用户名: 密码: 验证码:
新疆阿尔泰阿巴宫——蒙库一带铁矿床成矿作用与成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔泰金属成矿带是我国重要的成矿省。其中铁矿床主要产在阿尔泰南缘阿巴宫-蒙库一带的克兰和麦兹火山沉积盆地中。尽管前人对该区域的金属矿床做了很多工作,取得了显著成果,但大多集中于铜、铅、锌及稀有金属等矿产的研究,针对铁矿床的专项研究较少,缺乏系统性,对以蒙库铁矿为代表的一些主要铁矿床的成矿作用及成因类型的认识存在较大争议。本文以野外地质调查为根本,对典型铁矿床地质特征进行详细观察,同时对赋矿地层、花岗岩、典型矿床、蚀变围岩等的岩石学、岩石地球化学、同位素以及流体包裹体和微量稀土等进行系统研究,探讨了铁矿形成的构造环境、成矿物质来源、成矿流体性质、成矿时代等关键科学问题。在此基础上,总结了本区铁矿的成矿作用及其规律性,初步建立了区域铁矿床的成矿模型。
     阿巴宫-蒙库一带铁矿床主要赋存在康布铁堡组中酸性变质火山沉积岩组中,与岩浆活动有关;阿巴宫铁矿属于岩浆分异的晚期矿浆贯入充填型铁矿,蒙库、萨尔布拉克和加尔巴斯套铁矿床是与酸性侵入岩有关的矽卡岩型铁矿;铁矿空间产出位置受深大断裂附近的北西向次级断裂破碎带控制;矿物组合较为简单,围岩蚀变以矽卡岩化为主。
     岩石学、岩石地球化学及同位素研究表明,康布铁堡组变质火山岩、与主要铁矿床有关的花岗岩具有同源、同构造环境特征,是晚志留世-早泥盆世岩浆演化的不同相。康布铁堡组变质火山沉积岩组合原岩为一套石英角斑质岩-角斑岩-细碧岩的火山岩建造,形成于413Ma左右,是陆缘弧环境中板块俯冲作用下洋壳熔融、同化陆壳物质,并经结晶分异演化,最终形成的一套基性-中性-酸性的钙碱性火山岩组合。与铁矿成矿有关的花岗岩多在410~400Ma形成,也是陆缘弧环境中板块俯冲作用下洋壳熔融、分异的产物。少数与铁矿有关的花岗岩形成于早二叠世(287Ma),为后造山伸展环境下岩浆侵入产物。
     研究了各典型矿床的地球化学特征。阿巴宫铁矿磁铁矿氧同位素特征反映了成矿流体中水来源于原始岩浆水,暗示该铁矿的岩浆成因;与磁铁矿共生的磷灰石稀土和微量元素特征与Kiruna型铁矿以及宁芜玢岩铁矿中磷灰石特征非常相似,表明它们具有相同的成因机理,反映出阿巴宫铁矿为岩浆分异的晚期矿浆贯入式成因;其硫同位素特征表明成矿物质源自幔源的玄武质岩浆。蒙库铁矿床矿石和地层中黄铁矿硫同位素显示双峰特征,表明硫一部分来自地层,一部分来自花岗质岩石,反映该铁矿是酸性侵入岩与火山岩地层共同作用形成的矽卡岩型铁矿。康布铁堡组火山岩、蒙库岩体以及与萨尔布拉克矽卡岩型铁矿有直接成因关系的萨尔布拉克花岗岩体都具有幔源特征,说明成矿物质来源于俯冲掉的洋壳。综合本区典型铁矿地球化学特征认为,康布铁堡组火山岩和有关花岗岩提供了主要的成矿物质。成矿流体来源较为复杂,有的以岩浆水为主混有大气降水,也有大气降水占主导,部分受到变质流体的影响。磁铁矿的形成主要发生在中低温、低盐度、低密度的矽卡岩晚期阶段。
     年代学研究表明,蒙库铁矿的形成限定在400Ma左右,阿巴宫铁矿略晚于413Ma,萨尔布拉克铁矿形成于410Ma左右,加尔巴斯套铁矿形成于287Ma。由此可见,阿巴宫-蒙库一带铁矿主要形成于晚志留世-早泥盆世,少数形成于早二叠世时期。
     基于上述研究,建立本区铁成矿模式如下:早古生代开始的古亚洲洋板块向北俯冲到西伯利亚大陆板块的构造运动是阿尔泰南缘一带成矿作用发生的源驱动力。晚志留世-早泥盆世期间沿大陆边缘局部撕裂形成一系列拉张断陷盆地,同时引发的火山喷发作用和岩浆侵入作用是成矿作用发生的直接诱因。岩浆分异或不混溶作用形成的晚期含矿岩浆可以形成矿浆贯入型铁矿,更多的是侵入岩浆与地层发生交代反应形成的矽卡岩型铁矿。岩浆侵入作用是铁富集成矿床的主要控制因素。
The metallogenetic belt of Altay is an important metallogenetic province in our country. In this belt, the main iron deposits are located in the Kelan and Mazy volcanic-sedimentary basin from Abagong to Mengku area in the southern margin of Altay. The prevenient investigation mostly focused on the mineral deposits of copper, lead, zinc and rare metal etc. in despite of a lot of works and prominent achievement on metal deposits in the area. The less special and systematical research resulted in much dispute on metallogenesis and genetic type of several iron deposits such Mengku deposit as the first. In this study, the geological features of several tipical iron deposits were surveyed detailedly on the base of the in-depth investigation in the field and the petrology, the geochemistry, the isotopic geology, the inclusion fluid and trace elements, REE were systematically studied on producting-ore stratum, granites, typical deposits and altered hostrocks. In the mean time, the key problems about tectonic setting, origin of metal, ore-forming fluid and geochronology were mainly discussed. On these basic works, we summarized the metallogenesis of the iron deposits and its regulation and primarily constructed the metallogenesis model of the area.
     The Abagong iron deposit is attributed to the intrusion and filling of late ore magma by magmatic differentiation and the Mengku, Serblak and Jerbast iron deposits are shared by skarn iron deposits related to the silicic plutons. The shape of ore bodies are controlled by the northwest sub-fault belts near the large regional faults. They are mainly characterized by simple mineral assemblage and skarn alteration for hostrocks.
     The study on petrology, geochemistry and isotope geology indicates that there are the common resource and tectonic setting for the Kangbutiebao formation with metamorphic volcanic rocks and the granite plutons related to the main iron deposits.They are different facies from magma evolvement in late Silurian-early Devonian. The protolyte for the Kangbutiebao formation with volcanic-sedimentary rocks resides in the formation with quartz ceratophyre, ceratophyre and protolyte formed at about 413Ma. They attribute to the calc-alkalic unit from basic to intermediate to silicic volcanic rocks resulted from the melting and differentiation evolvement of oceanic crust with assimilating crustal material in the continent-arc setting due to oceanic plate subduction. The granite plutons related to metallogenesis of iron mostly formed from 410Ma to 400Ma, resulted from the melt and differentiation of oceanic crust in a arc-continent setting because of subduction of plate. Only did few plutons related to iron deposits form at about early Permian(287Ma), showing post-orogenic setting.
     We have studied the geochemical characteristics of several typical iron deposits.The feature of oxygen isotope for magnetite from Abagong iron deposit reflects that the water in the fluid of mineralization resides in the initial magma, implying the magma genesis of mineralization. The similaritary features of REE and trace elements for coexisting apatite with magnetite in the Abagong, the Kiruna type and the Ninwu porphyrite iron deposit show their common genesis, indicating that Abagong iron deposit resulted from the intrusion of late ore magma due to the magma differentiation. The characteristic of sulfur isotope composition implies that the Abagong iron deposit resides in basaltic magma from mantle resource. The bimodal feature of sulfur isotope composition for the pyrite from ore and hostrocks indicates that sulfur in the Mengku iron deposit partly originates from stratum, partly from granitics, implying that the deposit attributes to skarn type resulted from the reaction between silicic pluton and volcanic stratum. The Kangbutiebao formation volcanics, the Mengku pluton and the Serblak granite related directly to the formation of iron deposit all take on mantle resource, indicating that iron resides in the subducted oceanic crust. Above all geochemical characteristics of typical iron deposits, we think that the Kangbutiebao formation volcanic rocks and granites-related provided the main origin of metal. The ore-forming fluids derived from more complex resources that some were mainly derived from magmatic water with some contributions from meteoric water, some prominently resulted from meteoric water and some were partly influenced by metamorphic water. The formation of magnetite arised mainly in the late stage of skarn period in which the fluid appeared in the middle-low temperature, low salt and density.
     The study on geochronology indicates that the age of Mengku iron deposit is defined at about 400Ma, Abagong iron deposit at later than 413Ma somewhat, Saerblak iron deposit at about 410Ma and Jerbast iron deposit at about 287Ma. The above all illustrate that the iron deposits in Abagong-Mengku area were mainly formed in the period of late Silurian-early Devonian, few in the period of early Permian.
     Based on the above study, the metallogenesis model of iron in this area was suggested as follow: The subduction of the Paleo-Asia ocean north-ward beneath the Siberian plate beginned in the early Paleozoic provides the resource of power driving metallogenesis in the southern margin of Altay. Because of the subduction, a series of stretched and fault-through basins formed in late Silurian to early Devonian, volcanic emission and magmatic intrusion directly urged metallogenesis. The late bearing-ore magma (ore-magma) formed by the differentiation and immiseibility of magma may form the intrusive iron body, but more iron deposits attribute to skarn type resulted from the metasomatic reaction between intrusive magma and stratum. The intrusion of magma mainly controlled the iron mineralization.
引文
1.Altschuler Z S,Berman S,Cuttitta F.1967.Rare earths in phosphorites -geochemistry and potential recovery[J].U.S.Geol.Surv.,Prof.Pap.575-B,pp.1-9.
    2.Altschuler Z S.1980.The geochemistry of trace elements in marine phosphorites,I.Characteristic abundance and enrichment[J].Soc.Econ.Paleontol.Mineral.,Spec.Publ.,29:1930.
    3.Appel P W U.1983.Rare earth elements in the early Archaean lsua iron-formation,West Greenland[J].Precambrian Res.,20:243-258.
    4.Badham J P N,Morton R D.1976.Magnetite-apatite intrusions and calc-alkali magmatism,Camsell River,N.W.T.Can[J].Earth Sci.,13:348-354.
    5.Bau M,M(o|¨)ller P.1991.REE systematics as source of information of minerogenesis[A].In:M.Pagel and J.L.Leroy(Editors),Proc.25 years SGA Anniv.Meet[C].,Nancy 1991,pp.17-19.
    6.Burruss R C.1981.Analysis of phase equilibria in C-O-H-S fluid inclusions[A].In:Hollister,L.S.,Crawford,M.L.(Eds.).Short Course Handbook[C].Mineralogical Association of Canada.6:39-74.
    7.Bodnar R J.1983.A method of calculateing fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J].Econ.Geol.,78:535-542.
    8.Bodnar R J.1993.Reviced equation and table for determining the freezing point depression of H_2O-NaCl solutions[J].Geochim Cosmochim Acta,57:683-684.
    9.Barton M D and Johnson D A.1996.Evaporitic_source model for igneous_related Fe oxide_(REE_Cu_Au_U)mineralization[J].Geology,24(3):259-262.
    10.Belousova E A,Griffin W L,O'Reilly Suzanne Y,Fisher N I.2002.Apatite as an indicator mineral for mineral exploration:trace-element compositions and their relationship to host rock type[J].Journal of Geochemical Exploration,76:45-69.
    11.Belousova EA,Griffin WL,O Reilly SY,et al.2002.Igneous zircon:trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,143:602-622.
    12.Clayton R N and Mayeda T K.1963.The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta,27:43-52.
    I3.Clayton R N,O'Neil J R and Mayeda T K.1972.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research,77:3057-3067.
    14.Coleman M L,Sheppard T J,Durham J J,Rouse J E and Moore G R.1982.Reduction of water with zinc for hydrogen isotope analysis[J].Analytical Chemistry,54:993-995.
    15.Coleman R.G..1989.Continental growth of Northwest China[J].Tectonics,8:621-635.
    16.Claesson S,Vetrin V,Bayanova T,et al.2000.U-Pb zircon age from a Devonian carbonatite dyke,Kola peninsula,Russia;a record of geological evolution from the Archaean to the Palaeozoic.Lithos,51(1-2):95-108.
    17.Chen B and Jahn BM.2002.Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications[J].Geological Magazine,139(1):1-13.
    18.Fleischer M,Aitschuler Z S.1969.The relationship of the rare-earth composition of minerals to geological environment[J].Geochim.Cosmoohim.Acta,33:725-732.
    19.Fleischer M.1983.Distribution of the lanthanides and yttrium in apatites from iron ores and its bearing on the genesis of ores of the Kiruna type[J].Econ.Geol.,78:1007-1010.
    20.Fryer B J.1977.Rare earth evidence in iron formation for changing Precambrian oxidation states[J].Geochim.Cosmochim.Acta,41:361-367.
    21.Fyfe W.S.et al..1978.Fluits in the earth's crust[J].Elsevier Amstredam.
    22.Frietsch R,Perdahl J A.1995.Rare earth elements in apatite and magnetite in Kiruna_type iron ores and some other iron ore types[J].OreGeol.Rev,9:489-510.
    23.Frietsch R,Tnisku P,Martinsson O,et al.1997.Early Proterozoic Cu_(Au)and Fe ore deposits associated with regional Na_Cl metasomatism in northern Fennoscandia[J].Ore Geol.Rev.,12:1-34.
    24.Forster H J,Tisehendorf G,Trumbull RB.1997.An evoluation of the Rb vs.(Y+Yb)discrimination diagram to infer tectonic setting of silica igneous rocks[J].Lithos,40:261-293.
    25.Friedman I and O'Neil J R.1977.Complication of stable isotope fractionation factors of geochemical interest in data of geochemistry[A].In:Fleischer M,ed.Geological Professional Paper.U.S.Geological Survey[C].6~(th) ed.440.
    26.Gandhi S S.1988.Volcano-plutonic setting of Cu-U bearing magnetite veins of FAB claims,southern Great Bear magmatic zone,Northwest Territories[J].Geol.Surv.Can.,Pap.,88-1C:177-187.
    27.Gandhi S S.1990.Paragenesis of magnetite-dominated and arsenopyrite-dominated polymetaUic deposits in the southern Great Bear magmatic zone,Northwest Territories,Canada[A].Abstr.8th IAGOD Symp.[C],Ottawa,Ont.,p.A 197.
    28.Humphris S E.1984.The mobility of the rare earth elements in the crust[A].In:P.Henderson (Editor),Rare Earth Element Geochemistry.Developments in Geochemistry,2.Elsevier[C],Amsterdam,pp.317-373.
    29.Hildebrand R S.1982.Magnetite-apatite-actinolite rocks,Great Bear Lake:Origin by groundwater convection in subductionrelated intermediate pintons[J].Abstr.Geol.Assoc. Can.
    30.Hildebrand R S.1984.Geology of the Rainy Lake-White Eagle Falls area,district of Mackenzie:Early Proterozoic cauldrons,stratovolcanoes and subvolcanic plutons[J].Geol.Sure.Can.Pap.,83-20:42 pp.
    31.Hilderbrand R S.1986.Kiruna_type deposits:Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone,Northwest Canada[J].Econ.Geol.,81:640-659.
    32.Hughes J M,Cameron M,Mariano A N.1991.Rare-earthelement ordering and structural variations in natural rare-earthbeating apatites[J].Am.Mineral.,76:1165-1173.
    33.Hedenquist J W and Lowenstern J B.1994.The role of magma in the formation of hydrothermal ore deposits[J].Nature,370:519-527.
    34.Hoefs J.1997.Stable isotope geochemistry[M].4~(rd) ed.Berlin:Spring Verlag.1-250p.
    35.Irvine T.N.and Baragar W.R.A..1971.A guide to the chemical classification of the common volcanic rocks[J].Canad.J.Earth Sci.,8:523-548.
    36.Jahn B M,Wu F,Hong D.2000.Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J].Proc.Indian Acad.Sci.(Earth Planet Sci.),109(1):5-20
    37.Kolker A.1982.Mineralogy and geochemistry of Fe_Ti oxide and apatite(nelsonite) deposits and evaluation of the liquid immiscibility hypothesis[J].Econ.Geol.,77(5):1146-1158.
    38.Kuno H..1968.Differentiation of basalt magmas.In:Hess H.H.and Poldervaart A.(eds.),Basalts:The Poldervaart treatise on rocks of basaltic composition,Vol.2.New York:Interscience,pp.623-688.
    39.Li JY,Xiao WJ,Wang KZ,Sun GH,Gao LM.2003.Neoproterozoic-Paleozoic tectonostratigraphy,magmatic activities and tectonic evolution of eastern Xinjiang,NW China.Tectonic evolution and metallogeny of the Chinese Altay and Tianshan.In:Mao J,Goldfarb,RJ,Seltman R,Wang D,Xiao W,Hart C(Eds.),Proceedings Volume of the International Symposium of the IGCP-473 Project in Urumqi and Guidebook of the Field Excursion in Xinjiang,China:August 9-21,2003,IAGOD Guidebook Series 10:Cercama/NHM London,2003,pp.31-74.
    40.Large Ross R..1992.Australian volcanic-hosted massive sulfide deposits;features,styles,and genetic models[J].Economic Geology,87:471-510.
    41.Le Maitre R W.,1989.A classification of igneous rocks and glossary terms[M].Blackwell Oxford,1989:193pp.
    42.Ludwig K R.1999.Isoplot/Ex,version 2.0:A geochronological toolkit for Microsoft Excel.Geochronology Center[M],Berkeley,Special Publication 1a.
    43.Mao J W,Wang Y,Ding T,Chen Y,Wei J and Yin J.2002.Dashuiguo tellurium deposit in Sichuan province,China:S,C,O,and H isotope data and their implications on hydrothermal mineralization[J].Resource Geology,52:15-23.
    44.Mackin J H.1968.Iron ore deposits of the Iron Springs district,south western Utah[A].In:J.D.Ridge(Editor),Ore Deposits of the United States[C],1933-1967.Am.Inst.Min.Metall.Eng.,New York,N.Y.,pp.992-1019.
    45.McDonough WF,Sun SS.1995.The composition of the earth.Chemical Geology,120:223-253
    46.O'Neil J R,Clayton R N and Mayada T K.1969.Oxygen isotope fractionation in divalent metal carbonates[J].Chemistry Geophysics,51:5547-5558.
    47.Ohmoto H.1986.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy,16:491-559.
    48.Ohmoto H,Goldhaber M B.1997.Sulfer and carbon isotopes[M].Geo- chemistry of hydrothermal ore depoites;
    49.Philpotts A R.1967.Origin of certain iron_titanium oxide and apatite rocks[J].Econ.Geol.,62(3):303-315.
    50.Paster T P,Schauwecker DS,Haskin LA.1974.The behavior of some trace elements during solidification of the Skaergaard layered series[J].Geochim.Cosrnochim.Acta,38:1549-1577.
    51.Peccerillo R,Taylor SR.1976.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Tuekey[J].Contrib..Mineral.Petrol.,58:63-81
    52.Pearce J A,Harris N B L,Tindle A G 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,25:956-983
    53.Roedder E..1979.Origin and significance of magmatic inclusions[J].Bull Mineral,102:487-510.
    54.Rollinson H R.1993.Using geochemical data:Evaluation,presentation,interpretation[M].New York:Longman Scientific and technical Limited.1-343p.
    55.Rogers G.,Hawkesworth C.J..1989.A geochemical traverse across the North Chilean Andes:evidence for crust generation from the mantle wedge.Earth Planet.Sci.Lett.91:271-285.
    56.Reardon N C,Taylor B E,Hildebrand R S.1991.Kiruna type deposits,subvolcanic plutons and stratovolcanoes:geologic and isotopic cross-sections through magrnatic hydrothermal systems in the Northwestern Canadian Shield[A].Abstr.,Meet[C].Geol.Soc.Am.
    57.Schock H H.1977.Trace element partitioning between phenocrysts of plagioclase,pyroxenes and magnetite and the host pyroclastic matrix[J].Radioanal.Chem.,38:327-340.
    58.Sheppard S M F.1981.Stable isotope geochemistry of fluids.In:Richard D T and Wickman F E(eds.),Chemistry and geochemistry of solutions at high temperatures and pressures[J].Phys.Chem.Earth,13/14:419-445.
    59.Sheppard S M F.1986.Characterization and isotopic variations in natural waters[J].Reviews in Mineralogy,16:165-183.
    60.Sharpe R.,J.,Bruce Gemmell.2002.The Archean Cu-Zn magnetite-rich Gossan hill volcanic-hosted massive sulfide deposit,western Australia:genesis of a multistage hydrothermal system[J].Economic Geology,97:517-539.
    61.Stolz AJ,Jochum KP,Hofmann AW.1996.Fluid- and melt-related enrichment in the subarc mantle;evidence from Nb/Ta variations in island-arc basalts[J].Geology,24:587-590.
    62.Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M].Geological Society Special Publication,42:313-345.
    63.Seng(O|¨)r AMC,Natal'in BA,and Burtman VS.1993.Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J].Nature,364:299-307.
    64.Sajona,F.G.,Maury,R.C.,Bellon,H.,Cotten,J.,and Defant,M.J..1996.High field strength element enrichment of Pliocene-Pleistocene island arc basalts,Zamboanga Peninsula,western Mindanao(Philippines):Journal of Petrology,v.37,p.693-726.
    65.Thornton C.P.,Tuttle O.F..1960.Chemistry of igneous rocks.1.Differentiation index[J].American Journal of Science 258:664-684.
    66.Taylor H P.1974.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit[J].Econ.Geol.,69:843-883.
    67.Taylor B E.1976.Origin and significance of C-O-H fluids in the formation of Ca-Fe-Si skarn,Osgood Mountains,Humboldt County,Nevada[D].Unpublished PhD thesis,Stanford University.306p.
    68.Taylor S R,Mclennan S M.1985.The continental crust:its composition and evolution[M].Oxford:Blackwell.312.
    69.Winchest J.A.and Folyd P.A..1977.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chem.Geol.,20:325-342.
    70.Wilson M..1989.Igneous petrogenesis[M].London:Allen and Unwin.
    71.Williams IS and Claesson S.1987.Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes,Scandinavian Caledonides,Ⅱ.Ion microprobe zircon U-Th-Pb[J].Contributions to Mineralogy Petrology,97:205-217.
    72.Wang YW,Wang JB,Wang SL,Ding RF and Wang LJ.2003.Geology of the Mengku iron deposit,Xinjiang,China—a metamorphosed VMS? In:Mao J W,Goldfarb R J,Seltmann R,Wang D H,Xiao W J,Hart C(Eds).Tectonic evolution and metallogeny of the Chinese Altay and Tianshan.Proceedings volume of the International Symposium of the IGCP-473project in Urumqi and guidebook of the field excursion in Xinjiang,China:August 9-21, 2003.London:Centre for Russian and Central Asian Mineral Studies,Natural History Museum,181-200.
    73.Windley BF.1985.Metamorphism and tectonics of Himalaya.[M].Geol.Soc.London,140(6):489-865.
    74.Windley BF,Kroner A,Guo J,Qu G,Li Y,Zhang C.2002.Neoproterozoic to Paleozoic geology of the Altai orogen,NW China:New zircon age data and tectonic evolution[J].The Journal of Geology,110:719-737.
    75.Wang T,Hong DW,Jahn BM,Tong Y,Wang YB,Han BF.Wang XX.2006.Timing,Petrogenesis,and setting of Paleozoic synorogenic intrusions from the Altai Mountains,Northwest China:Implications for the tectonic evolution of an Accretionary Orogen[J].The Journal of Geology,2114:735-751.
    76.Xu J F,Castillo PR,Chen FR,Niu HC,Yu XY and Zheng ZP.2003.Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area,Xinjiang,northwest China:implications for backarc mantle evolution.Chem.Geol.193:137-154.
    77.Xiao WJ,Windley BF,Badarch G,Sun S,Li J,Qin K and Wang Z.2004.Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the growth of Central Asia.Journal of the Geological Society,London,161:339-342.
    78.Yuan C,Sun M,Xiao WJ,Li XH,Chen HL,Lin SF,Xi XP,Long XP.2007.Accretionary orogenesis of the Chinese Altai:Insights from Paleozoic granitoids.Chemical Geology 242:22-39
    79.Zou Tianren,Cao Huizhi,Wu Boqing.1989.Orogenic and anorogenic granitoids of Altay mountains of Xinjiang and their discrimination criteria[J].Acta Geologica Sinica 2(1):45-64.
    80.Zhang H X,Niu H C,Terada K,Yu X Y,Sato H and Ito J.2003.Zircon SHRIMP U-Pb dating on plagiogranite from Kuerti ophiolite in Altay,north Xinjiang[J].China Sci.Bull.48:2231-2235.
    81.Zhao B,Zhao J S,Li Z L,Zhang C Z and Peng Z L.2002.Characteristics of melt inclusions in skarn minerals from Fe,Cu(Au) and Au(Cu) ore deposits in the region from Daye to Jiujiang[J].Sci China(D),46(5):481-497.
    82.Zhu YF,Zeng YS,Gu LB.2006.Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in Keketuohai region,Altay Mountains,northwest China.Journal of Asian Earth Sciences,27:61-77.
    83.柴凤梅,毛景文,董连慧,杨富全,刘锋,耿新霞,杨宗喜.2008.新疆阿尔泰南缘阿巴宫铁矿区康布铁堡组变质火山岩年龄及地质意义[J].地质学报,82(11):1592-1601.
    84.曹荣龙,朱寿华,朱祥坤,等.1993.新疆北部板块与地体构造格局,见涂光炽主编: 新疆北部固体地球科学新进展[M].科学出版社.11-26.
    85.常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带[M].北京:地质出版社.379页.程裕淇,赵一鸣,林文蔚.1994.中国铁矿床[M].北京:地质出版社,386-479.
    86.陈毓川,盛继福,艾永德.1981.梅山铁矿—一个矿浆热液矿床[J].中国地质科学院院报矿床地质研究所所刊,2(1):26-48.
    87.陈甲斌.2005.中国铁矿资源未来供需态势与国外供矿前景[J].矿产保护与利用,(2):5-8.
    88.陈汉林,杨树峰,厉子龙,等.2006.阿尔泰晚古生代早期长英质火山岩的地球化学特征及构造背景[J].地质学报,80(1):38-42.
    89.陈国达.2005.自主创新研究亚洲陆海大地构造与成矿学之必要.大地构造与成矿学[J],29(1):5-6.
    90.成守德,王元龙.1998.新疆大地构造演化基本特征[J].新疆地质,16(2):97-107.
    91.成守德,徐新.2001.新疆及邻区大地构造编图研究[J].新疆地质,19(1):33-37.
    92.陈哲夫,徐新.1995.中国阿尔泰陆缘开合构造系基本特征.见:新疆第三届天山地质矿产学术讨论会论文集[C].乌鲁木齐:新疆人民出版社,15-27.
    93.陈哲夫,成守德,梁云海.1997.新疆开合构造与成矿[M].乌鲁木齐:新疆科技卫生出版社.
    94.丛峰,唐红峰,苏玉平.2007.阿尔泰南缘泥盆纪流纹岩的地球化学和大地构造背景[J].大地构造与成矿学,31(3):359-364.
    95.常海亮,汪雄武,王晓地,刘家齐,黄惠兰.2007.西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分[J].岩石矿物学杂志,26(3):259-268.
    96.邓晋福,罗照华,苏尚国,莫宣学.于炳松,赖兴运等.2004.岩石成因、构造环境与成矿作用[M].北京:地质出版社,50-84.
    97.顾连兴.1999.块状硫化物矿床研究进展评述[J].地质论评,45(3):265-275.
    98.顾连兴,胡受奚,于春水,等.2001.论博格达俯冲撕裂型裂谷的形成与演化[J].岩石学报,17(4):0585-97.
    99.何国琦,韩宝福,岳永君,等.1990.中国阿尔泰造山带的构造分区和地壳演化[M].新疆地质科学(第2辑),北京:地质出版社,9-20.
    100.何国琦,李茂松,刘德权,等.1994.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,50-54.
    101.何国琦,成守德,徐新,李锦轶,郝杰.2004.中国新疆及邻区大地构造图(1:2500000)说明书[M].北京:地质出版社,1-65.
    102.侯宗林.2005.中国铁矿资源现状与潜力[J].地质找矿论丛,20(4):242-247.
    103.黄汲清,姜春发,王作勋.1990.新疆及邻区板块开合构造及手风琴式动动[M].新疆地质科学(第1辑),北京:地质出版社,3-15.
    104.胡纲.2005.矿产资源战略评价——以新疆铁矿为例[J].中国矿业,14(8):19-32.
    105.胡兴平.2004.新疆富蕴县蒙库铁矿区地质特征及成因浅析[J].新疆有色金属,(2):2-8.
    106.胡霭琴,王中刚,涂光炽,等.1997.新疆北部地质演化及成矿规律[M].北京:科学出版社.
    107.焦玉书,周伟.2004.世界铁矿资源开发利用和我国进口铁矿石的发展态势(续)[J].中国冶金,85(12):15-18.
    108.李嘉兴,姜俊,胡兴平,康吉昌,尹意求.2003.新疆富蕴县蒙库铁矿床地质特征及成因分析[J].新疆地质,21(3):307-311.
    109.李春昱,王荃.1983.我国北部边陲及邻区的古板块构造与欧亚大陆的形成.见:中国北方板块构造论文集[C],第1集,3-16.
    110.李华芹,谢才富,常海亮,等.1998.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,202-206.
    111.李锦轶,徐新.2004.新疆北部地质构造和成矿作用的主要问题[J].新疆地质,22(2):119-124.
    112.李建国,尚海军,陈新杰,等.2005.新疆富蕴县蒙库铁矿矿床西段浅部勘探地质报告.卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社.1-485页.
    113.刘峰标.1983.阿勒泰古板块与内生矿产[J].西北地质,4:14-21.
    114.刘锋,李延河,毛景文,杨富全,柴凤梅,耿新霞,杨宗喜.2008.阿尔泰造山带阿巴宫花岗岩体锆石SHRIMP年龄及其地质意义[J].地球学报,29(6):795-804.
    115.刘玉琳.1996.中国阿尔泰山南缘岩浆型被动陆缘及其成矿作用.北京大学博士研究生学位论文.
    116.刘伟.1990.中国新疆阿尔泰花岗岩的时代及成因类型特征[J].大地构造与成矿学,14(1):43-56.
    117.刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平.2004.云南白秧坪银铜刘建明,刘家军,顾雪祥.1997.沉积盆地中的流体活动及其成矿作用[J].岩石矿物学杂志,16(4):341-352多金属矿集区碳氧同位素组成及其意义[J].矿床地质,23(1):1-10.
    118.林新多.1999.岩浆-热液过渡型矿床[M].武汉:中国地质大学出版社.1-139.
    119.梅厚均,杨学昌,王俊达,等.1993.额尔齐斯河南侧晚古生代火山岩的微量元素地球化学与构造环境的变迁史[M].见:涂光炽主编,新疆北部固体地球科学新进展,北京:科学出版社,199-216.
    120.牛贺才,许继峰,于学元,等.1999.新疆阿尔泰富镁火山岩系的发现及其地质意义[J].科学通报,44(9):1002-1004.
    121.牛贺才,于学元,许继峰,等.2006.中国新疆阿尔泰晚古生代火山作用及成矿[M].北京:地质出版社.
    122.倪培,Rankin A H,周进.2003.白云鄂博地区碳酸岩墙及岩墙旁侧石英岩中的包裹体研究[J].岩石学报,19(2):297-306.
    123.任纪舜,姜春发,张正坤,等.1980.中国大地构造及其演化[M].北京:科学出版社.
    124.芮行健,吴玉金.1984.中国阿尔泰花岗岩的成因[A].见:花岗岩地质与成矿关系国际学术会议论文集[C],南京:江苏科学技术出版社,180-190.
    125.沈保丰,翟安民,杨春亮,曹秀兰.2005.中国前寒武纪铁矿床时空分布和演化特征[J].地质调查与研究,28(4):196-206.
    126.沈其韩.1998.华北地台早前寒武纪条带状铁英岩地质特征和形成的地质背景[A].程裕淇.华北地台早前寒武纪地质研究论文集[C].北京:地质出版社,1-30
    127.沈保丰,翟安民,苗培森,司马献章,李俊建.2006.华北陆块铁矿床地质特征和资源潜力展望[J].地质调查与研究,29(4):244-252.
    128.宋彪,张玉海,万渝生等.2002.锆石SHRIMP样品制靶、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    129.宋顺昌,张军,温得银.2007.我国钢铁生产形势与青海铁矿可供性分析[J].矿产保护与利用,(2):51-54.
    130.孙启祯.1993.论我国铁矿边缘成矿[J].地质与勘探,(8):13-18.
    131.孙景贵,胡受奚,沈昆,姚凤良.2001.胶东金矿区矿田体系中基性—中酸性脉岩的碳、氧同位素地球化学研究[J].岩石矿物学杂志,20(1):47-56.
    132.舒良树,卢华复,印栋浩,马瑞士,夏飞,卢汉.2001.新疆北部古生代大陆增生构造[J].新疆地质,19(1):59-63.
    133.汤耀庆等.1993.新疆北部大地构造研究的新进展[M].新疆地质科学(第四辑),北京:地质出版社:1-12.
    134.童英,王涛,洪大卫,等.2005.阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb 年龄及其构造意义[J].地球学报,26(9):74-77.
    135.童英,王涛,洪大卫,等.2006a.中国阿尔泰造山带花岗岩Pb同位素组成特征:幔源成因佐证及陆壳生长意义[J].地质学报,80(4):517-528.
    136.童英,洪大卫,王涛,等.2006b.阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志,25(2):85-89.
    137.童英,王涛,洪大卫,代雅建,韩宝福,柳晓明.2007.中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J].岩石学报,23(8):1933-1944.
    138.王京彬,秦克章,吴志亮,胡剑辉,邓吉牛.1998.阿尔泰山南缘火山喷流沉积型铅锌矿床[M].北京:地质出版社,1-210.
    139.王登红.1996.新疆阿舍勒铜矿区双峰式火山岩与成矿背景的初步研究.地质论评,42(1):45-53.
    140.王登红,李天德.2001.阿尔泰东部新生代火山岩的地球化学特点及构造环境.大地构造与成矿学,25(3):282-289.
    141.王登红,陈毓川,徐志刚,李天德,傅旭杰.2002.阿尔泰成矿省的成矿系列及成矿规律[M].北京:原子能出版社,114-185
    142.王安建,张建华,王高尚等编.2002.全球矿产资源战略研究[M].北京:地震出版社,p1-100.
    142.王广耀,张玉亭.1983.新疆阿尔泰震旦系微古植物的发现[J].地层学杂志,1983,7(4).
    143.王广瑞.1996.新疆北部及邻区地质构造单元与地质发展史[J].新疆地质,14(1):12-27.
    144.王宗秀,周高志,李涛.2003.对新疆北部蛇绿岩及相关问题的思考[J].岩石学报,19(4):683-691.
    145.王中刚,于学元,赵振华等.1989.稀土元素地球化学[M].北京:科学出版社,279-289.
    146.王中刚,赵振华.1990.阿尔泰花岗岩类的成因与演化[M].新疆地质科学(第1辑).地质出版社,69-77.
    147.王中刚,赵振华,邹天人,等.1998.阿尔泰花岗岩类地球化学[M].北京:科学出版社,(4):683-691.
    148.王涛,洪大卫,童英,等.2005.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP 年龄、成因及陆壳垂向生长意义[J].岩石学报,21(3):640-650.
    149.王义天,张文智,王磊,毛景文,杨富全,陈文.2007.新疆东天山红石金矿床成矿流体和成矿物质来源示踪[J].岩石学报,23(08):1998-2006.
    150.万博,张连昌.2006.新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨.岩石学报,22(1):145-152
    151.许继峰,梅厚均,于学元,等.2001.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物[J].科学通报,46(8):684-687.
    152.肖序常,汤耀庆,李锦轶,等.1990.试论新疆北部大地构造演化[M].新疆地质科学(第1辑),北京:地质出版社,47-68.
    153.肖序常,汤耀庆.1991.古中亚复合型巨型缝合带南缘构造演化[M].北京:科学出版社.
    154.肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵民.1992.新疆北部及其邻区大地构 造[M].北京:地质出版社.
    155.肖庆辉,邓晋福,马大铨,洪大卫,莫宣学,卢欣祥,李志昌,汪雄武,马昌前,吴福元,罗照华,王涛.2002.花岗岩研究思维与方法[M].北京:地质出版社:12-52.
    156.徐林刚,毛景文,杨富全,李建国,蔡永彪,郑建民.黄成林.2007.新疆富蕴县蒙库铁矿地质、地球化学特征[J].岩石学报,23(10):2653-2664.
    157.谢家亨,许超南,郑颖熠,王文柱.1986.福建龙岩市马坑式铁矿地质特征及成矿地质条件.福建省地质矿产局闽西地质大队地质报告.
    158.薛春纪,姬金生,杨前进.2000.新疆磁海铁(钴)矿床次火山岩热液成矿学.矿床地质,19(2):156-164.
    159.新疆地矿局区域地质调查队.1979.新疆阿勒泰幅1:20万区域地质图.
    160.杨富全,毛景文,闫升好,刘锋,柴凤梅,周刚,刘国仁,何立新,耿新霞,代军治.2008.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J].地质学报,82(4):485-499.
    161.闫升好,张招崇,王义天,陈柏林,周刚,何立新.2005.新疆阿尔泰山南缘乔夏哈拉式铁铜矿床稀土元素地球化学特征及其地质意义[J].矿床地质,24(1):25-32.
    162.叶庆同,傅旭杰,张晓华.1997.阿舍勒铜锌块状硫化物矿床地质特征和成因[J].矿床地质,16(2):97-106.
    163.叶庆同,傅旭杰,王保良.1998.新疆阿尔泰山南缘多金属成矿带的成矿规律[J].地质学报,72(4):349-357.
    164.于学元,梅厚钧,杨学昌,等.1993.额尔齐斯火山岩及构造演化[M].见:涂光炽主编,新疆北部固体地球科学进展,185-198.
    165.余金杰,毛景文.2002.宁芜玢岩铁矿磷灰石的稀土元素特征[J].矿床地质,(21):66-73.
    166.袁旭音,朱韶华,周华平,等.1996.阿尔泰诺尔特地区地层-岩浆-构造轮廓初析[J].新疆地质,14(1):1-11.
    167.袁旭音,周化平.1998.阿尔泰晚古生代两类火山岩建造及成矿特征[J].新疆地质,16(2):125-133.
    168.袁峰,周涛发,岳书仓.2001.阿尔泰诺尔特地区花岗岩形成时代及成因类型[J].新疆地质,19(4):292-296.
    169.岳永君,王式洸,何国琦.1990.中国阿尔泰造山带中花岗岩类的成因类型及其在地壳演化中的意义[M].新疆地质科学(第2辑),地质出版社,72-85.
    170.翟裕生.2004.地球系统科学与成矿学研究[J].地学前缘,11(1):1-10.
    171.赵玉社.2003.我国西部铁矿、富铁矿分布及资源量预测[J].地质找矿论丛,18(S1):115-117.
    172.赵一鸣,林文蔚,毕承思,李大新,蒋崇俊.1990.中国矽卡岩矿床[M].北京:地质出版社.1-351页.
    173.赵一鸣.2004.中国铁矿资源现状、保证程度和对策[J].地质论评,(4):396-417.
    174.赵振华,王中刚,邹天人,等.1993.阿尔泰花岗岩类REE及O、Pb、Sr、Nd同位素组成及成岩模型[M].见:涂光炽主编,新疆北部固体地球科学新进展,北京:科学出版社,239-266.
    175.赵劲松,赵斌,张重泽,王冉.2003.大冶-城门山夕卡岩矿床石榴子石和辉石中熔融包裹体成分研究[J].地球化学,32(6):540-550.
    176.张泾生.2007.我国铁矿资源开发利用现状及发展趋势[J].钢铁,42(2):1-6.
    177.张振福.2003.新疆阿尔泰一带典型铁矿床特征、成因及找矿前景分析[J].地质找矿论丛,18(S1):80-83.
    178.张良臣.1995.中国新疆板块构造与动力学特征.见:新疆第三届天山地质矿产学术讨论会论文集[C].乌鲁木齐:新疆人民出版社,1-14.
    179.张湘炳,杨新岳.1993.阿尔泰地区大地构造演化体制及其形成机理.见涂光炽主编:新疆北部固体地球科学新进展[M].科学出版社.173-184.
    180.张前峰,胡霭琴,张国新,等.1994.阿尔泰地区中、新生代岩浆活动的同位素年龄证据[J].地球化学,23(3),267-280.
    181.张招崇、闫升好、陈柏林,等.2005.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义[J].地球科学,30(3):289-297.
    182.张叔贞,凌其聪.1993.矽卡岩浆型铜矿床特征-以安徽铜陵东狮子山铜矿床为例[J].地球科学-中国地质大学学报,18(6):801-809.
    183.周刚,秦纪华,张招崇,等.2007.新疆富蕴县苏普特一带双峰式火山岩的发现及其地质意义[J].地质论评,53(3):1-12.
    184.周刚,张招崇,罗世宾,何斌,王祥,应立娟,赵华,李爱红,贺永康.2007a.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义.岩石学报,23(8):1909-1920
    185.周刚,张招崇,王新昆,王祥,罗世宾,何斌,张小林.2007b.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和黑云母~(40)Ar-~(39)Ar年龄及意义.地质学报,81(3):359-369
    186.周涛发,袁峰,岳书仓,等.2000.新疆诺尔特地区岩浆活动与成矿作用[M].北京:地质出版社.
    187.周涛发,袁峰,岳书仓.2002.诺尔特火山断陷盆地石炭纪火山岩成因及火山作用机理[J].合肥工业大学学报(自然科学版),25(4):481-486.
    188.周云霞,马文鹏.1991.阿勒泰骆驼峰变质枕状玄武-细碧岩[J].新疆地质,9(1):80-92.
    189.邹天人,曹惠志,吴柏青.1988.新疆阿尔泰造山花岗岩和非造山花岗岩及其判别标志[J].地质学报,62(3):228-243.
    190.曾乔松,陈广浩,王核,单强.2007.阿尔泰冲乎尔盆地花岗质岩体的锆石SHRIMP U-Pb 定年及其构造意义[J].岩石学报,23(8):1921-1932.
    191.朱永峰,宋彪.2006.新疆天格尔糜棱岩化花岗岩的岩石学及其SHRIMP年代学研究:兼论花岗岩中热液锆石边的定年[J].岩石学报,22(1):135-144.
    192.翟裕生,姚书振,林新多,等.1992.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700