction shows that the catalyst can be reused many times by simple filtration. The catalyst shows low Pd leaching and a little decrease in metal dispersion (the Pd dispersion of 28% for the used catalyst recovered from the seventh run) during the reaction which cause the little decrease in its catalytic activity during the recycling test.
     Pd/SBA-15 was prepared by a two-step method using the Pd nanoparticle-copolymer unit as a template. Pd nanoparticles of 6-10 nm in size have been synthesized by formalin reduction and incorporated into mesoporous SBA-15 silica during hydrothermal synthesis. The characterizations of the Pd nanoparticles encapsulated in mesoporous silica (Pd/SBA-15) reveal that the Pd nanoparticles in the range of 6-10 nm are encapsulated within the surfactant micelles during mesoporous silica formation and well dispersed within the mesoporous SBA-15 channels. The catalytic activity of Pd/SBA-15 was investigated in Heck coupling reactions with activated and non-activated aryl substrates. Although the Pd dispersion of Pd/SBA-15 is low (17%), its surface area and pore volume are high; they also show relatvley high catalytic activity in Heck reactions. The Pd/SBA-15 composites exhibit an excellent catalytic activity for activated iodobenzene. Moreover, they also show high activity for non-activated bromobenzene when more catalyst is used. The mechanism of the heterogeneous Heck reactions was investigated; the catalyst follows a heterogeneous pathway.
     Palladium-containing SBA-15 (SBA-15-Pd) was synthesized via an in-situ formation approach. In this procedure, hydrophobic Pd(acac)2 chloroform solution was solubilized in the triblock copolymer micelles. Then the prehydrolysised TEOS was mixed with the surfactant solution. After the hydrothermal reaction, the as-synthesized sample was filtrated, dried, and calcinated. The resulting sample (SBA-15-Pd) was obtained by reduction with H_2 gas. A total of above 85% of the Pd precursor is incorporated in the porous host matrix. A 1.46 wt% metal loading is achieved without the loss of pore ordering, while sample with 3.02 wt% loading shows a less ordered structure. Highly dispersed and uniform Pd nanoparticles are confined in the hexagonal channels and no outside large particles are found by the characterizations of SBA-15-Pd (1.46 wt% metal loading). The SBA-15-Pd nanocomposites exhibit an excellent catalytic activity not only for actived aryl halide but also for non-actived bromo-benzene using less catalyst. They also show high reuse ability in air for the Heck reactions.
     Comparison with the structure and catalytic activity of all the prepred catalysts, we find there are many factors to affect the catalytic activity of the catalysts such as Pd dispersion, the pore volume and surface area of catalysts.
引文
[1]闵恩泽。21世纪石油化工催化材料的发展和对策[J]。石油与天然气化工,2001,29:215-220。
    [2]Bharat L N,Nettern V C,Prakash K.Exploring the potential of mesoporous silica,SBA-15,as an adsorption for light hydrocarbon seperation[J].Chem Mater,2002,14:304-309.
    [3]Bharat L N,Nettem V C,Uday T.Pontential adsorbent for light hydrocarbon separation:role of SBA-15 Framework porosity[J].Chem Mater,2003,15:1474-1479.
    [4]Heck R F.Palladium-catalyzed reactions of organic halides with olefins[J].Acc Chem Res,1979,12:146-151.
    [5]Mizoroki T,Mori K,Ozaki A.Arylation of olefin with aryl iodide catalyzed by palladium[J].Bull Chem Soc Jap,1971,44:581-583.
    [6]Dieck H A,Heck R F.Palladium-catalyzed conjugated diene synthesis from vivylic halides and olefinic compands[J].J Org Chem,1975,40:1083-1090.
    [7]Kim J-L I,Patel B A,Heck R F,Palladium-catalyzed synthesis of 2,3-dienoic acid derivatives from vivylic halides[J].J Org Chem,1981,46:1067-1073.
    [8]Bendar D D,Stakem F G,Heck R F.Palladium-catalyzed arylation and vinylation of 1,4-dienes[J].J Org Chem,1982,47:1278-1284.
    [9]Heck R F.Palladium-catalyzed vinylation of organic halides[J].Org React,1982,27:345-357.
    [10]Abramovitch R A,Barton D H R,Finet J P.Newer methods of arylation[J].Tetrahedron,1988,44:3039-3071.
    [11]Zapf A,Beller M.fine chemical synthesis with homogeneous palladium catalysts: examples,status and trends[J].Topic in Catalysis,2002,19:101-109.
    [12]Savoia D,Trombini C,Umani-Ronchi A,Giancarlo V.Active metals from potassium-graphite.Palladium-graphite as catalyst in the hydrogenation of nitro compounds,alkenes,and alkynes[J].J Chem Soc,Chem Commun,1981,11:540-541.
    [13]Savoia D,Trombini C,Umani-Ronchi A,Giancarlo V.Active metals from potassium-graphite.Palladium-graphite-catalyzed vinylic substitution reactions[J].J Chem Soc,Chem Commun,1981,11:541-542.
    [14]Hallberg A,Westfelt L.Palladium on charcoal-catalyzed arylation of methyl vinyl ether with 4-bromonitrobenzene[J].J Chem Soc,Perkin Transactions 1:Organic and Bio-Organic Chemistry,1984,933-935.
    [15]Bhanage B M,Arai M.Catalyst product separation techniques in Heck reaction[J].Catal Rev,2001,43:315-344.
    [16]Mori K,Mizoroki T,Ozaki A.Arylation of olefin with iodobenzene catalyzed by Palladium[J].Bull Chem Soc Jap,1973,46:1505-1508.
    [17]Julia M,Duteil M.Condensation of aromatic halides with olefins catalyzed by palladium(0)[J].Bull Soc Chim Fran,1973,(9-10,Pt.2):2790-2791.
    [18]Julia M,Duteil M.Condensation of aromatic chlorides with olefins catalyzed by palladium[J].Bull Soc Chim Fran,1973,(9-10,Pt.2):2791-2794.
    [19]Johannes G.The Heck reaction in the production of fine chemicals[J].Can J Chem,2001,79:1086-1092.
    [20]Kohler K,Heidenreich R G,Krauter J G E,Pietsch J.Highly active palladium/activated carbon catalysts for Heck reaction:correlation of activity,catalyst proprties and Pd leaching[J].Eur J Chem,2002,8:622-631
    [21]Zhao F Y,Shirai M,Ikushima Y,Aral M.The leaching and re-deposition of metal species from amd onto conventional supported palladium catalysts in the Heck reaction of iodobenzene and methyl acrylate in N-methylpyrrolide[J].J Mol Catal A:Chem,2002,180:211-219
    [22]Zhao F Y,Shirai M,Arai M,Muakami K.Recyclable homogeneous/heterogeneous catalytic systems for Heck reaction through reversible transfer of palladium species between solvent and support[J].J Catal 2000,194:479-483.
    [23]Hagiwara H,Shimizu Y,Hoshi T,Suzuki T,Ando M,Ohkubo K,Yokoyama C.Heterogeneous Heck reactiont catalyzed by Pd/C in ionic liquid[J].Tetrahedron Lett,2001,42:4349-4351
    [24]Ambulgekar G V,Bhanage B M,Samant S D.Low temperature recyclable catalyst for Heck reactions using ultrasound[J].Tetrahedron Lett,2005,46:2483-2485.
    [25]Walter J,Dyker C,Hara S,Shioyama H,Heiemlann J.Hexagonal or quasi two-dimensional palladium nanoparticles-tested at the Heck reaction[J].J Catal,2000,189:449-455.
    [26]Mehnert C P,Ying J Y,Weaver D W.Heterogeneous Heck catalysis with palladium-grafted molecular sieves[J].J Am Chem Soc,1998,120:12289-12296.
    [27]Venkatesan C,Singh A P.New aliphatic C-metallated palladacycle in the pores of 3-hydroxypropyltriethoxysilane functionalized MCM-41[J].Catal Lett,2003,88:193-197.
    [28]周健民,周仁贤,郑小明,介孔MCM-41分子筛钯配合物催化Heck反应的性能[J]。化学通报,2002,7:472-475.
    [29]Choudary B M,Sarma R M,Rao K K.A highly active and stereoselective montmorillonite catalyst for arylation of conjugated alkenes[J].Tetrahedron,1992,48:719-726.
    [30]Ramchandani R K,Uphade B S,Vinod M P,Wakharkar R D,Choudhary V R,Sudalai A.Pd-Cu-exchanged montmorillonite K10 clay:an efficient and reusable heterogeneous catalyst for vinylation of aryl halides[J].Chem Commun,1997,2071-2072.
    [31]Varma R S,Naicker K P,Liesen P J.Palladium chloride and tetraphenylphosphonium bromide intercalated clay as a new catalyst for the Heck reaction[J].Tetrahedron Lett,1999,40:2075-2078.
    [32]Poyatos M,Marquez F,Peris E,Claver C,Fernandez E.Preparation of a new clay-immobilized highly stable palladium catalyst and its efficient recyclability in the Heck reaction[J].New J Chem,2003,27:425-431.
    [33]K(o|¨)hler K,Wagner M,Djakovitch L.Supported palladium as catalyst for carbon-carbon bond construction(Heck reaction) in organic synthesis[J].Catal Today,2001,66:105-114.
    [34]Biffis A,Zecca M,Basato M.Palladium metal catalysts in Heck C-C coupling Reactions[J].J Mol Catal A:Chem,2001,173:249-274.
    [35]Davies I W,Matty L,Hughes D L,Reider P J.Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts[J].J Am Chem Soy,2001,123:10139-10140.
    [36]Bennur T H,Ramani A,Bal R,et al.Palladium(Ⅱ) containing hydrotalcite as an efficient heterogeneous catalyst for Heck reaction[J].Catal Commun,2002,3: 493-496.
    [37]Djakovitch L,Koehler K.Heck Reaction Catalyzed by Pd-Modified Zeolites[J].J Am Chem Soc,2001,123:5990-5999.
    [38]Corma A,Garcia H,Leyva A,Primo A.Basic zeolites containing palladium as bifunctional heterogeneous catalysts for the Heck reaction[J].Appl Catal A:General,2003,247:41-49.
    [39]Corma A,Garcia H,Leyva A,Primo A.Alkali-exchanged sepiolites containing palladium as bifunctional(basic sitesand noble metal) catalysts for the Heck and Suzuki reactions[J].Appl Catal A:General,2004,257:77-83
    [40]Choudary B M,Kantam M L,Reddy N M,Gupta N M.Layered-double-hydroxide-supported Pd(TPPTS)_2Cl_2:a new heterogeneous catalyst for Heck arylation of olefins[J].Catal Lett,2002,82:79-83.
    [41]Lt J T,Man A W H,Strauss C R.The use of palladium on porous glass for catalytic coupling reactions[J].Chem Commun 1997,1275-1276.
    [42]Andersson C M,Karabelas K,Hallberg A.Palladium/phosphinated polystyrene as a catalyst in the Heck arylation.A comparative study[J].J Org Chem,1985,50:3891-3895.
    [43]Jang S B.Polymer-bound palladium-catalyzed coupling of allylic alcohols with hypervalent iodonium salts[J].Tetrahedron Lett,1997,38:4421-4424.
    [44]Wang P W,Fox M A.A polymer-bound bidentate-phosphine-palladium complex as a catalyst in the Heck arylation[J].J Org Chem,1994,59:5358-5364.
    [45]Schwarz J,Volker P W,B(o|¨)hm D,Michael G G,Mania G,Wolfgang A H,Wolfgang H,Gabriele R,N-heterocyclic carbenes,Part 25 polymer-supported carbene complexes of palladium:well-defined,air-Stable,recyclable catalysts for the Heck reaction[J],Chem Eur J,2000,6:1773-1780.
    [46]Lin C A,Luo F T.Polystyrene-supported recyclatde palladacycle catalyst for Heck,Suzuki ands onogashira reactions[J].Tetrahedron Lett,2003,44:7565-7568.
    [47]Kim J H,Jun B H,Lee Y S,et al.N-Heterocyclic carbene-palladium complex on polystyrene resin surface as polymer-supported catalyst and its application in Suzuki cross-coupling reaction[J].Tetrahedron Lett,2004,45:5827-5831.
    [48]Sonogashira K,Tohda Y,Hagihara N.A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes,iodoarenes and bromopyridines[J].Tetrahedron Lett,1975,16:4467-4470.
    [49]张磊,崔元臣。淀粉负载钯催化剂的制备及对Heck反应的催化性能[J]。应用化学,2005,22:440-444。
    [50]崔元臣,张磊。田著胶负载钯催化Heck反应的研究[J]。高分子学报,2005,3:423-426。
    [51]Cui Y C,Zhang L Polyvinyl chloride-polyethylene-polyamine supported palladium complexes as high efficient and recyclable catalysts for Heck reaction[J].J Mol Catal A;Chem,2005,237:120-125.
    [52]Gniewek A,Trzeciak A M,Tylus W,et al.Pd-PVP colloid as catalyst for Heck and carbonylation reaction:TEM and XPS studies[J].J Catal,2005,229:332-343.
    [53]Kiviaho J,Hanaoka T,Kubota Y,Sugi Y Heterogeneous palladium catalysts for Heck reaction[J].J Mol Catal A:Chem,1995,101:25-31.
    [54]Lagasi M,Moggi P.Anchoring of Pd on silica funetionalized with nitrogen containing chelating groups and applications in catalysts[J].J Mol Catal A:Chem,2002,182-183:61-72.
    [55]蔡明中,徐曲,宋才生。有机硅聚合物负载环硫乙烷钯(0)配合物的合成与催化性能[J]。高分子学报,1999,19:540-544。
    [56]蔡明中,赵红,黄义争,有机硅聚合物负载双齿硒钯配合物的合成与催化性[J]。高分子学报,2002,22:530-532。
    [57]蔡明中,赵红,黄义争。聚-4-氧杂-6,7-二甲硒庚基硅氧烷钯(0)配合物的合成及其性能研究[J]。有机化学2003,23:555-558。
    [58]Cai M Z,Huang Y Z,Zhao H,Song C S.Silica-supported bidentate arsine palladium(0)complex:a highly active and stereoselective catalyst for arylation of conjugated alkenes [J].J.Organomet.Chem,2003,682:20-25.
    [59]Cai M Z,Huang Y Z,Zhao H,Song C S.Synthesis of silica-supported polyx -diphenylarsinopropylsiloxane palladium(0) complex and its catalytic properties for Heck arylation of conjugated alkenes[J].React Funct Polymer,2004,59:81-89.
    [60]Bhanage B M,Fujita S I,Arai M.Heck reaction with various types of palladium complex catalysts:application of multiphase catalysis and supercritical carbidioxide[J].J Organmet Chem,2003,687:211-218.
    [61]Yeung L K,Jaohnston K P,Richard M,Crooks R M.Catalysis in supercritical CO_2using dendrimer-encapsulated palladiumnanoparticles[J].Chem Commun,2001,2290-2291
    [62]Early T R,Gordon R S,Carroll M A,et al.Palladium-catalysed cross-coupling reactions in supercritical carbon dioxide[J].Chem Commun,2001,1966-1967.
    [63]Zhang R,Zhao F Y,Sato M,Ikushima Y Noncatalytic Heck coupling reaction using supercritical water[J].Chem Commun,2003,1548-1549.
    [64]Zhang R,Sato O,Sato M.Ikushima Y.Heck coupling reaction of iodobenzene and styrene using supercritical water in the absence of a catalyst[J].Chem Eur J,2004,10:1501-1506.
    [65]Deshrnukh R R,Rajagopal R,Srinivasan K V.Ultrasound promoted C-C bond formation:Heck reaction at ambient conditionsin room temperature ionic liquids[J].Chem Commun,2001,1544-1545
    [66]Calo V,Nacci A,Monopoli A.Regio- and stereo-selective carbon-carbon bond formation in ionic liquids[J].J Mol Catal A:Chem,2004,214:45-56.
    [67]Xie X G,Lu J P,Pan X F,et al.Pd/C-catalyzed beck reaction in ionic liquid accelerated by microwave heating[J].Tetrahedron Lett,2004,45:809-811.
    [68]Klingelh(o|¨)fer S,Heitz W,Greiner A,et al.Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the Heck reaction[J].J Am chem Soc,1997,119:10116-10120.
    [69]Cassol C C,Umpierre A P,Machado G,et al.The role of Pd nanoparticles in ionic liquid in Heck reaction[J].J Am Chem Soc,2005,127:3298-3299
    [70]Belier M,Fischer H,K(u|¨)hlein K,Reisinger C P,Herrmnann W A.First palladium-catalyzed Heck reaction with efficient colloidal catalyst systems[J].J Organomet Chem,1996,520:257-259.
    [71]Luo C C,Zhang Y H,Wang Y G.Palladium nanoparticles in Poly(ethyleneglycol):the efficient and recyclable catalyst for Heck reaction[J].J Mol Catal A:Chem,2005,229:7-12.
    [72]Stambuli J P,Stauffer S R,Shaughnessy K H,Hartwig J F.Screening of homogeneous catalysts by fluorescence resonance emergy transfer:identification of catalysts for room-temperature Heck reactions[J].J Am Chem Soc,2001,123:2677-2678.
    [73]IUPAC manual of symbols and terminology[J].Pure Appl Chem 1972,31:578-638.
    [74]陈逢喜,黄茜丹,李全芝。中孔分子筛进展[J]。科学通报。1999,44:1905-1907。
    [75]Beck J S,VartUli J C,Roth W J,Leonowicz M E,Kresge C T,Schmitt K D,Chu C.T W,Olson D H,Sheppard E W,McCullen S B,Higgins J B,Schlenkert J L.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J Am Chem Soc,1992,114:10834-10843.
    [76]Kresge C T,Leonowicz M E,Roth W J,VartUli J C,Beck J S.Ordered mesoporous molecular sieves synthesized by a liquid template mechanism[J].Nature,1992,359:710-712.
    [77]徐如人,庞文琴。分子筛与多孔材料化学[M]。北京:科学出版社,2004:563。
    [78]Cai Q,Lin W Y,Xiao FS,Pang W Q,Chen Xi H,Zou B S.The preparation of highly ordered MCM-41 with extremely low surfactant concentration[J].Micropor Mesopor Mater,1999,32:1-15.
    [79]Monnier A,Scuth F,Huo Q S,Kumar D,Margolese D,Maxwell R S,Stucky G D,Krishnamurty M,Petroff P,Firouzi A,Janicke M,Chmelka B F.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure[J].Science 1993,261:1299-1303.
    [80]Zhao D,Feng J,Huo Q,Melosh N,Fredrickson G H,Chmelka B F,Stocky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300angstrom pores[J].Science,1998,279:548-552.
    [81]Zhao D.Huo Q,Feng J.Chmelka B F,Stucky G D.Nonionic triblock and star diblock copolyer and oligomeric surfactant syntheses of highly ordered,hydrothermally htable,mesoporoous silica structures[J].J Am Chem Soc,1998,120:6024-6036.
    [82]Zhao D Y,Sun J Y,Li Q Z,Stucky G D.Morphological control of highly ordered mesoporous silica SBA-15[J].Chem Mater,2000,12:275-279.
    [83]Morishige K,Tateishi N,Fukuma S.Capillary condensation of nitrogen in MCM-48and SBA-16[J].J Phys Chem B,2003,107:5177-5181.
    [84]Sakamoto Y H,Kaneda M,Terasaki O.Direct imaging of the pores and cages of three-dimensional mesoporous materials[J].Nature 2000,408:449-553.
    [85]Tanev P T,Pinnavaia T J.A neutral templating route to mesoporous molecular sieves [J].Science,1995,267:865-867.
    [86]Tanev P T,Pinnavaia T J.Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:a comparison of physical properties[J].Chem Mater,1996,8:2068-2079.
    [87]Huo Q S,Margolese D I,Ciesla U,Feng P,Gier T,Sieger P,Leon R,Petroff P M,Schiith F,Stucky G D.Generalized synthesis of periodic surfactant/inorganic composite material[J].Nature,1994,368:317-321.
    [88]Inagaki S,Fukushima Y,Kuroda K.Synthesis of highly ordered mesoporous materials from a layered polysilicate[J].J Chem Soc Chem Commun,1993,680-682.
    [89]Goltner C G,Antonietti M.Mesoporous materials by templating of liquid crystalline phases]J].Adv Mater,1997,9:431-436.
    [90]Goiter C G,Henke S,Wessenberger M C.Mesoporous silica from lyotropic liquid crystal polyer templates[J].Angew Chem Int Ed,1998,37:613-616.
    [91]Huo Q,Leon R,Petroff P M,Stucky G D.Mesoporous design with germini surfactant:supercage formation in a 3-d hexagonal array[J].Science,1995,268:1324-1327.
    [92]Chen C Y,Burkett S L Li H X,Davis M E.Studies on mesoporous materials.Synthesis mechanism of MCM-41[J].Microporous Mater,1993,2:27-34.
    [93]Huo Q,Margolese D I,Ciesla U,Demuth D G,Feng P,Gier T E,Sieger P,Firouzi A,Chmelka B F,Schiith F,Stucky G D,Origanization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J].Chem Mater 1994,6:1176-1191.
    [94]徐如人,庞文琴。分子筛与多孔材料化学[M]。北京:科学出版社,2004:545。
    [95]Israelachvili J N,Mitchell D J,Ninham B W.Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers[J].J Chem Soc Faraday Trans,1976,72:1525-1568.
    [96]Huo Q S,Margolese D I,Stucky G D.Surfactant control of phase in the synthesis of mesoporous silcica-based materials[J].Chem Mater,1996,8:1147-1160.
    [97]Schmid G,Baumle M,Geerkens M,et al,Current and future applications of nanoclusters[J].Chem Soc Rev,1999,28:179-185.
    [98]Sawitowski T,Miquel Y,Heilmann A,Schmid G,Optical properties of quasi one-dimensional chains of gold nanoparticles[J].Adv Funct Mater,2001,11:435-440.
    [99]Mukherjee P,Patra C R,Ghosh A,et al,Characterization and catalytic activity of gold nanoparticles aynthesized by autoreduction of aqueous chloroaurate ions with fumed Silica[J].Chem Mater,2002,14:1678-1684.
    [100]Nishihata Y,Mizuki J,Akao T,et al,Self-regeneration of a Pd-perovskite catalyst for automotive emissions control[J].Nature,2002,418:164-167.
    [101]Moller K,Bein T.Inclusion chemistry in periodic mesoporous hosts[J].Chem Mater,1998,10:2950-2963.
    [102]Zhou W,Thomas J,Shephard D,Shephard S,Brian F G,Johnson,Ozkaya D,Maschmeyer T,Bell R G,Ge Q.Ordering of ruthenium cluster carbonyls in mesoporous silica[J].Science,1998,280:705-708.
    [103]Schweyer F,Braunstein P,Estournes C,Estournes C,Guille J,Kessler H,Paillaud J.Metallic nanoparticles from heterometallic Co-Ru carbonyl clusters in mesoporous silica xerogels and MCM-41-type materials[J].Chem Commun,2000,1271-1272.
    [104]Han Y J,Kim J M,Stucky G D.Preparation of noble metal nanowires Using Hexagonal Mesoporous Silica SBA-15[J].Chem Mater,2000,12:2068-2069.
    [105]Huang M,Choudrey A,Yang P.Ag nanowire formation within mesoporous silica[J].Chem Commun,2000,1063-1064.
    [106]Shin H J,Ryoo R,Liu Z,Terasaki O.Template Synthesis of Asymmetrically Mesostructured Platinum Networks[J].J Am Chem Soc,2001,123:1246-1247.
    [107]Kang H,Jun Y,Park J,Park J -I,Lee K -B,Cheon J,Synthesis of Porous Palladium Supedattice Nanoballs and Nanowires[J].Chem Mater,2000,12:3530-3532.
    [108]Lee K B,Lee S M,Cheon J.Size-Controlled Synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration[J].Adv Mater,2001,13:517-520.
    [109]Yang C,Sheu H,Chao K.Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48[J].Adv Funct Mater,2002,12:143-148.
    [110]Gurai Y,Thieuleux C,Mehde A,Reye C,Corriu R J P,Gomez-Gallardo S,Philippot K,Chaudret B.In situ formation of gold nanoparticles within thiol functionalized HMS-C_(16) and SBA-15 type materials via an organometallic two-step approach[J].Chem Mater,2003,15:2017-2024.
    [111]Fukuoka A.,Sakamoto Y.,Guan S,Inagaki S,Sugimoto N,Fukushima Y,Hirahara K,Iijima S,Ichikawa M.Novel Templating Synthesis of Necklace-Shaped Mono-and Bimetallic Nanowires in Hybrid Organic-Inorganic Mesoporous Material[J].J Am Chem Soc,2001,123:3373-3374.
    [112]Hornebecq V,Antonietti M,Cardinal T,Treguer-delapierre stable silver nanoparticles immobilized in mesoporous silica[J].Chem Mater,2003,15:1993-1999.
    [113]Yamada T,Zhou H S,Hiroishi D,Tomita M,Ueno Y,Asai K,Honma I.Platinum surface modification of SBA-15 by γ-Radiation Treatment[J].Adv Mater 2003,15:511-513.
    [114]Chen H R,Shi J L,Li Y S,Yan J-N,Hua Z-L,Chen H-G,Yan D-S.Anew method for the synthesis of highly dispersive and catalytically active platinum nanoparticles confined in mesoporous zirconia[J].Adv Mater,2003,15:1078-1081.
    [115] Dhepe P L, Fukuoka A, Ichikawa M. Preparation of highly dispersed RhPt alloy catalysts in mesoporous silica using supercritical carbon dioxide and selective synthesis of ethane in butane hydrogenolysis [J]. Chem Commun, 2003,590-591.
    [116] Crowley T A, Ziegler K J, Lyons D M, Erts D, Olin H, Morris M A, Holmes J D.Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous milica template [J]. Chem Mater, 2003,15:3518-3522.
    [117] Dieck H A, Heck R F. Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions [J]. J Am Chem Soc, 1974,96:1133-1136.
    [118] Bhanage B M, Arai M. Catalyst product separation techniques in Heck reaction [J].Catal Rev, 2001,43:315-344.
    [119] Haruta M. Nanoparticles can open a new world of heterogenous catalysis [J]. J Nanoparticle Res, 2003,5:3-4.
    [1]Zhao D,Sun J,Li Q,Stucky G D.Morphological Control of Highly Ordered mesoporous Silica SBA-15[J].Chem Mater,2000,12:275-279.
    [2]Cullity B D.Elements of X-ray diffraction[M].London:Addison-Wesley Publishing Company,1959:262.
    [3]Warren B E.X-Ray diffraction methods[J].JAppl Phys,1941,12:375-384.
    [4]Anderson J R.Structure of Metallic Catalysts[M],Academic Press,London,1975.
    [5]Hermans S,Wenkin M,Devillers M.Carboxylate-type palladium(Ⅱ) complexes as soluble precursors for the preparation of carbon-supported Pd/C catalysts[J],J Mol Catal A:Chem,1998,136,59-68.
    [6]姜恒,徐箔,廖世健,余道容。可溶高分子负载把催化剂对于硝基苯加氢反应催化性能的研究[J],石油化工,1996,11,757-761。
    [7]Mahata N,Vishwanathan V,Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts[J].J Catal,2000,196:262-270.
    [8]Ali S H,Goodwin J G,SSITKA investigation of palladium precursor and support effects on CO hydrogenation over supported Pd catalysts[J].J Catal,1998,176:3-13.
    [9]Panpranot J,Pattamakomsan K,Goodwin J G,Praserthdam P.A comparative study of Pd/SiO_2 and Pd/MCM-41 catalysts in liquid-phase hydrogenation[J].Catal Commun,2004,5:583-590.
    [1]Yang L M,Wang Y J,Luo G S,Dai Y Y.Simultaneous removal of copolymer template from SBA-15 in the crystallization process[J].Micropor Mesopor Mater,2005,81:107-114.
    [2]Asefa T,Lennox R B.Synthesis of gold nanoparticles via electroless deposition in SBA-15[J].Chem Mater,2005,17:2481-2483.
    [3]Schwarz J A,Contescu C,Contescu A.Methods for preparation of catalytic materials [J].Chem Rev,1995,95:477-510.
    [4]Bourikas K,Kordulis C,Lycourghiotis A.Differential Potentiometric Titration:Development of a Methodology for Determining the Point of Zero Charge of Metal (Hydr)oxides by One Titration Curve[J].Environ Sci Technol,2005,39:4100-4108.
    [5]Zhao D,Feng J,Huo Q,Melosh N,Fredrickson G H,Chmelka B F,Srucky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998,279:548-552.
    [6]Zhao D,Sun J,Li Q,Stucky G D.Morphological control of highly ordered mesoporous silica SBA-15[J].Chem Mater,2000,12:275-279.
    [7]Hua W,Yue Y,Z Gao.Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2[J].J Mol Catal A:Chem,2001,170:195-202.
    [8]Vradman L,Landau M V,Kantorovich D,Koltypin Y,Gedanken A.Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica[J].Micropor Mesopor Mater,2005,79:307-318.
    [1]Mandal S,Roy D,Chaudhari R V,Sastry M,Pt and Pd nanoparticles immobilized on amine-functionalized zeolite:excellent catalysts for hydrogenation and Heck reactions [J].Chem Mater,2004,16:3714-3724.
    [2]Yang C -M,Liu P -H,Ho Y -F,Chiu C -Y,Chao K -J.Highly dispersed metal nanoparticles in functionalized SBA-15[J].Chem Mater,2003,15:275-280.
    [3]Webb J D,MacQuarrie S,McEleney K,Crudden C M.Mesoporous silica-supported Pd catalysts:An investigation into structure,activity,leaching and heterogeneity[J].J Catal,2007,252:97-109.
    [4]Petkov N,Stock N,Bein T.Gold electroless reduction in nanosized channels of thiol-modified SBA-15 material[J].J Phys Chem B,2005,109:10737-10743.
    [5]Zhao S,Zhou R X,Zheng X M,Heterogeneous Heck reaction catalyzed by a series of amine-palladium(0) complexes[J].J Mol Catal A:Chem,2004,211:139-142.
    [6]Zhou J,Zhou R,Mo L,Zhao S,Zheng X.MCM-41 supported aminopropylsiloxane palladium(0) complex:a highly active and stereoselective catalyst for Heck reaction[J].J Mol Catal A:Chem,2002,178:289-292.
    [7]Gu J L,Shi J L,You G J,Xiong L M,Qian S X,Hua Z L,Chen H R.Incorporation of Highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response[J].Adv Mater,2005,17:557-560.
    [8]Zhu H,Lee B,Dai S,Overbury S H,Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles[J].Langmuir,2003,19:3974-3938.
    [9]Hao X -Y,Zhang Y -Q,Wang J -W,Zhou W,Zhang C,Liu S.A novel approach to prepare MCM-41 supported CuO catalyst with high metal loading and dispersion[J].Micro Meso Mater,2006,88:38-47.
    [10]Wang X,Chan J C C,Tseng Y -H,Cheng S,Synthesis,characterization and catalytic activity of ordered SBA-15 materials containing high loading of diamine functional groups[J].Micro Meso Mater,2006,95:57-65.
    [11]Zhao D,Feng J,Huo Q,Melosh N,Fredrickson G H,Chmelka B F,Srucky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300angstrom pores[J].Science,1998,279:548-552.
    [12]Mahata N,Vishwanathan V.Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts[J].J Catal,2000,196:262-270.
    [13] Ali S H, Goodwin J G, SSITKA investigation of palladium precursor and support effects on CO hydrogenation over supported Pd catalysts [J]. J Catal, 1998,176:3-13.
    [14] Panpranot J, Pattamakomsan K, Goodwin J G, Praserthdam P. A comparative study of Pd/SiO_2 and Pd/MCM-41 catalysts in liquid-phase hydrogenation [J]. Catal Commun,2004,5:583-590.
    
    [15] Anderson J R. Structure of metallic catalysts [M], Academic Press, London, 1975.
    [16] Mehnert C P, Weaver D W, Ying J Y. Heterogeneous Heck Catalysis with Palladium-Grafted Molecular Sieves [J]. J Am Chem Soc, 1998,120:12289-12296.
    [17] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Srucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279:548-552.
    [18] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J,Siemieniewska T. Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity [J]. Pure Appl Chem, 1985,57:603-619.
    [1]Haruta M.Nanoparticles can open a new world of hetergenous catalysis[J].J Nanoparticle Res,2003,5:3-4.
    [2]Puntes V F,Kannan K M,Alivisatos A P.Colloidal nanocrystal shape and size control:the case of cobalt[J].Science,2001,291:2115-2117.
    [3]Zhu J,K6nya Z,Puntes V F,Kiricsi I,Miao C X,Ager J W,Alivisatos A P,Somorjal G A.Encapsulation of metal(Au,Ag,Pt) nanoparticles into the mesoporous SBA-15structure[J].Langmuir,2003,19:4396-4401.
    [4]Zhao H,Zhou J,Luo H,Zeng C,Li D,Liu Y.Synthesis,characterization of Ag/MCM-41 and the catalytic performance for liquid-phase oxidation of cyclohexance [J].Catal Lett,2006,108:49-54.
    [5]Song H,Rioux R M,Hoefelmeyer J D,Komor R,Niesz K,Grass M,Yang P,Somorjai G A.Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles:synthesis,characterization,and catalytic properties[J]. J Am Chem Soc, 2006,128:3027-3037.
    [6] Gniewek A, Tizeciak A M, Tylus W, et al. Pd-PVP colloid as catalyst for Heck and carbonylation reaction: TEM and XPS studies [J]. J Catal, 2005,229:332-343.
    [7] Zhao D, Feng J, Huo Q, Melosh N, Frederickson G H, Chmelka B F, Stucky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279:548-552.
    [8] Konya Z, Puntes V F, Kiricsi 1, Zhu J, Alivisatos A P, Somorjai G A, Nanocrystal templating of silica mesopores with tunable pore sizes [J]. Nano Lett, 2002,2: 907-910.
    [9] Mahata N, Vishwanathan V, Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts [J]. J Catal,2000,196:262-270.
    [10] Ali S H, Goodwin J G, SSITKA investigation of palladium precursor and support effects on CO hydrogenation over supported Pd catalysts [J]. J Catal, 1998,176: 3-13.
    [11] Panpranot J, Pattamakomsan K, Goodwin J G, Praserthdam P. A comparative study of Pd/SiO_2 and Pd/MCM-41 catalysts in liquid-phase hydrogenation [J]. Catal Commun,2004,5:583-590.
    
    [12] Anderson J R. Structure of Metallic Catalysts [M], Academic Press, London, 1975.
    [13] Chytil S, Glomm W R, Vollebekk E, Bergem H, Walmsley J, Sjoblom J,. Blekkan E A.Platinum nanoparticles encapsulated in mesoporous silica: Preparation, characterisation and catalytic activityin toluene hydrogenation [J]. Micropor Mesopor Mater, 2005, 86:198-206.
    [14] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J,Siemieniewska T. Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity [J]. Pure Appl Chem, 1985,57: 603-619.
    [15] Davies L W, Matty L, Hughes D L, Reider P J. Are heterogeneous catalysts precursors to homogeneous catalysts? [J]. J Am Chem Soc, 2001,123:10139-10140.
    [16] Choudary B M, Madhi S, Kantam M L, Sreedhar B, Iwasawa Y, Synthesis of surface organopalladium intermediates in coupling reactions: The mechanistic insight [J]. J Am Chem Soc, 2002,126:2292-2293.
    [1]Panpranot J,Pattamakomsan K,Goodwin J G,Praserthdam P.A comparative study of Pd/SiO_2 and Pd/MCM-41 catalysts in liquid-phase hydrogenation[J].Catal Commun,2004,5:583-590.
    [2]Fukuoka A,Araki H,Sakamoto Y,Inagaki S,Fukushima Y,Ichikawa M.Palladium nanowires and nanoparticles in mesoporous silica templates[J].Inorg Chim Acta,2003,350:371-378.
    [3]Yuranov I,Moeckli P,Suvorova E,Buffat P,Kiwi-Minsker L,Renken A.Pd/SiO_2catalysts:synthesis of Pd nanoparticles with the controlled size in mesoporous silicas [J].J Mol Catal A:Chem,2003,192:239-251.
    [4]Li C,Zhang Q,Wang Y,Wan H.Preparation,Characterization and Catalytic Activity of Palladium Nanoparticles Encapsulated in SBA-15[J].Catal Lett,2008,120:126-136.
    [5]Li L,Zhang L -X,Shi J -L,Yan J -N,Liang J.New and efficient heterogeneous catalytic system for Heck reaction:palladium colloid layer in situ reduced in the channel of mesoporous silica materials[J].Appl Catal A:Gen,2005,283:85-89.
    [6]Mehnert C P,Weaver D W,Ying J Y.Heterogeneous Heck Catalysis with Palladium-Grafted Molecular Sieves[J].J Am Chem Soc,1998,120:12289-12296.
    [7]Lee K -B,Lee S -M,Cheon J.Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration[J].Adv Mater,2001,13:517-520.
    [8]Zhu J,Konya Z,Puntes I,Kiricsi V F,Miao C X,Ager J W,Alivisatos A P,Somorjai G A.Encapsulation of metal(Au,Ag,Pt) nanoparticles into the mesoporous SBA-15structure[J].Langmuir,2003,19:4396-4401.
    [9]Puntes V F,Kannan K M,Alivisatos A P.Colloidal nanocrystal shape and size control:the case of Cobalt[J].Science,2001,291:2115-2117.
    [10]Zhao H,Zhou J,Luo H,Zeng C,Li D,Liu Y.Synthesis,characterization of Ag/MCM-41 and the catalytic performance for liquid-phase oxidation of cyclohexane [J].Catal Lett,2006,108:49-54.
    [11]Krawiec P,Kockrick E,Simon P,Auffermann G,Kaskel S.Platinum-Catalyzed Template Removal for the in Situ Synthesis of MCM-41 Supported Catalysts[J].Chem Mater,2006,18:2663-2669.
    [12]Gu J,Shi J,Xiong L Chen H,Ruan M.Anew strategy to incorporate highly dispersed nanopartides into the pore channels of mesoporous sih'ca thin films [J]. Micro Meso Mater, 2004,74:199-204.
    [13] Ohtaki M, Inata K, Eguchi K. Selective Incorporation of Inorganic Precursors into the Channels of MCM-41 by Molecular Assembly Template as a Hydrophobic Carrier [J].Chem Mater, 1998,10:2582-2584.
    [14] Bronstein L, Kr(?)mer E, Berton B, Burger C, Forster S, Antonietti M. Successive use of amphiphilic block copolymers as nanoreactors and templates: preparation of porous sih'ca with metal nanopartides [J]. Chem Mater, 1999,11:1402-1405.
    [15] Jervis H B, Raimondi M E, Raja R, Maschmeyer T, Seddon J M, Bruce D W.Templating mesoporous silicates on surfactant ruthenium complexes: a direct approach to heterogeneous catalysts [J]. Chem Commun, 1999:2031-2032.
    [16] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Srucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279:548-552.
    [17] Cui X, Zin W-C, Choc W-J, Ha C-S, Nonionic triblock copolymer synthesis of SBA-15 above the isoelectric point of silica (pH = 2-5) [J]. Mater Lett, 2005, 59:2257-2261.
    [18] Minoofar P N, Hernandez R, Chia S, Dunn B, Zink J I, Franville A C. Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films [J]. J Am Chem Soc, 2002,124:14388-14396.
    [19] Bartl M H, Scott B J, Huang H C, Wirnsberger G, Popitsch A, Chmelka B F, Srucky G D. Synthesis and luminescence properties of mesostructured thin films activated by in-situ formed trivalent rare earth ion complexes [J]. Chem Commun, 2002:2474-2475.
    [20] Bronstein L, Kr(?)mer E, Berton B, Burger C, Forster S, Antonietti M. Successive use of amphiphilic block copolymers as nanoreactors and templates: preparation of porous silica with metal nanopartides [J]. Chem Mater, 1999,11:1402-1405.
    [21] Lu Y, Gangull R, Drewlen C A, Anderson M T, Brinker C J, Gong W, Guo Y, Soyez H,Dunn B, Huang M H, Zink J I. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating [J]. Nature, 1997,389:364-368.
    [22] Huang M H, Dunn B S, Zink J I. In situ luminescence probing of the chemical and structural changes during formation of dip-coated lamellar phase sodium dodecyl sulfate Sol-Gel thin films [J]. J Am Chem Soc, 2000,122:3739-3745.
    [23] Posp(?)(?)il H, Steinhart M, Plestil J, SANS Studies of solubilization by micelles, Physica B, 1997,234-236:266-267.
    [24] Tuzar Z, Pospisil H, Plestil J, Micelles of hydrophilic-hydrophobic poly(sulfobetaine)-based block copolymers [J]. Macromolecules, 1997,30:2509-2512.
    [25] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J,Siemieniewska T. Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity [J]. Pure Appl Chem, 1985,57:603-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700