用户名: 密码: 验证码:
芳纶纤维增强可溶性聚芳醚复合材料的制备技术、界面表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作系国家自然科学基金(项目编号50743012)和辽宁省新世纪优秀人才(项目编号RC2005-14)的部分研究工作内容。论文中选用耐热等级最高的可溶性聚芳醚树脂—聚芳醚砜酮(PPESK)开展连续芳纶纤维增强热塑性树脂基复合材料缠绕成型工艺过程的纤维浸渍、制备方法、界面结构表征及其与性能关系的研究工作。针对芳纶纤维表面缺乏活性基团、表面光滑以及表面能低等问题,采用射频低温等离子体对芳纶纤维表面进行改性,对复合材料界面粘接性能进行优化设计。另外,对等离子体处理纤维表面的退化效应进行了初步探讨。
     论文中选用目前应用最广和性能最好的有机芳纶纤维(Twaron和Armos)作为复合材料的增强相。采用氧气等离子体处理方法对芳纶纤维表面进行改性,利用溶液预浸渍工艺和高温模压成型技术制备了等离子体处理前后的芳纶纤维/PPESK树脂基复合材料。采用红外光谱(FTIR)、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)以及动态接触角分析(DCAA)等方法研究了等离子体处理前后的芳纶纤维表面化学结构、元素组成、表面形貌、表面粗糙度以及表面浸润性能的变化。通过测试复合材料的层间剪切强度(ILSS)来表征复合材料的界面粘结性能。并对复合材料的吸水率进行测定来间接反映复合材料的界面粘结情况。通过对复合材料界面破坏形貌进行扫描观察,从而进一步分析复合材料的界面粘结机理。
     本文首先考察了氧气等离子体处理对Twaron纤维表面及其复合材料界面性能的影响。结果表明:经过氧气等离子体处理之后,Twaron纤维表面引入了新的含氧官能团-COO-结构,表面粗糙度增加,表面浸润性能得到明显地改善。在等离子体处理功率为200W、处理时间为15min时,Twaron纤维/PPESK复合材料的层间剪切强度由未处理时的39.2MPa增加到52.0MPa,提高了32.6%。
     其次,通过对等离子体处理时间与放电功率对Armos纤维表面状态及其复合材料的影响研究发现:氧气等离子体在Armos纤维表面引入了大量的含氧基团,同时对Armos纤维表面产生了明显的刻蚀作用,表面浸润性能得到相应地改善。在等离子体处理功率为200W、处理时间为10min时,Armos纤维/PPESK复合材料的层间剪切强度由未处理时的59.5MPa增加到68.8MPa,提高了15.6%。经等离子体处理之后,Armos纤维/PPESK复合材料的吸水率也表现出明显下降的趋势。但较长时间和较大功率的处理条件均会造成纤维表面剥离与消熔,纤维表面损伤严重,使得纤维表面极性官能团减少,表面粗糙度下降,浸润性不好,最终导致了Armos纤维/PPESK复合材料的界面粘结性能下降。
     另外,通过对比等离子处理前后的芳纶纤维/PPESK复合材料层间剪切破坏断面形貌图发现,未处理时的复合材料断面处纤维表面光滑,粘附着少量的树脂,复合材料的破坏模式主要是界面破坏,而经过等离子体处理之后的复合材料断面处纤维表面粗糙并粘附着大量的树脂,此时的复合材料破坏模式由未处理时的界面破坏逐渐转变为基体或纤维本体的破坏。通过对复合材料界面结构与性能的关系分析发现,纤维与树脂基体间的化学键接和机械嵌合作用均有利于提高复合材料的界面粘结性能。
     最后,考察了等离子体处理芳纶纤维的时效性问题。将等离子体处理后的芳纶纤维在空气中放置10天左右,发现纤维表面的化学组成和浸润性能随着储存时间延长发生明显的退化效应。而在时效的过程中,纤维表面形貌和粗糙度的变化不大。这可能与等离子体处理之后的纤维表面极性基团发生重排、翻转有关。另外,芳纶/PPESK复合材料的界面粘结强度随着储存时间的延长也是呈明显下降的趋势。由此可见,纤维表面化学状态的退化是造成其复合材料界面粘结性能下降的主导因素。
This work was financially supported by National Natural Science Foundation of China (No. 50743012) and Liaoning Excellent Talents in University (No. RC2005-14). One kind of novel thermoplastic resin with excellent thermal resistance and solubility-Poly (phthalazinone ether sulfone ketone)(PPESK) was chosen as resin matrix in composite system in our paper. The fiber soakage, preparation method, interfacial structure characteriztion and properties relationship during twisting and molding procedure of continuous aramid fibers reinforced PPESK composite were investigated. Due to the problems of fiber surface with few polar functional groups, smooth surface and low surface energy, low temperature plasma treatment on fiber surface modification was used. The composite interfacial adhesion was optimized design. In addition, the aging behavior of plasma treatment on fiber surface was at the primary stage discussed.
     In our work, two kinds of organic aramid fibers including Twaron and Armos were modified by oxygen plasma treatment. The fibers reinforced PPESK composite before and after plasma treatment were prepared through solution impregnating process and high temperature molding technique. The changes of fiber surface chemical structure, element composition, surface morphology, surface roughness and surface wettability before and after plasma treatment were characterized by FT-IR spectra, X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA) system, respectively. The composite interfacial adhesion property was evaluated by interlaminar shear strength (ILSS), and indirectly illustrated by the water absorption measurements and composite fracture mechanism was analyzed by the morphology of interlaminar shear ruptures of composite observed by SEM.
     The effects of oxygen plasma treatment on Twaron aramid fiber surface and its composite interfacial properties were first studied in this paper. The results showed a new oxygen-containing functional group -COO- was introduced onto the fiber surface, the fiber surface roughness increased and the fiber surface wettability was improved obviously after oxygen plasma treatment. Composite interlaminar shear strength increased from 39.2MPa for untreated sample to 52.0MPa for plasma treated for 15min under discharge power at 200 W, with an increase of 32.6%.
     Secondly, the influence of plasma treatment condition such as time and discharge power on Armos fiber surface and its composite interfacial properties were studied. It was found that oxygen plasma could introduce a lot of oxygen-containing functional groups onto the fiber surface, the fiber surface was etched obviously and the fiber surface wettability was improved consequently. Composite interlaminar shear strength increased from 59.5MPa for untreated sample to 68.8MPa for plasma treated for 10min under discharge power at 200 W, with an increase of 15.6%. The water absorption of composite decreasing also indirectly showed that oxygen plasma treatment improved composite interfacial adhesion. However, long time and large discharge power would make the fiber surface melting. Then, the fiber surface polar functional group decreased, surface roughness declined and surface wettability degraded. Finally, the composite interfacial properties turned to be weak.
     In addition, compared with the morphology of composite interlaminar shear ruptures before and after plasma treatment, it was found that the fibers were smooth with low amount of resin adhered to surface for the untreated specimen, the rupture took place near the interface between the fiber and matrix; However, a large proportion of fibers stuck tightly to matrix, the primary failure mode varied from interface failure to matrix or fiber failure for the oxygen plasma-treated specimen. It suggested that the interfacial bond strengths between the fiber and the matrix were well improved by oxygen plasma treatment. The relationship between the fiber surface characteristics and composite interfacial properties indicated that both the chemical bonding between the fiber and the matrix in composite system and the mechanical interaction contributed for increasing composite interfacial properties.
     Finally, the aging behavior of plasma-treated fiber surface was studied. The fiber surface properties such as polar functional groups, surface morphology, surface roughness and surface wettability as a function of storage time in air after plasma treatment were measured. The fiber surface aging behavior could be detected obviously in chemical composition and surface wettability, whereas the surface morphology and roughness remained nearly stable after storing in air as long as 10 days after oxygen plasma treatment. The polar functional groups on fiber surface reorientated or reversaled may be responsible for the weak interfacial strength between the fiber and the matrix in composite system.
引文
[1]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.
    [2]Coffey A B,Brazier A,Tiereny M,et al.Development of thin-walled fibre-reinforced structures for medical applications[J].Composite Part A,2003,34(6):535-542.
    [3]Yeh W Y,Young R J.Molecular deformation processes in aromatic high modulus polymer fibres[J].Polymer,1999,40(4):857-870.
    [4]De Lange P J,Akker P G,Maas A J,et al.Adhesion activation of Twaron aramid fibres studied with low-energy ion scattering and X-ray photoelectron spectroscopy[J].Surface and Interface Analysis,2001,31(12):1079-1084.
    [5]马晓光,刘越.高性能纤维的发展及其在先进复合材料中的应用[J].纤维复合材料,2000,17(4):14-18.
    [6]Coffey A B,Bradaigh C M,Young R J.Interfacial stress transfer in an aramid reinforced thermoplastic elastomer[J].Journal of Material Science,2007,42:8053-8061.
    [7]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用[M].北京:化学工业出版社,2007.
    [8]秦明.热塑性聚芳醚酮类树脂基复合材料的制备及连接技术研究[D].杭州:浙江大学,2004.
    [9]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1999.
    [10]张海春,陈天禄,袁雅桂.合成带有酞侧基的新型聚醚醚酮.中国,发明专利[P],85108751.1987.
    [11]Meng Y Z,Tjong S C,Hay A S.Morphology,rhological and thermal properties of the melt blends of Poly(phthalazinone ether ketone sulfone) with liquid crystalline copolyester[J].Polymer,1998,39(10):1845-1850.
    [12]Jia n X G,Dai Y,Zheng L,et al.Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation[J].Journal of Applied Polymer Science,1999,71(14):2385-2390.
    [13]张欣涛.含二氮杂萘酮结构聚醚砜酮共混及填充改性[D].大连:大连理工大学,2008.
    [14]江镇海.高性能芳纶市场开发前景广阔[J].合成材料老化与应用,2008,37(4):51.
    [15]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006.
    [16]Tsai C L,Chiang C H.Characterization of the hygric behavior of single fibers[J].Composites Science and Technology,2000,60(14):2725-2729.
    [17]Rao Y,Waddon A J,Farris R J.The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers[J].Polymer,2001,42(13):5925-5935.
    [18]王善元,张汝光.纤维增强复合材料[M].上海:中国纺织人学出版社,1998.
    [19]Li S F Y,Ghie A J M,Tang S L.Interal structure of Kevlar fibers by atomic force Microscopy[J].Polymer,1993,34(21):4573-4575.
    [20]俞波.对位芳纶生产和应用技术进展(Ⅱ)[J].合成技术及应用,2005,20(3):20-25.
    [21]高建军,狄西岩.俄罗斯的增强纤维材料[J].化工新型材料.2003,31(1):35-37
    [22]周仕刚,杨建奎,雷海峰等.APMOC纤维的基本力学性能[J].纤维复合材料,1997,1(1):1-6.
    [23]聂嘉阳.芳纶纤维特性及其对复合材料的影响.第五届全国复合材料学术会议论文集[C].1988,256-261.
    [24]陈平,陆春,于琪等.连续纤维增强PPESK树脂基复合材料的界面性能[J].材料研究学报,2005,19(2):159-164.
    [25]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].北京:中国轻工业出版社,2001.
    [26]吴人洁.高聚物的表面与界面[M].北京:科学出版社,1998.
    [27]Wagner H D,Gallis H E,Wiesel E.Study of the interface in Kevlar 49-epoxy composites by means of microbond and fragmentation tests:effects of materials and testing variables[J].Journal of Materials Science,1993,28:2238-2244.
    [28]Tanaka K,Minoshima K,Grela W et al.Characterization of the aramid/epoxy interfacial properties by means of pull-out test and influence of water absorption [J].Composites Science and Technology,2002,62(16):2169-2177.
    [29]MA Y M,Casto F.Fracture toughness of Kevlar-expoxy composites with controlled interfacial bonding[J].Journal of Materials Science,1984,19:1638-1655.
    [30]龙军,张志谦,魏月贞等.接枝偶联剂对F-12纤维/环氧复合材料界面改性的研究[J].复合材料学报,2000,17(3):15-19
    [31]Tarantili P A,Andreopoulos A G.Mechanical Properties of Epoxies Reinforced with Chloridetreated Aramid Fibers[J].Journal of Applied Polymer Science,1997,65(2):267-275.
    [32]Andreopoulos A G.A New Coupling Agent forAramid Fibers[J].Journal of Applied Polymer Science,1989,38(6):1053-1064.
    [33]Yue C Y,Padmanabhan K.Interfacial Studies on Surface Modified Kevlar Fiber/Epoxy Matrix Composites[J].Composites:Part B,1999,30(2):205-217.
    [34]Penn L S,Tesoro G C,Zhou H X.Some effects of surface-controlled reactions of Kevlar 29 on the interface in epoxy composites[J].Polymer Composites,1988,9(3):184-191.
    [35]Wu Y l,Guiliana C,Tesoro.Chemical modification of Kevlar fiber surfaces and of model diamides[J].Journal of Applied Polymer Science,1986,31(4):1041-1059.
    [36]Wu S R,Sheu C S,SHYU S S.Kevlar Fiber-Epoxy adhesion and its effect on composite mechanical and fracture properties by plasma and chemical treatment[J].Journal of Applied Polymer Science,1996,62(9):1347-1360.
    [37]Lin J S.Effect of surface modification by bromination and metalation on Kevlar fiber-epoxy adhesion[J].European Polymer Journal,2002,38(1):79-86.
    [38]Takayanagi M,Kajiyama T,Teruo Katayose.Surface-modified Kevlar fiber-rein-forced polyethylene and ionomer[J].Journal of Applied Polymer Science,1982,27(10):3903-3917.
    [39]Che M L,Shigeyuki U.Motowo Takayanagi.Improvement of adhesion of Kevlar fiber to poly(methyl methacrylate)[J].Polymer Journal,1988,20(8):673-677.
    [40]Day R J,Hewson K D,Lovell P A.Surface modification and its effect on the interfacial proper-ties of model aramid-fibre/epoxy composites[J].Composites Science and Technology,2002,62(1):153-166.
    [41]邱军,刘立洵,张志谦等.辐照APMOC纤维对其复合材料拉伸强度的影响[J].宇航材料工艺,2000,3(1):34-37.
    [42]Zhang Y H,Huang Y D,Liu L et al.Surface modification of aramid fibers with γ-Ray radiation for improving interfacial bonding strength with epoxy resin[J].Journal of Applied Polymer Science,2007,106(4):2251-2262.
    [43]刘丽,张志谦,黄玉东.超声作用对芳纶/环氧浸润行为的影响.材料科学与工艺,2002,10(1):69-72.
    [44]马腾才等.等离子体物理原理[M].合肥:中国科技大学出版社,1990.
    [45]Eliasson B,Kogelschatz U,Xue B Z et al.Hytrogenation of Carbon Dioxide to Methanol with Discharge-Activated Catalyst[J].Engineering Chemistry Reasearch,1998.37:3350-3357.
    [46]赵化侨.等离子体化学与工艺[M].合肥:中国科技大学出版社,1993.
    [47]Brown J R,Mathys Z.Plasma Surface Modification of Advanced Organic Fibers Part Ⅰ Effects on the mechanical,fracture and ballistic properties of aramid/epoxy Composites[J].Journal of Materials Science,1991,26:4172-4178.
    [48]Sheu G S,Shyu S S.Surface Modification of Kevlar 149 Fibers by Gas Plasma Treatment.Part Ⅱ.Improved Interfacial Adhesion to Epoxy Resin[J].Journal of Adhesion Science and Technology,1994,8(9):1027-1042.
    [49]Wang J,Chen P,Li H,et al.Surface characteristic of poly(p-phenylene terephthal -amide) fibers with oxygen plasma treatment[J].Surface and Interface Analysis,2008,40(9):1299-1303.
    [50]Xi M,Li Y L,Shang S Y,et al.Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing[J].Surface and Coatings Technology,2008,202(24):6029-6033.
    [51]Chen P,Wang J,Wang B C,et al.Improvement of interfacial adhesion for plasma -treated aramid fibers reinforced poly(phthalazinone ether sulfone ketone)composite and fiber surface aging effects[J].Surface and Interface Analysis.2009,41(1):38-43.
    [52]贺泓,朱贺孙,孙幕瑾.芳纶纤维的表面改性[J].纤维复合材料,1990,7(1):17-25.
    [53]Chan C K Ko T M.Polymer surface modification by plamas and photons[J].Surface Science Reports,1996,24(1):1-54.
    [54]David A B,Gerald P,Vves D.Application of the microbond technique.Ⅳ.Improved fiber-matrix adhesion by RF plasma treatment of organic fibers[J].Journal of Applied Polymer Science,1993,47(5):883-894.
    [55]Cheng C,Zhang L,Zhan R J.Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet[J].Surface and Coatings Technology,2006,200(24):6659-6665.
    [56]Li R Z,Lin Y,Wing M Y.Application of plasma technologies in fiber-reinforced polymer composites:a review of recent developments[J].Composites Part A,1997,28(1):73-86.
    [57]严志云,石虹桥,刘安华等.低温等离子体改性芳纶纤维表面的XPS分析[J].纺织学报,2007,28(8):19-22.
    [58]笪有仙,孙慕谨,席宗敏.表面冷等离子体改性对纤维抗拉强度的影响[J].复合材料学报,1992,9(4):84-86.
    [59]蒋向,邓剑如.等离子体对芳纶性能的影响[J].合成纤维SFC,2006,12(1):26-29.
    [60]Brown J R,Mathys Z.Plasma suface modification of advance organic fibres Part Ⅴ:Effects on the mechanical properties of aramid/phenolic composite[J].Journal of Materials Science,1997,32:2599-2604.
    [61]Wim J,Van O,Luo S J,et al.Surface Modification of textile fibers and cords by plasma polymerization by plasma polymerization[J].Plasmas and Polymers,1999,4(1):33-55,
    [62]Hirsouke W,Masashi F.Surface improvement of aramid fibers by physical treat ments [J].Macromolecular Symposia,2000,159(1):131-141.
    [63]Danish N,Garg M K,Rane R S et al.Surface modification of angora rabbit fibers using di-electric barrier discharge[J].Applied Surface Science,2007,253(16):6915-6921.
    [64]Kusano Y,Mortensen H,Goutiano S,et al.Atmospheric pressure plasma treatment of glassy cabon for adhesion improvement[J].International Journal of Adhesion &Adhesives,2007,27(2):402-408.
    [65]Ren Y,Wang C X,Qiu Y P.Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy[J].Applied Surface Science,2007,253(23):9283-9289.
    [66]Liu L,Jiang Q,Zhu T.Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy[J].Journal of Applied Polymer Science,2006,102(1):242-247.
    [67]王国全,王秀芬.聚合物改性[M].北京:中国轻工业出版社,2005.
    [68]Hamid S M,Abdellatif A K,Josee B.Improvement of mechanical properties of composites through polyamide grafting onto Kevlar fibers[J].Polymer Engineering and Science,1996,36(6):778-785.
    [69]金士九,张春昕,王霞等.Kevlar-49芳纶纤维表面接枝改性[J].高技术通讯,1994,7:23-27.
    [70]Yamada K,Haraguchi T,Kajiyama T.Plasma-graft polymerization of vinyl monomers with reactive groups onto a surface of poly(p-phenylene terephthalamide) fiber [J].Journal of Applied Polymer Science,1996,60(11):1847-1853.
    [71]Inagaki N,Tasaka S,Inoue T.Surface modification of aromatic polyamide film by plasma graft copolymerization of glycidyl methacrylate for epoxy adhesion[J].Journal of Applied Polymer Science,1998,69(6):1179-1185.
    [72]Shaker M,Kamel I,Ko F,et al.Improvement of the interfacial adhesion between Kevlar fiber and resin by using R-F plasma[J].Journal of Composites Technology and Research,1996,18(4):249-255.
    [73]Wang X,Zhang C,Jin S J,et al.Fracture of Aramid Fiber/Epoxy Resin Micro Composites[J].Journal of Materials Science and Technology,1995,11(4):260-264.
    [74]Jin S J,Zhang C X,Wang X,et al.Plasma Modified Polyaramid Fiber Surface and Fiber/Epoxy Interface[J].Journal of Adhesion Science and Technology,1996,59:251-263.
    [75]Zhang C X,Jin S 5,Yu Y Z.Plasma Modified Polyaramid Fiber Surface and Fiber/Epoxy Interface[J].Journal of Materials Science and Technology,1993,9(6):423-426.
    [76]魏月贞,张志谦,刘立洵等.Kevlar纤维表面冷等离子体处理研究[J].哈尔滨工业大学学报,1985,6(1):48-54.
    [77]龙军.APMOC-Ⅱ纤维的结构分析及其表面冷等离子体改性的研究[D].哈尔滨:哈尔滨工业大学.
    [78]于春茂,于国柱.Apmoa-Ⅲ纤维组成结构与结晶的研究[J].合成纤维工业,2000,23(1):45-48.
    [79]周玉玺,曾金芳,王斌.杂环芳纶纤维及其表面改性[J].纤维复合材料,3006,2:51-54.
    [80]蹇锡高,孟跃忠,郑海滨,阿兰S·海(Allan.S.Hay).含二氮杂萘结构的聚醚酮及制备法:中国,CN1098097[P].1995,02,01.
    [81]蹇锡高,孟跃忠,郑海滨,阿兰S·海(Allan.S.Hay).含二氮杂萘结构的聚醚砜及制备法: 中国,CN1098113[P].1995,02,01.
    [82]Wang J,Chen P,Li H,et al.The analysis of Armos fibers reinforced poly (phthalazinone ether sulfone ketone) composite surfaces after oxygen plasma treatment[J].Surface and Coatings Technology,2008,202(20):4986-4991.
    [83]丁振峰,霍伟刚,王友年.射频电感性耦合等离子体调谐基片自偏压特性[J].核聚变与等离子体物理,2004,24(3):197-202.
    [84]陆春.碳纤维增强可溶性聚芳醚复合材料的制备/界面性能及热应力模拟[D].大连:大连理工大学,2007.
    [85]Wu G M.Oxygen plasma treatment of high performance fibers for composites[J].Materials Chemistry and Physics.2004,85(1):81-87.
    [86]Zukiene K,Jankauskaite V,Petraitiene S.AFM lateral force imagining of modified polychloroprene:A study based on roughness analysis[J].Applied Surface Science.2006:253(2),966-973.
    [87]郑玉婴.Kevlar纤维增强尼龙6复合材料界面层的设计及其结构性能研究[D].福州:福州大学,2004.
    [88]黄玉东.聚合物表面与界面分析技术[M].北京:化学工业出版社,2003.
    [89]Zhang Y H,Huang Y D,Liu L et al,Surface modification of Aramid fibers with γ-Ray radiation for improving interfacial bonding strength with epoxy resin[J].Journal of Applied Polymer Science,2007,106(4):2251-2262.
    [90]Chen P,Lu C,Yu Q,et al.Influence of Fiber Wettability on the Interfacial Adhesion of Continuous Fiber-Reinforced PPESK Composite[J].Journal of Applied Polymer Science,2006,102(4):2544-2551.
    [91]Park J M,Kim D S,Kim S R.Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J].Journal of Colloid and Interface Science,2003,264(2):431-445.
    [92]沈庆鉴,俄罗斯国产芳纶纤维达到世界水平[J].材料导报,1992,6(1):59-60
    [93]孙友德,刘庆备.俄罗斯杂环芳纶—构成(二)[J].高科技纤维与应用,2004,(2):11-14.
    [94]曾金芳,乔生儒,丘哲明.F-12芳纶纤维及其复合材料[J].玻璃钢/复合材料,1999,4(1):37-44.
    [95]刘东勋,沈超.热熔法预浸树脂基体的研究.复合材料进展[J],1994.
    [96]Cioffi M O H,Voorwald H J C,Hein L R O,et al.Effect of cold plasma treatment on mechanical properties of PET/PMMA composites[J].Composites Part A,2005,36(5):615-623.
    [97]Cvelbar U,Pejovnik S,Mozetie M,et al.Increased surface roughness by oxygen plasma treatment of graphite/polymer composite [J]. Applied Surface Science, 2003, 210(3-4):255-261.
    
    [98] Pappas D, Bujanda A, Demaree D, et al. Surface modification of polyamide fibers and films using atmospheric plasmas [J]. Surface and Coatings Technology, 2006, 201 (7):4384-4388.
    
    [99] Kawagoe M, Hashimotos, Nomiya M, et al. Effect of water absorption and desorption on the interfacial degradation in a model composite of an Aramid fiber and unsaturated polyester evaluated by Ramman and FT Infra-red microspectroscopy [J]. Journal of Ramman Spectroscopy, 1999,30:913-918.
    
    [100] Tsenoglou C J, Pavlidou S, Papaspyrides C D. Evaluation of interfacial relaxation due to water absorption in fiber-polymer composite [J]. Composites Science and Technology, 2006, 66(15):2855-2864.
    
    [101] Chen P, Lu C, Yu Q et al. Interfacial Adhesion of Plasma-Treated Carbon Fiber/ Poly(phthalazinone ether sulfone ketone) Composite [J].Journal of Applied Polymer Science, 2007,106(3):1733-1741.
    
    [102] 任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究进展[J].材料导报,2007, 21(1): 56-59.
    [103] Carrino L, Polini W, Sorrentino L. Ageing time of wettability on polypropylene surfaces processed by cold plasma [J]. Journal of Materials Processing Technology, 2004,153-154:519-525.
    [104] Ren Y, Wang C X, Qiu Y P. Aging of surface properties of ultra high modulus polyethylene fibers treated with He/Q? atmospheric pressure plasma jet.[J]. Surface and Coatings Technology, 2008, 202(12):2670-2676.
    [105] Riccardi C, Barni R, Selli E, et al. Surface modification of poly (ethylene terephalate) fibers induced by ratio frequency air plasma treatment [J]. Applied Surface Science,2003,211(1-4):386-397.
    [106] De Geyter N, Morent R, Leys C. Influence of ambient conditions on the ageing behaviour of plasma-treated PET surfaces [J]. Beam Interactions with Materials & Atoms, 2008, 266:3086-3090.
    [107] Pyk(o|¨)nen M, Sundqvist H, Kaukoniemi O V, et al. Ageing effect in atmospheric plasma activation of paper substrates [J]. Surface and Coatings Technology, 2008, 202(16): 3777-3786.
    [108] Carrino L, Polini W, Sorrentino L. Ageing time of wettability on polypropylene surfaces processed by cold plasma [J]. Journal of Materials Processing Technology, 2004,153-154:519-525
    [109] Sanchis R, Fenollar O, Garcia D, et al. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma [J]. International Journal of Adhesion & Adhesives, 2008,28:445-451.
    [110] Hino T, Igarashi Y, Ymauchi Y, et al. Surface wettability of silicon rubber after irradiation with a glow discharge plasma [J]. Vacuum, 2009, 83(3):506-509.
    [111] Harju M, Halme J, Jarn M, Rosenholm J B, et al. Influence of aqueous aging on surface properties of plasma sprayed oxide coatings [J]. Journal of Colloid and Interface Science, 2007, 313(1):194-201.
    [112] Bodas D, Rauch J Y, Khan-Malek C. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma [J].European Polymer Journal 2008, 44(7):2130-2139.
    [113] Touzin M, Chevallier P, Lewis F, et al. Study on the stability of plasma-polymerized fluorocarbon ultra-thin coatings on stainless steel in water [J]. Surface and Coatings Technology, 2008, 202(19):4884-4891.
    [114] Canal C, Molina R, Bertran E et al. Wettability ageing and recovery process of plasma-treated polyamide 6 [J]. Journal of Adhesion Science and Technology, 2004, 18(9):1077-1089.
    [115] Tatsunosuke M, Kuroda S, Osawa Z. Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma: Effect of Aging Media after Plasma Treatment [J]. Journal of Colloid and Interface Science,1998,202(1):37-44.
    
    [116] Yun Y I, Kim K S, Uhm S-J, et al. Aging behavior of oxygen plasma Treated polypropylene with different crystallinities [J].Journal of Adhesion Science and Technology, 2004, 18 (11):1279-1291.
    [117] Kim B K, Kim K S, Park C E, et al. Improvement of wettability and reduction of aging effect by plasma t reatment of low-densitypolyethylene with argon and oxygen mixtures [J].Journal of Adhesion Science Technology, 2002, 16(5):509-521.
    [118] Kim B K, Kim K S, Cho K, et al. Retardation of the surface rearrangement of O_2 plasma-treated LDPE by a two-step temperature control [J].Journal of Adhesion Science and Technology, 2001, 15(14):1805-1816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700