用户名: 密码: 验证码:
大锻件锻造成形过程中内部空洞型缺陷演化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大锻件是大型成套设备的核心零部件,被广泛应用于电力、冶金、造船、石油化工、核能、航空航天和国防军工领域。大锻件通常工作条件差、载荷大、安全可靠性要求高,因此质量要求极为严格。然而,钢铁冶金过程决定了大型钢锭内部不可避免地会存在空洞型缺陷,内部空洞的存在破坏了金属的连续性,容易形成应力集中与裂纹损伤,导致锻件寿命缩短以致报废。因此,深入认识空洞演化规律,探索提高空洞压实效果的条件,将有助于提高锻件内在质量,促进锻造工艺的制定由经验走向科学。由于大锻件内部分散着大量相对极为微小的空洞型缺陷,为了全面解析空洞在锻造过程中的演变,本文对空洞型缺陷的演化进行了较为系统的研究,试图回答这样的问题:如果大锻件某位置存在空洞型缺陷,那么空洞演化与大锻件锻造过程中的宏观力学量场有何定量关系?空洞演化有何规律?为此,本文基于细观塑性理论,通过理论建模、数值模拟和试验研究,提出了通用的空洞闭合判定准则,开发了模拟空洞演化的计算程序,在DEFORM软件基础上建立了大锻件锻造过程中内部空洞演化的仿真平台,并通过试验验证了所提出的理论和方法的正确性。主要研究内容和成果如下:
     针对大锻件锻造成形过程中内部大量微小空洞同时存在并各自变形的情况,本文提出了研究大锻件内部空洞演化的典型体元模型,典型体元模型是建立空洞演化与大锻件锻造成形工艺之间定量联系的桥梁。典型体元可以归结为大锻件宏观上的一个点元,对微小空洞而言可以视为无限大,典型体元的边界条件为大锻件锻造过程中该点处的宏观力学状态,典型体元内部的速度场决定空洞的演化。基于典型体元模型,运用细观塑性理论,建立了空洞的体积和形状演化参数与宏观力学量场之间的一般关系;基于虚功原理,建立了研究大锻件内部空洞演化的通用方法。典型体元模型为探索大锻件锻造过程中内部空洞型缺陷的演化规律提供了比较成功的研究方法。
     由于大锻件锻造成形过程中内部空洞的体积和形状都会变化,为了得到空洞演化的定量规律,本文基于旋转椭球双曲坐标系和空洞周围基体材料的动可容速度场,采用Rayleigh-Ritz法,对空洞演化进行了详细的数值计算,提出用空洞相对体积(空洞当前体积与空洞初始体积的比)作为判断大锻件锻造成形过程中内部空洞演化的依据,得到了材料属性、应力和应变状态对空洞演化的影响规律。结果表明,空洞体积变形率随着应力三轴度水平和材料Norton指数的增大而单调增加;空洞相对体积随应力三轴度水平的提高和等效应变的增大而减小;随着应力三轴度水平和材料Norton指数的增大,空洞完全闭合所需的远场等效应变减小。
     针对实际生产中对具有明确物理意义和普遍适用性的空洞闭合判定准则的现实需求,本文基于力学分析和数值计算,通过研究球形空洞演化成扁椭球并最终闭合成为裂纹的过程,得到了空洞闭合的插值模型。根据插值模型和空洞演化的数值计算结果,通过引入四个参数,提出了一个简明的空洞体积演化模型,得到了包含材料属性、应力应变状态和温度影响的具有明确物理意义的大锻件内部空洞闭合判定准则,其中温度的影响通过材料Norton指数和应力应变关系来体现。空洞闭合判定准则定量地反映了空洞闭合的一般规律。
     针对大锻件锻造成形过程中难以准确预报内部大量微小空洞同时存在并各自演化这一难题,本文通过开发模拟空洞演化的计算程序,将空洞演化模型嵌入商用软件DEFORM,实现了大锻件锻造成形过程中内部空洞体积演变的定量化和可视化,建立了空洞演化的仿真平台,首次在大锻件锻造过程的模拟中将空洞相对体积同步、直观地显示出来,为锻造工艺的优化和锻造方法的创新提供了理论和计算依据,为揭示空洞演化规律和预报锻造工艺对空洞型缺陷的压实效果提供了一条新途径。在此仿真平台上,对不同砧形的镦粗工艺和多工步多道次的拔长工艺过程中锻件内部空洞闭合情况进行了数值模拟,分析对比了不同锻造方法对内部空洞的压实效果,并提出了钹形砧镦粗方法。
     由于大锻件体积大、重量高、价格昂贵,直接用大锻件进行试验受到诸多限制,而铅是再结晶温度为室温的金属材料,其常温塑性性能与高温钢的塑性性能具有很好的相似性。本文通过在PbSb3铅块上加工空洞并组装成一个整体的方法,制备了可以定量研究空洞演化的试件,试验研究了不同锻造方法对空洞闭合的影响,并采用精密的光学投影仪对空洞体积进行测量,试验结果和数值模拟结果吻合较好,验证了本文建立的大锻件内部空洞演化模型与仿真方法的有效性和准确性。
     利用本文建立的空洞演化仿真平台,分析了1000MW低压转子现行的锻造工艺,在对现行工艺进行定量评估的基础上,建议了新的锻造工艺。研究表明,基于空洞演化仿真平台,通过CAE分析和优化,可以为大锻件设计最优的锻造方法,安排更经济的成形工艺,获得更好的成形质量。
Large forgings, the key parts for heavy machine and equipment, are widely used in power generation, metallurgy, shipbuilding, petrochemical engineering, nuclear power, aerospace and defense industry. The quality requirements of large forgings are extremely strict because large loads, poor working conditions, high safety and reliability requirements are its fundamental characteristics. However, internal defects such as shrinkage cavities and porosity inevitably occur in large ingots during steel casting. The continuity of the metal is destroyed by these internal voids and stress concentration and crack damage are easy to form, resulting in loss of life and discarding. Therefore, understanding of void evolution, exploration of the condition for void closure, and design of forging process to improve the forging quality, are of great theoretical significance and practical value. In this paper, on the basis of theoretical modeling, numerical simulation and experimental study, void evolution in large ingot during hot forging is investigated systemically, which yields the following main achievements:
     Based on mesomechanic plastic theory and the characteristics of large forgings, the representative volume element (RVE) model for void evolution in large ingot during hot forging is put forward, and the relationships between void volume and shape evolution and macroscopic field variables are established. Based on the principle of virtual work, the variational functional for the solution of the local velocity field is derived, and a general method for investigating void evolution is established. The RVE model is a successful solution for studying void evolution in large ingot with a large number of small void and respective deformations during hot forging.
     Through the calculation for void evolution, the relative void volume (the ratio of current void volume to initial void volume) is suggested as the indicator for void evolution in large ingot during hot forging, and effects of the material properties, stress and strain state on void evolution are revealed. The results show that, the volumetric strain-rate of the void increases monotonically with increasing stress triaxiality level and Norton exponent of the material; relative void volume decreases as the stress triaxiality level and effective strain increase; the remote effective strain required for void closure decreases as the stress triaxiality level and Norton exponent increase.
     Based on the numerical results and the interpolation model, a criterion for void closure, which takes the material property, stress and strain state, and temperature into account, is proposed. The effect of temperature is considered in the Norton exponent and the stress-strain relationship. The criterion has a clear physical meaning and a general applicability for large ingot during hot forging.
     By developing the key simulation program for void evolution, the simulation platform for void evolution is established based on the commercial software DEFORM, and for the first time the relative void volume is displayed clearly and synchronously in the simulation of the hot forging process for large ingot. It provides a new approach for selection and evaluation of the traditional forging processes, and a convenient and powerful tool for optimization of forging processes and innovation of forging methods. Based on the established simulation platform for the void evolution, numerical simulations for upsetting processes with different dies and for stretching processes with multi-stroke and multi-pass forging are performed, the effects of different processes on void closure are analyzed and compared, and the cymbal-shaped die upsetting process is proposed.
     A new experimental method is presented for quantitative investigation of the void evolution. Effects of different forging processes on void closure are investigated. The sophisticated optical projector is adopted in the measurement of the size and volume of the void to ensure the accuracy of the test results. Good agreements of the predicted results with the measured ones confirm the validity of the void evolution model, the void closure criterion, and the simulation platform for void evolution in large ingot during hot forging.
     Using the established simulation platform for void evolution, forging processes of 1000MW low-pressure rotor is analyzed and evaluated, and new forging processes are recommended by applying the cymbal-shaped die in the upsetting processes. It shows that, based on the simulation platform for void evolution, the optimum forging method can be designed, the most economical forging process can be arranged and the best forging quality can be achieved through the CAE analysis and optimization.
引文
Banks-sills L. and Budiansky B., 1982. On void collapse in viscous solids[J]. Mechanics of Materials, 1(3): 209-218.
    Becker R., Smelser R.E. and Richmond O., 1989. The effect of void shape on the development of damage and fracture in plane-strain tension[J]. J. Mech. Phys. Solids, 37(1): 111-129.
    Bo?r C.R., Rydstad H., Schr?der G., 1985. Choosing optimal forging conditions in isothermal and hot-die forging[J]. J. Appl. Metalworking, 3(4): 421-431.
    Bokelmann D., Forch K., Fleischer M., Kopp R., 1994. Forging of Heavy Continuous Grain Flow (CGF) Crankshafts Without Intermediate Cooling[C]. Proc.12th IFM, Chicago, pp. 213-218.
    Budiansky B., Hutchinson J.W., Slutsky S., 1982. Void growth and collapse in viscous solids[M]. In: Hopkins, H.G., Sewell, M.J. (Eds.), Mechanics of Solids, Pergamon Press, Oxford, pp. 13-45.
    蔡墉, 2007.我国自由锻液压机和大型锻件生产的发展历程[J].大型铸锻件, (1): 37-44.
    曹起骧,江松,王顺龙,等,1990. FM锻造工艺高温云纹法模拟研究[J].大型铸锻件, (4): 90-97,106.
    曹起骧,王顺龙,杨正汉,等,1988a.用云纹法模拟研究FM法锻造工艺[J].大型铸锻件, (3): 1-8.
    曹起骧,谢冰,杜学刚,等,1988b. WHF法错砧锻造效果模拟研究[J].大型铸锻件,(3):18-24.
    曹起骧,叶绍英,金坚,等,1987a. V型砧锻造时变形规律的云纹法模拟研究[J].大型铸锻件, (2): 1-13. 曹起骧,叶绍英,王顺龙,等,1987b. FM法锻造时变形规律的云纹法模拟研究[J].大型铸锻件, (2): 14-23.
    Cao Q., Ye S., Xie B., Zhong Y.,1987c. Modelling of Free Large Processes by Photo-Electric Scanning Moire Method[C]. Advanced Technology of Plasticity, Proceedings of the 2nd International Conference on the Technology of Plasticity, Stuttgart, August 24/28, 1987 Edited by K. Lange, Volumes II Spinger Verlag, 1987, pp. 1235-1242.
    曹玉田,1979.发电机转子的中心压实锻造[C].第二次锻压学术年会论文. pp.28-32.
    СегалВ.М.,ПаЪликД.А., 1982.ШТАМПОВОЧНОЕПРОИЗВОДСТВО[J].1982.No.9.
    Chaaban M.A. and Alexander J.M., 1976. A study of the closure of cavities in swing forging[C]. In: Tobias, S.A. (Ed.), Proceedings of the 17th International Machine and Tool Design Research Conference, Birmingham, UK, Sept. 20-24, 1976, Macmillan, London, 1977, pp. 633-645.
    Cho J.R., Park C.Y., Yang D.Y., 1992. Investigation of the cogging process by three-dimensional thermo-viscoplastic finite element analysis[J]. Journal of Engineering Manufacture, 206(4): 277-286.
    Cocks A., 1989. Inelastic deformation of porous materials[J]. J. Mech. Phys. Solids, 37(6): 693-715.
    Cook P.M., 1953. Forging research, use of plasticine models[J]. Metal Treatment and Drop Forging, 20: 541-548.
    Coupette W., 1941. Der Einfluss der seigerung und verschmiedung auf die festigkeit-seigenschaften grosser schmiedestucke aus stahl[J]. Stehl und Eisen., 61: 1036-1042.
    崔振山,任广升,徐秉业,等, 2002a.圆柱体内部空洞热锻闭合过程的数值模拟[J].塑性工程学报, 9 (1) : 49-52.
    崔振山,任广升,徐秉业,等, 2002b.大锻件内部空洞的锻合压下率[J].塑性工程学报, 9 (3) : 6-8,13.
    崔振山,任广升,徐秉业,等, 2003a.大锻件空洞的局部效应与锻合压下率研究[J].工程力学, 20 (2): 55-59.
    崔振山,任广升,徐秉业,等, 2003b.圆柱体内部空洞的热锻闭合条件[J].清华大学学报, 43(2): 227-229,233.
    邓冬梅, 2000.大型锻件锻造新理论与新工艺的数值模拟[D].秦皇岛:燕山大学硕士学位论文.
    邓陟,曹起骧,1990.中心压实法锻造工艺的高温云纹法模拟研究[J].大型铸锻件,(3):7-22.
    底学晋, 1988.发展我国大锻件生产的探讨[J].工程建设与设计, (6): 12-19.
    丁信诚, 1991. POF锻造法及其应用[J].大型铸锻件, (4): 30-32.
    东北重型机械学院、第一重型机器厂, 1975.中心压实法模拟实验[R].
    董岚枫,钟约先,马庆贤,等, 2007. 700MW级水轮机主轴内法兰终锻成形工艺数值模拟研究[J].锻压装备与制造技术, (3): 50-55.
    渡边诚,田村子,中田和广,等, 1982.制造优质大锻件的新锻造方法的发展[J].大型铸锻件, 1982, (1): 57-62.傅兰生译.
    杜学刚, 1989.大型支承辊类锻件锻造工艺优化的云纹法模拟[D].北京:清华大学博士学位论文.
    段新建,聂绍珉,1998.圆柱体平板镦粗工艺参数的优化研究[J].塑性工程学报,5(4): 79-84.
    Dudra S.P., Im Y.T., 1990. Analysis of void closure in open-die forging[J]. Int. J. Mach. Tools Manufact., 30(1): 65-75.
    Duva J. M., 1986. A constitutive description of nonlinear materials containing voids[J]. Mechanics of Materials, 5(2): 137-144.
    Duva J.M., Hutchinson J.W., 1984. Constitutive potentials for dilutely voided nonlinear materials[J]. Mechanics of Materials, 3(1): 41-54.
    Flandi L., and Leblond J.B., 2005. A new model for porous nonlinear viscous solids incorporating void shape effects– I: Theory[J]. Eur. J. Mech. A/Solids, 24(4): 537-551.
    福井义典,米沢纯一,山口喜弘,等, 1980.刚塑性有限要素法にょる锻炼效果および内部空隙闭锁过程の解析[J].塑性と加工, 21(238): 975-982.
    付强, 2008.大型轴类锻件锻造过程的数值模拟研究[D].上海:上海交通大学硕士学位论文.
    高士友,韩伟,张立玲,等, 1999.大型模块锻件锻造的关键技术[J].钢铁, 34(7): 28-30,69.
    高艳涛, 2007.大型锻件孔隙性缺陷修复的力学条件及冷却自愈合研究[D].秦皇岛: 燕山大学硕士学位论文.
    G?r?jeu M., Michel J.C., Suquet P., 2000. A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids[J]. Comput. Methods Appl. Mech. Eng., 183(3-4): 223-246.
    Gegel H.L., Malas J.C., Doraivelo S.M., Shende V., 1998. Modeling Techniques Used in Forging Process Design[G], ASM Handbook, vol. 14, Forging, ASM International, USA, pp. 417-442.
    Gologanu M., Leblond J.B., Devaux J., 1993. Approximate models for ductile metals containing nonspherical voids– case of axisymmetric prolate ellipsoidal cavities[J]. J. Mech. Phys. Solids, 41(11): 1723-1754.
    Gologanu M., Leblond J.-B., Devaux J., 1994. Approximate models for ductile metals containing nonspherical voids– case of axisymmetric oblate ellipsoidal cavities[J]. J. Eng. Mater. Technol., 116(3): 290-297.
    郭会光,田继红, 2007.大型锻造的质量控制和研究方略[J].大型铸锻件, (2): 45-46.
    Gurson A.L., 1977a. Continuum theory of ductile rupture by void nucleation and growth: Part I– Yield criteria and flow rules for porous ductile media[J]. J. Eng. Mater. Technol., 99(1): 2-15.
    Gurson A.L., 1977b. Porous rigid-plastic materials containing rigid inclusions– yield function, plastic potential, and void nucleation[C]. In: Taplin, D.M.R. (Ed.), Proceedings of the 4th International Conference on Fracture, Vol.2, Pergamon Press, Oxford, pp. 357-364.
    Hamzah S., St?hlberg U., 1998. A study of pore closure in the manufacturing of heavy rings[J]. J. Mater. Process. Technol., 84(1-3): 25-37.
    Hamzah S., St?hlberg U., 2001. A new pore closure concept for the manufacturing of heavy rings[J]. J. Mater. Process. Technol., 110: 324-333.
    韩静涛, 1995.大型饼类锻件夹杂形缺陷形成机理及控制锻造工艺研究[D].北京:清华大学博士学位论文.
    河合正吉,佐藤一木, 1977.实心钢锭锻造过程中出现的Mannesmann效应[J].大型铸锻
    件, 1981, (1): 84-96.叶伟容,彭云,译自The 8th International Forgemasters Meeting. He M.Y., Hutchinson J. W., 1981. The penny-shaped crack and the plane strain crack in an infinite body of power-law material[J]. J. Appl. Mech., 48: 830-840.
    Hill R., 1956. New horizons in the mechanics of solids[J]. J. Mech. Phys. Solids, 5: 66-74.
    Hill R., 1967. The essential structure of constitutive laws for metal composites and polycrystals[J]. J. Mech. Phys. Solids, 15(2): 79-95.
    Hoff N.J., 1954. Approximate analysis of structures in the presence of moderately large creep deformations[J]. Quarterly of Applied Mathematics, 12(1): 49-55.
    Hopson M.W., Weinmann K.J., Hendrickson A.A., Rowe G.W., 1974. The use of the fiber structure of high-purity aluminum for the study of metal flow in plastic deformation[C]. Proc. 2th North American Metalworking Research Conf., May 20-22, 1974, University of Winsconsin, Madison, pp. 239-254.
    Hsu C. Y., Lee B. J., Mear M. E., 2009. Constitutive models for power-law viscous solidscontaining spherical voids[J]. International Journal of Plasticity, 25(1): 134-160.
    黄华贵,杜凤山,臧新良, 2005.大型零件M锻造法及其孔洞缺陷锻合过程的数值模拟[J].锻压技术, 2005(增): 34-37.
    Huang Z.P. and Wang J., 2006. Nonlinear mechanics of solids containing isolated voids[J]. Trans. ASME Appl. Mech. Rev., 59(4): 210-229.
    Hutchinson J.W., 1983. Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation[J]. Acta metall., 31(7): 1079-1088.
    蒋智, 2003.三维变形过程中空洞闭合的模拟研究[D].北京:机械科学研究院硕士学位论文.
    蒋智,任广升,徐春国,等, 2005.圆柱体热锻件内部单空洞闭合的模拟分析[J].塑性工程学报. 12(1): 47-49,57.
    金宁, 1990.大锻件孔隙性缺陷的压合与焊合规律的研究及高温栅的研究[D].北京: 清华大学博士学位论文.
    Kawai M., 1977. On the Mannesmann Effect Appearing in the Course of Solid Forging of Steel Ingot[C]. Proc. 8th IFM. Kyoto. 1977, pp.421-428.
    Keife H., St?hlberg U., 1980. Influence of pressure on the closure of voids during plastic deformation[J]. J. Mech. Work. Technol., 4(2): 133-143.
    Kiuchi M. and Hsiang S. H., 1981. Limit analysis of behaviours of internal porosity of slab and plate under rolling process[C]. Proc. 9th North American Manufacturing Research Conf., May 19-22, 1981, The Pennsylvania State University, Pennsylvania, pp.107-113.
    Kobayashi S., Lee C.H., 1973. The deformation mechanics and workability in upsetting solid circular cylinders[C]. Proc. North American Metalworking Research Conf., May 14-16, 1973, McMaster university, Hamilton, Ontario, Canada, pp.185-190.
    Kroneis M. and Skamletz T., 1963. Tool shapes for drawing down difficulty workable steel[J]. Stahl und Eisen, 83: 1546-1553.
    Leblond J. B., Perrin G., Suquet P., 1994. Exact results and approximate models for porous viscoplastic solids[J]. International Journal of Plasticity, 10(3): 213-235.
    Lee B.J., Mear M.E., 1992. Axisymmetric deformations of power-law solids containing a dilute concentration of aligned spheroidal voids[J]. J. Mech. Phys. Solids, 40(8): 1805-1836.
    Lee, B.J., Mear, M.E., 1994. Studies of the growth and collapse of voids in viscous solids[J]. J. Eng. Mater. Technol., 116(3): 348-358.
    李名尧, 2004.模具CAD/CAM[M].机械工业出版社, 2004.
    李琼, 1999.锥形板镦粗在大锻件锻造中的应用[J].锻压技术, (3): 9-10.
    Li Zhenhuan, Huang Minsheng, 2005. Combined effects of void shape and void size– oblate spheroidal microvoid embedded in infinite non-linear solid[J]. Int. J. Plasticity, 21(3): 625-650.
    梁晨, 2003.大型模块锻造工艺模拟与CAPP专家系统研究[D].秦皇岛:燕山大学博士学位论文.
    梁晨,刘助柏, 2004. LZ锻造的砧宽比、料宽比的临界值研究[J].锻压技术, (3): 14-16.
    廖培根,方刚,雷丽萍,等, 2007a.大锻件中心压实法(JTS)锻造过程有限元分析[J].锻压技术, 32(6): 43-46.
    廖培根,方刚,雷丽萍,等, 2007b.一维温差中心压实法锻造过程的有限元分析[J].热加工工艺, 36(17): 73-78.
    刘光辉,郭会光, 1988. WHF锻造法的数学模拟研究[J].大型铸锻件, (1): 1-10.
    刘建生,刘志颖,陈慧琴,等, 2009.模拟技术的集成及在大型锻造工艺研发中的应用[J]. 大型铸锻件, (1): 2-5,15.
    刘娟, 2008.镁合金锻造成形性研究及数值模拟[D].上海:上海交通大学博士学位论文.
    Liu Y., Huang Z. P., 2003. Macroscopic strain potentials in nonlinear porous materials[J]. Acta Mech. Sinica, 19(1): 52-58.
    刘助柏, 1994.平砧拔长矩形截面毛坯的新理论[J].机械工程学报, 30(5): 47-49.
    刘助柏,迟福兴,王桂玲,等, 1988.锻造条件对毛坯内部空洞闭合的影响[J].钢铁, 23(7): 25-30.
    刘助柏,李纬民, 1994.新FM锻造法[J].机械工程学报, 30(4): 79-82.
    刘助柏,王连东, 1994.用锥形板镦粗的新工艺及其力学原理[J].机械工程学报, 30(4): 83-85.
    刘助柏,王连东,刘国辉,等, 1998.大型锻件锻造工艺理论与技术的进展[J].大型铸锻件, (2): 8-13.
    刘庄,赵勇,张沅,等, 1993.大钢锭凝固过程的温度场计算及缩孔疏松预测[J].钢铁研究学报, 5(1): 23-32.
    吕炎,姜秋华,曲万贵, 1982.非对称拔长时大型锻件内部孔隙锻合原理的研究[R].哈尔滨工业大学科学研究报告,第240期.
    吕炎,徐亦公, 1985.大型锻件非对称拔长工艺的有限元分析[J].金属科学与工艺, 4(3): 95-101.
    吕炎, 1999.锻件缺陷分析与对策[M].北京:机械工业出版社.
    卢志辉,赖曾美, 2001.大锻件坯料拔长锻造时的应变分析[J].锻压技术, (1): 10-12.
    卢志辉,赖曾美,阎振宇, 1990.大锻件坯料镦粗时的光塑性模拟研究[J].大型铸锻件, (4): 98-106.
    Lubliner, J., 1990. Plasticity Theory[M]. Macmillan Publication Company, New York.
    罗昊,1992.圆柱体镦粗时刚性体的变化[J].大型铸锻件, (3): 23-26.
    马庆贤,谢冰,曹起骧, 1995.云纹有限元法数值模拟技术探讨[J].塑性工程学报, 2(4): 18-22.
    马庆贤,钟约先,曹起骧, 1999.高温塑性加工过程中缺陷修复规律[J].清华大学学报, 39(11): 94-96.
    马庆贤,钟约先,曹起骧, 2000a.高温塑性加工过程中裂纹损伤与修复特性研究[J].塑性工程学报, 7(2): 58-61.
    马庆贤,钟约先,曹起骧, 2000b.大型锻件夹杂性缺陷的形成及控制锻造工艺[J].清华大学学报(自然科学版), 40(5): 13-15,32.
    马喜腾,钟志平,曹起骧,等, 1998.大型锻件的模拟技术及质量控制研究[J].中国科学基金, (3): 207-210.
    McClintock F. A., 1968. A criterion for ductile fracture by growth of holes[J]. J. Appl. Mech., 35(2): 363-371.
    Nakasaki M., Takasu I., Utsunomiya H., 2006. Application of hydrostatic integration parameter for free-forging and rolling[J]. J. Mater. Process. Technol., 177(1-3): 521-524.
    Norton, F.H., 1929. Creep of steel at high temperature[M]. McGraw-Hill, New York.
    Ono S.I., Minami K., Murai E., Iwadate T., 1994. Three-dimensional simulation on the internal void closure in an ultra-large ingot using a pre-cooling ingot forging process[J].J. Jpn. Soci. Technol. Plast., 35: 1201-1206.
    Pardoen T., Hutchinson J.W., 2000. An extended model for void growth and coalescence[J]. J. Mech. Phys. Solids, 48(12): 2467-2512.
    Park C.Y. and Yang D.Y., 1997. Modelling of void crushing for large-ingot hot forging[J]. J. Mater. Process. Technol., 67(1-3): 195-200.
    Pertence A. E. M., Cetlin P. R., 1998. Analysis of a new model material for the physical simulation of metal forming[J]. J. Mater. Process. Technol., 84(1): 261-267.
    Pietrzyk M., Kawalla R., Pircher H., 1995. Simulation of the behaviour of voids in steel plates during hot rolling[J]. Steel Research, 66(12): 526-529.
    Poursina M., Ebrahimi H., Parvizian J., 2008. Flow stress behavior of two stainless steels: An experimental-numerical investigation[J]. J. Mater. Process. Technol., 199(1-3): 287-294.
    Ragab A.R., 2004. Application of an extended void growth model with strain hardening and void shape evolution to ductile fracture under axisymmetric tension[J]. Eng. Fract. Mech., 71(11): 1515-1534.
    任广升,黄朝晖,白志斌, 1995.镦粗过程中孔洞应变分布的光塑性研究[J].机械工程学报, 31(2): 93-98.
    任广升,谭红,李运兴,等, 1994.镦粗过程中锻件内孔洞缺陷邻域应变分布的模拟研究[J].塑性工程学报, 1(3): 14-19.
    任猛, 1986.大型钢锭内部空洞性缺陷锻合过程的数值模拟和实验研究[D].北京:清华大学博士学位论文.
    任猛, 1987.大型钢锭内部孔洞性缺陷锻合过程的数值模拟和实验研究[J].大型铸锻件, (4): 6-24.
    任猛,张宝印, 1991. RST效应[J].锻压技术, (3): 5-10.
    任运来, 2003.大型锻件内部缺陷修复条件和修复方法研究[D].秦皇岛:燕山大学博士学位论文.
    任运来,聂绍珉,陈颖,等, 2003.大型锻件中疏松缺陷压实条件研究[J].机械工程学报, 39(3): 126-129.
    任运来,聂绍珉, 2006.大型锻件内部空洞缺陷修复的力学条件[J].机械工程学报,42(8): 215-219.
    任运来,聂绍珉,牛龙江,等, 2008.大型锻件内部空洞缺陷修复条件[J].机械工程学报, 44(2): 248-252.
    Rice J. R. and Tracey D. M., 1969. On the ductile enlargement of voids in triaxial stress fields[J]. J. Mech. Phys. Solids, 17(3): 201-217.
    Sinczak J., Majta J., Glowacki M., Pietrzyk M., 1998. Prediction of mechanical properties of heavy forgings[J]. J. Mater. Process. Technol., 80-81: 166-173.
    Sofronis P. and McMeeking R.M., 1992. Creep of power-law material containing spherical voids[J]. J. Appl. Mech., 59: S88-S95.
    S?vik O. P. and Thaulow C., 1997. Growth of spheroidal voids in elastic-plastic solids[J]. Fatigue Fract. Engng. Mater. Struct., 20(12): 1731-1744.
    St?hlberg U., 1986. Influence of spread and stress on the closure of a central longitudinal hole in the hot rolling of steel[J]. J. Mech. Work. Technol., 13(1): 65-81.
    St?hlberg U., Keife H., 1992. A study of hole closure in hot rolling as influenced by forced cooling[J]. J. Mater. Process. Technol., 30(1): 131-135.
    St?hlberg U., Keife H., Lundberg, M., et al., 1980. A study of void closure during plastic deformation[J]. J. Mech. Work. Technol., 4(1): 51-63.
    Sun Jie-Xian, 1988. Analysis of special forging processes for heavy ingots by finite element method[J]. Int.J.Mach.Tools Manufact., 28(2): 173-179.
    孙捷先,郭会光, 1986. FM锻造法的试验与有限元分析研究[J].机械工程学报, 22(4): 47-55.
    Sun Jie-Xian and Guo Huiguang, 1987. Analysis of the closing and consolidation of internal cavities in heavy rotor forgings by finite element method[C]. Advanced Technology of Plasticity, Proceedings of the 2nd International Conference on the Technology of Plasticity, Stuttgart, August 24-28, 1987, Edited by K. Lange, Volumes II Spinger Verlag, 1987, pp.1059-1064.
    Tamura Itaru, Watanabe Shiro, Watanabe Kazuo, et al., 1984. Development of new processes for control of internal deformation and internal stress in hot free forging of heavy ingots[J]. Transactions of the Iron and Steel Institute of Japan, 24(2): 101-106.
    杨煜生,陶永发,王欣,1986a. FM锻造法的刚塑性有限元分析[J].燕山大学学报, (4):9-16.
    杨煜生,陶永发,王欣,1986b.钢锭内部缺陷的锻合及其实验方法[J].机械工程师, (4): 4-7.
    Yee K.C., and Mear M. E., 1996. Effect of void shape on the macroscopic response of non-linear porous solids[J]. Int. J. Plasticity, 12(1): 45-68.
    於美甫,1980.中心压实锻造法的发掘创新试验研究与生产应用[J].大型铸锻件,(4):24-38.
    袁朝龙,钟约先,马庆贤,2002.大型锻件内部孔隙性缺陷修复规律的研究[J].锻压技术, (3): 3-6.
    曾志朋, 2002. DEFORM软件的二次开发与大型锻件锻造工艺优化[D].北京:北京机电研究所硕士学位论文.
    张涛,刘助柏,任运来,等, 1998.气轮机低压转子锻件锻造的关键技术[J].机械工程学报, 34(4): 74-77.
    张艳姝,任运来,吴瑜,等, 2002.砧宽比对孔洞闭合影响的光塑性研究[J].大型铸锻件, (1): 1-3,9.
    张永军, 2003.金属材料内裂纹愈合过程的物理模拟与计算机模拟[D].北京:北京科技大学博士学位论文.
    钟杰, 1989.大型轴类锻件锻造工艺的云纹法模拟研究[D].北京:清华大学博士学位论文.
    钟志平, 1998.大型筒体锻件组织性能控制与高温缺陷修复实验研究[D].北京:清华大学博士学位论文.
    朱明, 1990.大型锻件内部孔洞缺陷闭合过程的理论探讨[J].北京理工大学学报, 10(S2): 58-63.
    朱明,金泉林, 1992a.材料内部孔洞压实机理的研究[J].兵工学报, (1): 59-65.
    朱明,金泉林, 1992b.一种考虑孔洞形状变化的损伤细观模型及其在孔洞闭合过程中的应用[J].应用数学和力学, 13(8): 729-736.
    朱兆良,刘助柏, 1982.大锻件制造技术的进展[J].大型铸锻件, (3): 23-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700