用户名: 密码: 验证码:
煤矿塌陷水域水质影响因素及其污染综合评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着煤矿生产规模的扩大和煤电一体化进程的实施,矿区生产生活用水问题日益突出,矿区水资源的缺乏已制约了煤炭工业的发展。而伴随着煤炭的大规模开采,在地下水埋藏较浅的矿区已形成了大面积的煤矿塌陷积水域,因此研究塌陷水域水质演变规律及其控制影响因素,准确评价水质状况,预测水环境变化趋势,对于节约资源提高水资源利用率、避免地下水过度开采具有重要的科学价值和现实意义。
     为研究控制影响因素在水质演变过程中的作用,论文以淮南矿区为例,针对煤矿塌陷水域水资源形成特征,结合塌陷水域水质控制影响因素的特点,选取了封闭性能好、塌陷年龄不同的张集、谢桥、潘一矿塌陷水域进行了连续监测,分析其水质指标随塌陷年龄增长的演变特征。结果显示,塌陷水域中总磷、总氮、总硬度、重金属元素等指标具有累积效应。水质指标相关性分析结果显示,塌陷水域水质特征的形成主要受矿业污染源、农业污染源、矿井开采微震因素的控制影响。
     针对井下开采微震因素对塌陷水域水质的控制影响,论文选用具有数据连续采集、大存储量功能的动态信号监测系统,对潘一矿1612(1)工作面采动区、采空区进行了微振监测实验。实验结果表明,在巨厚松散层条件下,地面仍能监测到震动信号,且信号主频为37HZ。为验证微震控制影响下塌陷水域水质演变特征,论文引入相似材料模拟理论,采用物理模型模拟试验方法论证水质变化情况。研究结果表明在微震因素影响下,悬浮物大量吸附重金属离子并产生沉淀,塌陷水体中重金属含量随微震时间增长而减小,最后逐渐稳定。
     另外,针对水质评价工作中,评价指标选取的合理性及评价模型准确性的问题,论文将主成分分析法与模糊综合评价法结合构建了塌陷水域水质综合评价模型。在评价过程中,对主成分分析法采用逆指标“倒数法”变换、用“对数化法”对指标进行无量纲化两个方面进行改进,提高第一主成分的贡献率;对模糊综合评价法在评价指标因子选取上进行了改进,采用累积方差贡献率大于85%进行判断选取评价因子。
     论文分析了GIS与环境评价模型相结合方式,利用ArcGIS Engine与C#建立水质污染综合评价信息系统。为了实现水质污染综合评价可视化,采用泛克里格插值方法实现监测数据由点到面的转变。利用ArcGIS Engine中的UniversalKriging模型求解潘一矿东、西塌陷水域污染物分布专题图,可以真实、准确地反映环境的实际状况。
     在水质污染综合评价信息系统中,论文引入了矿山开采沉陷学理论,运用概率积分法建立开采沉陷面积预计数学模型,对矿井开采计划内的塌陷水域未来发展趋势进行预测,并绘制了潘集矿区年度下沉等值线,使管理者对潘集矿区塌陷水域发展趋势有一个清晰的认识。
With increasing of the scale of coal exploitation and coal-electricity integrated complex, the water problem in mining area becomes increasingly prominent and the lack of water resource has restricted the industry to develop. Meanwhile, it has formed coal mining subsided water area in large scale by coal production where the groundwater is shallow. So it is of great scientific value and practical significance to study the subsided water quality change regularity and the contor and influence factor, exactly appraise the water quality, and predict the change trend of water environment. It can save the resource, increase the utilization rate and avoid over-exploited of underground.
     In order to study the evolvement characteristics of water quality in different subsided water area with different subsidence age, Panxie mining area of Huainan city is taken in this dissertation. According to the traits of subsided water environment and controlling and influencing factors of water quality, Zhangji, Xieqiao and Panyi mining subsided water areas with different subsidence age and good closed condition are selected to monitor the water indexes and research the evolvement characteristics regularity with time increasing. The results show that total phosphorus, total nitrogen, total hardness and heavy metal elements have cumulative effect. The formation of subsided water quality traits is mainly influenced by mining pollution source, agricultural pollution source and microseism.
     According to the controlling influence of microseism factor to the subsided water quality, dynamic signal monitoring system with data continuous collection, large storage capacity is selected to do microseism monitoring experiment to 1612 (1) working and goaf section of Panyi mining area. The results show that microseism signal can be received from the ground in thick loose layer condition and the signal frequency is 37HZ. To find the water quality regularity influenced by microseism, similar materials simulation theory and physical model simulation method are used to study the water quality. The conclusion is that suspended solids absorbed lots of heavy metal i as and deposited. Besides, the content of heavy metal elements decreased till in stability as microseism time increasing.
     In addition, the comprehensive assessment model of subsided water quality is built with the combination of principal component analysis method and fuzzy comprehensive evaluation method, according to the reasonableness of assessment indexes and accuracy of the model. In the assessment process, the inverse indicator of "countdown method" is used in principal component analysis method and "logarithmization method" is used to the indexes from the non-dimensional aspect, enhancing the contribution of the first principal component rate. The fuzzy comprehensive evaluation factor in the evaluation of selected indicators is carried out to improve the use of the cumulative variance contribution rate of more than 85% evaluation factor to determine the selection.
     The combination style of GIS and environmental assessment model is analyzed in this dissertation, using ArcGIS Engine and C # to set up a water quality assessment information system. In order to make the comprehensive assessment of water quality visual, Universal Kriging interpolation method is used to achieve the transformation of monitoring data from point to surface. The Universal Kriging model of ArcGIS Engine is used to solve the distribution map of water pollutants in the east and west subsided water areas of Panyi mine, which can reflect the actual state of the environment truly and accurately when the water quality monitoring data are adequate.
     The mining subsidence theory and the probability-integral method are used to establish mathematical model for predicting the subsidence area. Forecasting the future development trends of subsided water area in the mining plan and mapping the annual sinking isoline chart of Panji mine area, it will make the administrators have a clear recognition of the subsided water area development trend of Panji mining area.
引文
[1]刘培桐.环境学概论.北京:高等教育出版社,1995:171-174
    [2]马太玲.湖库水质评价及水质模拟预测方法研究[D].内蒙古:内蒙古农业大学,2007
    [3]陆渝蓉.地球水环境学[M],南京:南京大学出版社,1999-3
    [4]张小东.开滦矿区矿井水资源化研究[D]_唐山:河北理工学院,2004
    [5]史本林,余国庆,余国忠.我国水环境可持续发展刍议[J].开封教育学院报,2000,20(2):17-19
    [6]阎世辉.关于我国水环境形势的分析及政策建议[J].环境保护,2001,3:10-14
    [7]Gorry G.A.Scott Morton M.S..A framework for Management Information Systems[J].Sloan Management Rivew,1971
    [8]孙洪星,童有德,邹人和.煤矿区水资源的保护及污染防治[J].中国煤炭,2000,26(3):9-11
    [9]赵向东,孙波,姜福兴.微地震工程应用研究[J].岩石力学与工程学报,2002,21(增2):2609-2612
    [10]GeM.Analysis of source location algorithms:part Ⅰ.Overview and non-iterative methods[J].Acoust.Emiss.2003,21:14-28
    [11]李全晓.矿山微震震源能量表达方法的研究及其应用[D].北京:北京科技大学,2007:3-5
    [12]И.М.别图霍夫,В.А.斯米尔诺夫.对矿山冲击(地震模型)的预测及预防[M].国家地震局科技情报中心编译,苏联地震预报译文集.北京:地震出版社,1989,292-297
    [13]Cook,N.G.W.Seismicity associated with mining[J].Eng.Geol.,1976,10:99-12
    [14]Gibowicz,S.J.,and Kijko.A.著.修济刚,徐平,杨心平译.矿山地震学引论[M].地震出版社.1998.
    [15]JOZEF KABIESZ.Effect of the form of data on.the quality of mine tremors hazard forecasting using neural networks[J].Geotechnical and Geological Engineering,2006,24:1131-1147
    [16]RADIM CIZ.PERIODICITY OF MINING AND INDUCED SEISMICITY 1N THE MAYRAU MINE,CZECH REPUBLIC[J].Stadia geopH,et geod.,1997,41:29-44
    [17]ADAM FILIP IDZIAK.A Study of Spatial Distribution of Induced Seismicity in the Upper Silesian Coal Basin[J].Natural Hazards,1999,19:97-105
    [18]徐世杰,陈忠奇,白琪光.“矿震”诱发机制探讨[J].地震,1987(5):44-49
    [19]梁冰,章梦涛.矿震发生的粘滑失稳机理及其数值模拟[J].阜新矿业学院学报(自然科学版),1997,16(5):521-524
    [20]张少泉,关杰,刘力强,等.矿山地震研究进展[J].国际地震动态,1994(2):1-6
    [21].张少泉,郭建明.地震与自然破裂的整体观[M].地震科学联合基金会编,地震科学整体观研究,北京:地震出版社,1993,98-113
    [22]蒋金泉,张开智.综放开采矿震的成因及防治对策[J].岩石力学与工程学报,2006,25:3276-3281.
    [23]洪纪广,史明霞.频繁矿震作用下断层活化机理及其危害评价[J].中国矿业,2005,14(3):37-41.
    [24]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究与应用[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [25]卞锦宇,方瑞.盐城市地下水水质控制因素分析[J].水文地质工程地质,2003,No.5:56-60
    [26]赵炳成.水源地水质控制因素分析[J].水利学报,1997,No.2:28-33
    [27]梁宝霞.矿震信号识别和定位及其在木城涧煤矿的应用[D].阜新:辽宁工程技术大学,2007:8-19
    [28]Kaiser P.,Fortier E.,Gaucher E.,etal.Contribution to the valuation of microseismic monitoring data recorded from treatment well-results based on 20 hydrofracturing jobs recorded from treatment well[J].11th ADIPEC:Abu Dhabi International Petroleum Exhibition and Conference -Conference Proceeding,2004:343-349
    [29]Soma,Nobukazu,Takehara,etal.SopHie Precise automatic wave picking technique for onsite microseismic monitoring in Hot Dry Rock development.Transactions-Geothermal Resources Council[J].Geothermal Energy.The Reliable Renewable-Geothermal Resources Council 2004Annual Meeting,GRC,2004:239-244
    [30]Curtis A.,Michelini A.,Leslie D.,etal.Adeterministic algorithm for experimental design applied to tomograpHic and microseismic monitoring surveys[J].GeopHysical Journal International,May 2004:595-4506
    [31]Ge Baochen.Interpretation of physical status of arrival picks for MS source location[J].Bull USA,Seism.vol.soc.Am.1990,80:1643-1660
    [32]C.J.de pater,J.Groenenboom,D.B.van Dam,etal.Active seismic Monitoring of hydraulic fractures in laboratory experiments[J].Internati onal Journal of Rock Mechanics & Mining Sciences38(2001 ):777-785
    [33]Maochen Ge.Efficient mine microseismic monitoring[J].lnternational Journal of Coal Geology 64(2005):44-56
    [34]Maxwell S.C.,Urbancic T.L..The role of passive microseismic monitoring in the instrumented oil field[J].Leading Edge(Tulsa,O K ),June,2001:636-639
    [35]Soma,Nobukazu,Takehara,etal.Preeise automatic wave picking technique for onsite microseismic monitoring in Hot Dry Rock development[J].Transactions-Geothermal Resources Council,v28,Geothermal Energy:The Reliable Renewable-Geothermal Resources Council 2004Annual Meeting,GRC,2004:239-244
    [36]Cai M.,Kaiser P.K.,Martin C.D..Quantification of rock mass damage in Underground excavations from microseismic event monitoring[J].International Journal of Rock Mechanics and Mining Sciences,December,2001:1135-1145
    [37]Ren T.X.,Reddish D.J.,Styles P..Numerical modeling and microseismic monitoring to improve strata behaviour[J].Computer Applications in the Minerals Industries,2001:655-659
    [38]Butt S.D.,Calder P.N.,Apel D.B..Use of high frequency and mine-wide Microseismic systems to monitor the movement of blasting induced stresses[J].CIM Bulletin,May,2000:90-95
    [39]Morely A.J.,Murray J.M.,Reed G.C..Microseismie monitoring of shear zones and related seismic activity at Broken Hill[J].Australasian Institute of Mining and Metallurgy Publication Series,2000:331-336
    [40]Hatherly P..Geoteehnieal Applications of GeopHysics in Coal Mining[J].Australasian Institute of Mining and Metallurgy Publication Series,2002:97-100
    [41]单学军,张士诚,张遂安,等.华北地区煤层气井压裂裂缝监测及其扩展规律[J].煤田地质与勘探,2005,33(5):25-38
    [42]史红,姜福兴.基于微地震监测的覆岩多层空间结构倾向支承压力研究[J].岩石力学与工程学报,2008,27,增1:3274-3280
    [43]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):151-1516
    [44]成云海,姜福兴,程九龙,等.关键层诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273-275
    [45]成云海,姜福兴,张兴民,等.微震监测揭示“C”型采场空间结构及应力场[J].岩石力学与工程学报,2007,26(1):102-107
    [46]杨永杰,陈绍杰,张兴民,等.煤矿采场覆岩破坏的微地震监测预报研究[J].岩石力学,2007,28(7):1407-1410
    [47]王爱国,周瑶琪,陈勇,等.基于微地震技术的油田裂缝监测及模拟[J].中国海洋大学学报,2008,38(1):116-120
    [48]李智敏,苟先太,金炜东,等.微地震信号的频率特征[J].岩土工程学报,2008,30(6):830-834
    [49]何春桂,刘辉,桂和荣.淮南市典型采煤塌陷区水域环境现状评价[J].煤炭学报,2005,3(6):754-758
    [50]姚恩亲,桂和荣.应用蚕豆微核技术对煤矿塌陷塘水质的监测[J].环境工程,2006,24(4):57-59.
    [51]Paul L Younger,Christian Wolkersdorfer.Mining Impacts on the Fresh Water Environment:Technical and Managerial Guidelines for Catchment Scale Management[J].Mine Water and the Environment,2004,23:s2-s80
    [52]P.Bukowski,T.Bromek,I.Augustyniak.Using the DRASTIC System to Assess the Vulnerability of Ground Water to Pollution in Mined Areas of the Upper Silesian Coal Basin[J].Mine Water and the Environment,2006,25:15-22
    [53]姚焕玫.基于GIS技术的湖泊水质污染综合评价的研究[D].武汉:武汉大学,2005:3-29
    [54]王晓鹏.河流水质综合评价之主成分分析方法[J].数理统计与管理,2001,20(4):49-52
    [55]胡明星,郭达志.湖泊水质富营养化评价的模糊神经网络方法[J].环境科学研究,1998,11(4):40-42
    [56]郭奇,李亚.未确知测度模型及其在环境质量评价中的应用[J].上海环境科学,2002,21(1):53-55
    [57]陈武,李凡修,梅平.应用多目标决策理想点法综合评价水环境质量[J].环境工程,2002,20(3):64-65
    [58]沈珍瑶,谢彤芳.一种改进的灰关联分析方法及其在水环境质量评价中的应用[J].水文,1997,3:13-15
    [59]金菊良,魏一鸣,丁晶.水质综合评价的投影寻踪模型[J].环境科学学报,2001,21(4):431-434
    [60]方开泰.实用多元统计分析[M].上海:华东师范大学出版社,1989:291-312
    [61].鲍卫锋,黄介生,孔详元.基于主成分分析法的流域水循环效应[J].武汉大学学报(工学版),2007,40(2):29-33
    [62]秦寿康.综合评价原理与应用[M].北京:电子工业出版社,2003
    [63]任若恩,王惠文.多元统计数据分析--理论、方法、实例[M].北京:国防工业出版社,1997
    [64]苏卫华.多指标综合评价理论与方法问题研究[D].厦门:厦门大学,2000:151-177
    [65]严鸿和,陈玉详.专家评分机理与最优综合评价模型[J].系统工程理论与实践,1989年3月
    [66]熊席珍.最优综合评价模型的原理[J].系统工程理论与实践,1992年11月.
    [67]邱东.多指标综合评价方法的系统分析[M].中国统计出版社,1991,12:17-40
    [68]周忠明.加权主成分分析在多指标综合评价中的应用[J].数理统计与管理,1985,No.5
    [69]安希忠,林秀梅.实用多元统计方法[M].吉林科学技术出版社,1992,6
    [70]白雪梅,赵松山.对主成分分析综合评价方法若干问题的探讨[J].统计研究,1995,No.6:47-51
    [71]于秀林,任雪松.多元统计分析[M].中国统计出版社,1999,5:154-166
    [72]雷钦礼.经济管理多元统计分析[M].中国统计出版社,2002,5
    [73]余锦华,杨维权.多元统计分析与应用[M].中山大学出版社,2005,2
    [74]麻荣永,郑二伟,王魁,等.基于主成分分析法的广西水资源可持续利用综合评价[J].广西大学学报,2008,33(1):16-19
    [75]袁田.主成分分析法在研究武汉市各区经济状况中的应用[J].科技创业月报,2008,No.3:95-99.
    [76]王冠丽,刘廷玺,孙铁军,等.基于主成分分析法的土壤蒸发能力影响因子研究[J].安徽农业科学,2008,No.11.
    [77]李梦琴,张剑,崔惠霞,等.主成分分析法在面条品质研究中的应用[J].河南农业大学学报,2008,42(1):95-99.
    [78]游彦雯,张平,王宇虹,等.利用主成分分析法对航天产品质量评估[J].装备指挥技术学院学报,2008,19(2):66-70.
    [79]丛明珠,欧向军,赵青,等.基于主成分分析法的江苏省土地利用综合分区研究[J].地理研究,2008,27(3):575-582.
    [80]赵小亮,周国娜,高宝嘉,等.主成分分析法在承德县森林生态系统健康评价中的应用[J].中国农学通报,2008,24(6):400-403.
    [81]王海涛,阳平华.基于主成分分析法的炮兵目标威胁度评估[J].兵工自动化,2008,27(5):9-11.
    [82]徐进.基于GIS的水环境评价系统[D].镇江:江苏大学,2004
    [83]Sandral Postel.Water and world population growth[J].Journal AWWA.Vol 92,Issue4,April2000:131-138
    [84]龚健雅.地理信息系统基础[M].北京:科学出版社,2001,2
    [85]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999,5
    [86]施建强,徐立中,林志贵.GIS与水环境多源监测信息集成研究[J].计算机工程,2005,31(12):55-57
    [87]李旭详.GIS在环境科学与工程中的应用.北京:电子工业出版社,2003:164-177
    [88]范文义,周洪泽.资源宇环境地理信息系统.北京:科学出版社,2003:201-227
    [89]李旭详.GIS在环境科学与工程中的应用.北京:电子工业出版社,2003:136-177
    [90]Hom C.R.,Crayman W.H..Water-Quality Modeling with EPA Reach File System[J].J.Water Resource.Ping.and Mgmt.,1991,(2):262-274
    [91]科罗拉多州自然资源部,科罗拉多州水土保持局,科罗拉多州睡资源局(美).美国科罗拉多河决策支持系统概述[J].人民长江,1996,27(2):43-46
    [92]Jamcison D.G.,Fedra K..The"Waterware"decision support system for river basin planning:l.conceptual design[J].J.of hydrology 1996,(17 7):163-175
    [93]魏文秋,于建营.地理信息系统在水文学和水资源管理中的应用[J].水科学进展,1997,8(3):296-300
    [94]李宏伟,郭建忠,魏海平.汾河流域水环境地理信息系统设计[J].地理与地理信息科学,2003,19(3):35-37
    [95]彭盛华,赵俊林,翁立达.基于GIS技术的流域水文水环境信息系统开发初探--以汉水流域为例[J].水文,2001,21(1):10-14
    [96]蔡旺华.闽江流域水环境地理信息系统的建设[J].现代计算机,1998,No.3:25-27
    [97]王振红.矿区采煤塌陷塘浮游植物水生态环境研究-以谢二矿塌陷塘为例[D].淮南:安徽理工大学,2005:2-3
    [98]桂和荣,胡友彪,宋晓梅,等.矿业城市浅层地下水资源研究IM].北京:煤炭工业出版社,2002:48-80
    [99]崔龙鹏.淮南煤矿塌陷区煤矸石填充复垦及其对环境的影响[J].安徽地质,1998,8(3):58-61
    [100]大连水产学院主编.淡水生物学(下册)(淡水生态学部分)[M].北京:农业出版社,1989:179-180
    [101]蒋辉主编.环境水化学[M].北京:化学工业出版社,2003,5:74-80
    [102]徐良骥,严家平,高永梅.淮南矿区塌陷水域环境效应[J].煤炭学报,2008,33(4):419-422
    [103]Swaine D.J..why trace elements are important[J].Fuel processing Technology,2002:21-23
    [104]白建峰.淮南煤矸石中若干有害重金属元素含量及其迁移性研究[D].淮南:安徽理工大学,2004:25-29
    [105]Wood J.M..Biological cycle for toxic elements in the environment[J].Science,1974,183:1049-1053
    [106]Forstner U.Wittmann G.T.W.Metal pollution in the aquatic environment[J].Springer,Berlin Heidelberg,New York,1981,486
    [107]奚旦立主编.环境工程手册(环境监测卷)[M].北京:高等教育出版社,1998,8:1005-1008
    [108]陈学庆,苏春利.武汉市墨水湖重金属污染现状分析[J].资源与环境工程,2006,20(4):470-474.
    [109]国家环境保护局.渔业水质标准GB11607-89.1989
    [110]国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准 GB3838[M].北京:中国环境科学出版社,2002
    [111]吴新儒,雷衍之,许昌兴.淡水养殖水化学[M].北京:农业出版社,1980,5:172-245
    [112]张立成,章申,董文江等.长江河源区水环境地球化学[M].北京:中国环境科学出版社,1992,4:86-87
    [113]吴代赦,郑宝山,康往东,等.煤矸石的淋溶行为与环境影响的研究-以淮南潘谢矿区为例[J].地球与环境,2004,32(1):55-59
    [114]陈晶,黄文辉,张爱云,等.我国部分地区煤及煤矸石中汞的分布特征[J].煤田地质与勘探,2006,34(1):5-7
    [115]白建峰.淮南煤矸石中若干有害重金属元素含量及其迁移性研究[D].淮南:安徽理工大学,2004:36-37
    [116]余运波,汤鸣皋.煤矸石堆放对水环境德影响-以山东省一些煤矸石堆为例[J].地学前缘,2001,8(1):163-169
    [117]刘开红,王辉,朱乾德,等.煤矸石与粉煤灰淋溶渗出液对水环境影响研究[J].环境科学与管理,2006,31(4):62-64
    [118]朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J].水科学进展,2004,15(6):775-779
    [119]GeM.Analysis of source location algorithms:part Ⅰ.Overview and non-iterative methods[J].Acoust.Emiss.2003,21:29-51
    [120]何吉平.抚顺老虎台矿断层附近开采诱发矿震机理研究[D].北京:北京科技大学,2002:2-6
    [121]车用太,王倚,黄积刚,等.矿震及其前兆初探[J].中国地震。1993,9(4):334-340
    [122]梁宝霞.矿震信号识别和定位及其在木城涧煤矿的应用[D].阜新:辽宁工程技术大学,2007:20-24
    [123]何国清,杨伦,凌庚锑,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1989,10:221-225
    [124]曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149
    [125]陆菜平,窦林名,吴兴荣,等.煤岩冲击前兆微震频谱演变规律的试验与实证研究[J].岩石力学与工程学报,2008,27(3):519-525
    [126]傅淑芳,刘宝诚,李文艺,等.地震学教程[M].北京:地震出版社,1980,11
    [127]路永正.自然水体多相介质中重金属的分布及迁移转化特征[D].长春:吉林大学,2006:19-27
    [128]奚旦立,刘秀英,郭安然.环境监测[M].北京:高等教育出版社,1987,5:31-38
    [129]陈静生,王飞越,陈江麟.论小于63um粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究[J].环境科学学报,1994,14(4):419-425
    [130]田玉红,余炜,刘正西.痕量金属在悬浮颗粒物上的吸附交换机理[J].广西工学院学报,2004.15(2):73-77
    [131]Gustafson O.,Gschw end PM.A quatic collocids:concepts,dedinitions and current challenges [J].Lim no I Oceanogr.1997,(42):519-528
    [132]Lu Yuefeng,Herbert E.Allen.Partitioning of copper onto suspended particulate matter in river waters[J].The science of the Total Environment,2001,277:119-132
    [133]王文军,张学林,王文华,等.天然水体中生物膜及悬浮颗粒物的元素含量研究应用[J].生态学报,2002,13(8):1001-1006
    [134]陈吉余,陈西庆,陈邦林.长江河口悬浮颗粒物研究[J].海洋湖沼,2000,31(3):295-301
    [135]Lawrence,J.R.,Kopf,G.,Headley,J.V.,etal.Sorption and metalbolism of selected herbicides in river biofilm communities[J].Can.J.Microbiol,2001,47:634-641
    [136]Schorer,M.,Eicele,M..Accumulation of inorganic and organic pollutants by biofilm in the aquatic environment[J].Water,Air,Soil Pollut.,1997,99,651-659
    [137]杜青,文湘华,李莉莉,等.天然水体沉积物对重金属离子的吸附特性[J].环境化学,1996,15(3):199-206
    [138]S.C.Costley,F.M.Wailis.Effect of flow rate on heavy metal accumulation y rotating biological contactor(RBC) biofilms[J].Journal of industrial microbiology &Biotechnology,2000,(24):244-250
    [139]Li Tian Cheng,Jiang Bin,Feng Xia.Purification of organic waste water containing Cu~(2+) and Cr~(3+) by a combined process of micro electrolysis and biofilm[J].ChineseJ.chem.Eng.,2003,11(2):146-150
    [140]董德明.天然水体中细菌胞外聚合物对重金属的吸附规律[J].吉林大学学报,2003,41(4):71-74
    [141]董德明,张昔昔,李鱼,等.自然水体生物膜吸附Mn~(2+)过程中吸附液pH值的变化[J].吉林大学学报(理学版),2003,41(22):234-237
    [142]李鱼,董德明,花修艺,等.湿地水环境中生物膜吸附铅、镉能力德研究[J].地理科学,2002,22(4):445-448
    [143]蔡金娟.东平湖底泥重金属污染评价及释放机理的研究[D].泰安:山东农业大学,2006:16-46
    [144]Beveridge T.J.,Koval S.E.Binding of metals to cell envelopes of Escherichia colik-12[J].Applied and Environmental Microbiology,1981,42:325-335
    [145]佘海燕.河湖沉积物对重金属吸附-解吸的研究概况[J].化学工程师,2005,No.7:30-32
    [146]潘纲.亚稳平衡态吸附(MEA)理论-传统吸附热力学理论面临的挑战与发展[J].环境科学学报,2003,23(2):156-173
    [147]F.Barbier,G.Duc,M.Petit-Ramel.Adsorption of lead and cadmium ions fi'om aqueous solution to the montmorillonite/water interface[J].Colloids and Surfaces,A:PHysieochemical and Engineering Aspects,2000,16:153-159
    [148]王晓蓉,J.戴维.史密斯.提取剂pH对沉积物释放金属的影响[J].环境化学,1989,8(3):1-9
    [149]王新伟,何江,李朝生.水体中重金属的形态分析方法[J].内蒙古大学学报,2002,33(5):587-591
    [150]刘勇,夏之宁,袁佩.水体中重金属形态的毒性研究方法[J].理化检验-化学分册,2001,37(6):286-290
    [151]周建民,党志,蔡美芳.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究,2005,18(3):5-10
    [152]陈建斌.水体中重金属离子的形态及其对生物富集影响[J].微量元素与健康研究,2003,20(4):46-49
    [153]刘岳元,冯铁城,刘应中.水动力学基础[M].上海交通大学出版社,1990:208-226
    [154]范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的释放估算[J].中国科学(D辑),2003,33(8):760-768
    [155]王林山,牛盾.大学化学[M].冶金工业出版社,2005:17-19
    [156]张玉军主编.物理化学[M].郑州大学出版社,2007,1:230-253
    [157]马太玲.湖库水质评价及水质模拟预测方法研究[D].呼和浩特:内蒙古农业大学, 2007:20-27
    [158]袁志发,周静芋.多元统计分析.北京:科学出版社,2004,5:188-206
    [159]叶宗裕.主成分综合评价方法存在的问题及改进[J].统计与信息论坛,2004,19(2):29-34
    [60]冯利华.环境质量的土成分分析[J].数学实践与认识,2003,33(8):32-35
    [161]陈述云,张崇甫.对多指标综合评价的主成分分析方法的改进[J].统计研究,1995,No.1:35-39
    [162]李祚泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004,5:70-107
    [163]Y.Y.Yin etal.Fuzzy relation analysis for multicriteria water resources management[J].Journal of water resources planning and management,1999,125(1):41-47
    [164]K.Sasikumar and P.P.Mujumd ar.Fuzzy opimization model for water quality management of a river system[J].Journal of water resources planning and management,1998,124(2):79-88
    [165]YANG Meini LI Dingfang YANG Jinbo XIONG Wei.FANN -Based Surface Water Quality Evaluation Model and Its Application in the Shaoguan Area[J].Geo-spatial Information Science,2007,10(4):303-310
    [166]刘荣珍,赵军.模糊评价模型在长江水质评价中的应用[J].兰州交通大学学报(自然科学版),2007,26(6):50-52
    [167]邹志红,云逸,王惠文.两阶段模糊法在海河水系水质评价中的应用[J].环境科学学报,2008,28(4):799-803
    [168]黄绍琦,黄家柱,李云梅,等.基于GIS下的太湖水质富营养化模糊综合评价[J].环境科学,2005,26(5):34-37
    [169]邱东.多指标综合评价方法的系统分析IM].北京:中国统计出版社,1991,12:104-110
    [170]吴玮,李小帅,张斌.基于ArcGIS Engine的GIS开发技术探讨[J].科学技术与工程.2006,6(2):176-178
    [171]高磊.湖泊、水库水环境管理信息系统的构建与开发[D].北京,北京工业大学,2007:22-30
    [172]赵俊兰.Kriging法在GIS空间数据内插中的应用[J].有色金属(矿山部分),1998,No.3:35-38
    [173]候景儒,尹镇南,李维明,等.实用地质统计学[M].地质出版社,1998,7:45-60
    [174]基于Kriging方法的空间数据插值研究[J].测绘工程,2007,16(5):5-9
    [175]向永生,孔爱云.克立格估计领域大小的确定方法[J].黄金地质,1998,4(3):76-80
    [176]胡小荣,俞茂宏.用线性规划法求解克立格估值权系数的研究[J].地质与勘探,2001,37 (3):53-57
    [177]姚焕玫.基于GIS技术的湖泊水质污染综合评价的研究[D].武汉:武汉大学,2005:70-81
    [178]煤炭科学研究院北京开采所.煤矿地表移动与覆岩破坏规律及应用[M].北京:煤炭工业出版社,1981,12
    [179]国家煤炭工业局制定.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京.煤炭工业出版社,2000
    [180]中国矿业学院等编.煤矿岩层与地表移动[M].北京:煤炭工业出版社,1981
    [181]马超,何万龙,康建荣.采煤塌陷区塌陷面积的预测方法与分析[J].矿山测量,1999,No.1:15-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700