用户名: 密码: 验证码:
纳米微球—薄膜金属结构表面拉曼散射电磁增强数值模拟初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光的发现、微弱信号探测技术的提高和计算机的应用,拉曼光谱检测技术在很多领域的应用都得到了迅猛的发展。已发展的有傅里叶变换拉曼光谱技术、激光共振拉曼光谱技术、共焦显微拉曼光谱技术、高温拉曼光谱技术、固体光声拉曼光谱技术以及表面增强拉曼散射光谱技术等。其中,表面增强拉曼散射光谱检测技术作为一种最有效的增强拉曼检测信号的手段引起了人们极大的关注,高灵敏度使得这种检测技术在材料、化学、生物、医学等应用领域都具有不可替代的优势。
     本文围绕对表面增强拉曼散射中的关键问题一金属纳米结构在电磁场激励下的近场电磁增强效应的数值模拟展开,旨在从理论上认识表面增强拉曼散射现象中的电磁增强效应机理,同时也为实验中能够获得更为显著的表面增强拉曼散射效应提供理论依据。
     本论文内容主要分为四个部分:
     一、利用处理色散介质的时域有限差分(FDTD)方程来模拟金属纳米结构与电磁场的相互作用问题:描述金属自由电子的模型—Drude模型引入金属介质中的Maxwell方程,得出金属色散介质中的时域有限差分方程;利用多层介质系统中的入射波设置方法—等效入射波法来解决近场散射中隐失波作为激励源的入射场设置问题。得出了完整的可以模拟具有任意形状的金属纳米结构与电磁场相互作用的时域有限差分方程,并在此基础上自己编写了程序,且对其有效性进行了验证。
     二、利用我们自己编写的程序对不同结构的金属纳米结构在不同激励下产生的近场增强分布进行了数值模拟。利用推导得出的金属中的时域有限差分方程—(FD)~2TD模拟了单个三角形银粒子、双球形银粒子以及银球多粒子聚集体在平面波和隐失场激励下的近场增强分布,结合金属介质中的电子自由程、介电常数、等离子体频率等物理参量,对不同的金属纳米结构在外部激励场下产生的“热点”中的近场增强因子与该结构形状之间的依赖关系进行了解释,从而分析了金属纳米结构的表面增强拉曼散射效应中的电磁增强效应。
     数值模拟结果表明,金属纳米结构的光学属性、形状、大小、聚集程度以及粒子聚集体的排列方向与激励波的偏振方向之间的关系都直接影响着表面增强拉曼散射实验中样品拉曼信号的强度。利用双球形银粒子以及银球多粒子系统在平面波激励下产生的近场增强分布的数值模拟结果,对Nie等人在单分子拉曼信号探测实验中遗留的几个问题进行了分析,也为实验中选择可以获得更大的局域电场增强效应的金属纳米结构可提供参考。
     三、为吴世法教授的超高灵敏近场表面增强拉曼散射样品池发明专利概念设计进行了模拟研究,在这个思路的指引下对由双层银膜和位于其间的双球形银粒子组成的样品池模型在隐失波和平面波激励下所产生的近场增强效应进行了最佳条件的数值模拟研究。我们的数值模拟结果发现,在这这种金属纳米结构中不仅可以产生常规的“热点”,而且由于电子回路的形成,还产生了一种“非常规热点”。由于在专利样品池中“热点”数目的增多,据此可以在很大程度上提高拉曼探测信号的灵敏度。在文中我们还通过对样品池模型中的几个关键参数进行变化模拟,完成了优化设计。该样品池的制作和实验验证已在本课题组中基本完成。
     四、金属表面增强拉曼散射效应的另一个重要的应用就是镀金属膜的探针尖,其尖端的局域场增强效应使得纳米光纤探针在很多领域中可得到广泛应用,如超高密度光存储、表面修复、多光子分子的荧光光谱以及实现光镊的纳米分辨等。其中一个关键问题,那就是在探针尖端必须能够得到足够的场增强。本文对镀金属膜的全反射四棱锥形探针尖在底部照射方式下产生的近场增强分布进行了数值模拟。结果表明:这种形状的探针在其尖端不仅能获得纳米尺度的聚焦光斑,且光斑的强度也得到了显著的增强。
     文章最后,作为对今后模拟研究意见的初探,初步讨论了不规则形状的物体与电磁场之间的相互作用更设用的数值模拟方法一有限单元法(Finite Element Method,FEM)。FEM的单元自适应不均匀网格划分的独特优势,可使其成为今后研究不规则形状金属纳米结构-尤其是金属尖的“热点”场分布更为有效的一种数值模拟方法。
With the discovery of the laser, the application of the detection of the weak signal and the application of the computer, the applications of the Raman spectrum in many research domains are developed rapidly. And some techniques, such as Fourier Transfer Raman, Resonance Raman, co-force micro-Raman, high temperature Raman, PARS, and SERS, made the sensitivity and the ratio of signal to noise of Raman spectrum improvement. Among of them, SERS which can efficiently and highly enhance Raman signal attracts more and more attentions. The high sensitivity of SERS makes its applications extension from the material, chemical, biology to the medicine.
     This thesis concentrates on the numerical simulations of the near-field enhancement distribution of different kinds of metallic nano-structures under the near-field excitation and aims to explain the electric enhancement in the SERS theoretically and provides scientific basis for the SERS experiment.
     The thesis mainly includes the following four parts:
     1. The frequency-dependence finite-difference time-domain formulation is extended to deal with the metallic material. With a complex frequency-dependent permittivity, the metallic material can be described by Drude model. The equivalent incident wave method which is widely used in the multi-layer medium system is used to resolve the setting problem of evanescent wave excitation arisen from the total internal reflection above the interface. Thus a complete numerical simulation method is got to deal with the interaction between the metallic nano-structures with the random shape and the electric field. And its validity is approved in this thesis.
     2. The near-field enhancement distribution of the metallic nano-structures with the random shape under the near-field excitation is simulated. Through the numerical simulation of the near-field distribution of the different metallic nano-structures under the near-field excitation, the dependence of the field enhancement factor on the shape of configurations is illuminated with the concept of electric free path, dielectric function, plasma frequency and so on.
     The key elements which are related to the Raman signal in SERS are the metallic optical properties, configuration, size, congregation, and the orientation of the metallic colloids. The near-field enhancement distributions of bi-spherical nanoparticles and the multi- spherical nanoparticles system under the excitation of the plane wave are given to explain the problems brought forward by Nie in his paper in 1997 and provide the theory basis for the experiments.
     3. Design of the super sensitivity near-field SERS sample cell is the key technique for extending the application areas of the SERS technique and especially for the single molecule SERS technique. Though the intense field enhancement can be got for the metallic nano-structures with more complex shape, immature producing technique limits their applications in an extensive way. Spherical metallic nanometer particles colloids are still the best choice for the field enhancement. The field distribution for different arrays of bi-spherical Ag particles under the excitation inspires us to design the sample cell composed of two layers of Ag film and Ag particles between them. The optimal design parameters are also simulated in the thesis and the validation of the sample cell has been done experimentally. Several problems of the sample cell on the experiment are pointed out and the means are put forward in this thesis.
     4. The other important application of SERS technique is the probe coated with metallic film, around the end of which the strong local field enhancement effect can be produced. The effect made the probe coated with metallic film extensively used from data storage, surface modification, multi-photo molecular fluorescence spectroscopy, to optical tweezing at nanometer scale resolution. A kind of pyramidal dielectric probe fully coated with thin metallic film is simulated and the results show that the structure can provide not only the nanometer spot but the greatly enhanced field at the tip of the probe.
     A kind of more effective numerical simulation method is introduced to deal with the interaction between the metallic nano-structures with more complex shapes and the electric field.
引文
[1]C.V.Raman,and K.S.Krishnan.A New Type of Secondary Radiation.Nature.1928,121:501-502.
    [2]A.Smekal.Naturwiss.1923,11:873.
    [3]G.Landsberg,and L.Mandelstarn.Naturwiss.1928,16,557,772.
    [4]伍林,欧阳兆辉,曹淑超,等.拉曼光谱技术的应用及研究进展.光散射学报.2005,17(2):180-186.
    [5]王斌,王清,余江,等.FT-Raman光谱对蛋白质二级结构的定量分析.光谱学与光谱分析.1999,19(5),674-676.
    [6]王志国,孙素琴,周群,等.纤维上染料的FT-Raman光谱法研究.光散射学报.2003,14(5),212-215.
    [7]L James,S Michale,B Mark.Measurement of Physilbogic Glucose Levels Raman Spectroscopy,in a Rabbit Aqueous Humor model.LEOS,1998,12(2):311-320.
    [8]东野广智,周群,孙素琴,等.亚麻油组份的红外和拉曼光谱分析.光谱学与光谱分析.2000,20(6):836-837.
    [9]王志国,汪聪慧.橡胶的傅里叶变换拉曼光谱法检验.公安大学学报.2002,3,14-17.
    [10]李蓉,周光明,彭红军,等.3CdSO_4·8 H_2O晶体的傅立叶变换拉曼光谱研究.化学与生物工程.2006,23(4):43-46.
    [11]叶勇,廖展如,向道凤,等.三桥连双铁(Ⅲ)配合物[Fe_2(IDB)_2(O)(CH_3CO_2)_2]Cl_2.CH_3OH的晶体结构及其傅里叶变换拉曼光谱.光散射学报.2001,13(3):179-182.
    [12]中本一男.无机和配位化合物的红外和拉曼光谱.第4版.北京:化学工业出版社,1991,1-398.
    [13]赵晓杰,江山,陆冬生,等。抗癌药物ACM与DNA相互作用的紫外共振拉曼研究。科学通报。1993,38(16):1513-1516。
    [14]赵晓杰,江山,陆冬生,等。紫外共振Raman研究插入类抗癌药物与DNA相互作用。中国科学。1993,23(12):1287-1294。
    [15]李蔚,陈五高,梁永茂。抗癌药物与DNA相互作用的共振拉曼光谱研究。中国激光医学杂志。1998,7(2):102-103.
    [16]Z Q Wen,S A Overman,J R Thomas.Structure and interactions of the single-stranded DNA genous of filamentous virus fd:investigation by ultraviolet resonance raman spectroscopy.Biochemistry.1997,36(25):7810-7820.
    [17]赵晓杰,江山,范永昌,等。维生素B_(12)的激光共振拉曼光谱研究。光谱学与光谱分析。1994,14(1):29-32。
    [18]郝玉兰、张刚生。淡水养殖珍珠中有机物的激光共振拉曼光谱分析。光谱学与光谱分析。2006,26(1):78-80。
    [19]祖恩东,段云彪,张鹏翔.显微共焦拉曼光谱在宝石鉴定中的应用.云南大学学报,2004,26(1):51-55.
    [20]任斌,刘峰名,林旭锋,等。用于电化学界面研究的共焦纤维拉曼光谱技术。电化学。2001,7(1):41-47。
    [21]刘国坤、任斌、顾仁熬,等。苯在铂电极上溴代反应的共焦显微拉曼光谱研究。光散射学报。2002,14(2):90-93。
    [22]杨勇,储炜,南俊民,等。实用电极材料体系的共焦显微拉曼光谱研究。电化学。2001,7(1):31-36。
    [23]刘晨,陈凤恩,张家鑫,等。显微共焦拉曼光谱研究电化学合成聚苯胺膜。物理化学学报。2003,19(9):810-814。
    [24]林海波,徐晓轩,王斌,等。共焦显微拉曼光谱技术深度剖析法在笔迹鉴定中的应用。光谱学与光谱分析。2005,25(1):51-53。
    [25]尤静林,黄世萍,童朝阳,等。高温拉曼光谱仪。光学仪器。1999,21(1):22-26。
    [26]M Yashim a,M Kakihana,R Shimidzu,et al.Ultraviolet 363.8nm Raman Spectroscopic System for in Situ Measurements at High Temperatures.Applied Spectroscopy.1997,51(8):1224-1228.
    [27]P Gillet.Raman Spectroscopy at High Pressure and High Temperature.Phase Transition and Thermodynamic Properties of Minerals.Phys.Chem.Minerals.1996,23:263-275.
    [28]Voron'ko,K Yu,A B Kudryavtsev,et al.Grow th of Crystals,Consultants Bureau.1991,16:199-217.
    [29]马艳梅,崔启良,周强,等。橄榄石原位高温拉曼光谱研究。吉林大学学报。2006,36(3):342-345。
    [30]李郁,陈凯旋、尤静林,等。BBO晶体拉曼光谱的高温特性研究。光散射学报。1997,9(2-3)216-217。
    [31]仇怀利,王爱华,尤静林,等。BSO晶体的高温拉曼光谱与高温结构特征。光谱学与光谱分析。2005,25(2):222-225。
    [32]尤静林,黄世萍,蒋国昌,等。CaSiO_3及其熔体结构的高温拉曼光谱研究。光散射学报。2000,11(4):378-381。
    [33]尤静林。蒋国昌,王桢枢,等。TiO_2晶型及其相变的高温拉曼光谱研究。光散射学报。2004,16(2):95-98。
    [34]邹文冬。固体中光声拉曼效应的理论分析。量子电子学报,2003,20(2):162-167.
    [35]J Sneider,Z Bozoki,G Szabo,et al.Methane detection with single laser photo-acoustic Raman spectroscopy.AlP Conference Proceedings.1999,463:271-273.
    [36]唐志列,司徒达,梁瑞生。液体的脉冲差分光声喇曼光谱。光学学报。1993,13(4):379-382。
    [37]J J Barrett,M J Berry.Photoacoustic Raman spectroscopy(PARS) using cw laser sources.Applied Physics letters.1979,34(2):144-147.
    [38]C K N Patel,A C Tam.Optoscoustic Raman gain spectroscopy of liquids.Applied Physics letters.1979,34(11):760-767.
    [39]M Fleischrnann,P J Hendra,A J McQuillan.Raman spectra of pyridine adsorbed at a silver electrode Chemical Physical.Letters.1974,26:163-166
    [40]D L Jeanmaire,R P Van Duyne.Surface Raman spectroelectrochemistry Part I.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode.Journal of Electroanal.Chemical.1977,84(1):1-20..
    [41]H.Metiu.Surface enhanced spectroscopy.Progress of Surface Science,1984,17:153-320.
    [42]M.Moskovits.Surface-Enhanced Spectroscopy.Reviews of Modern Physics.1985,57:783-826.
    [43]S.Hayashi,M.Samejima.SERS activity of gas-evaporated silver particles.Solid State Commum.(USA).1985,55(12):1085-1088.
    [44]T.R.Jensen,G.C.Scharz,R.P.Van Duyne.Nanosphere Lithography:Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nano-particles by Ultraviolet-Visible Extinction Spectroscopy and Electrodynamic Modeling.Journal of Physical Chemistry B.1999,103:2394-2401.
    [46]Katrin Kneipp,Yang Wang,Harald Kneipp,et al.Single Molecule Detection Using Surface-Enhanced Raman Scattering(SERS).Physical Review Letters.1997,78:1667-1670.
    [47]Hongxing Xu,E J Bjerneld,M K(a|¨)ll,et al.Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering.Physical Review Letters.1999,83:4357-4360.
    [48]Pettinger B.Adsorption at Electrode Surface.New York:VCH.1992:285-345.
    [49]武建劳,郇宜贤,傅克德,等。表面增强拉曼散设概述。光散射学报。1994,6(1):52-62;109-118
    [50]D.L.Jeanmaire,R.P.Van Duyne.Surface Raman spectroelectrochemistry Part Ⅰ.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode.J.Electroanal.Chem.1977,84:1-20.
    [51]M.G.Albreche,J.A.Greighton.Anomalously intense Raman spectra of pyridine at a silver electrode.J.Am.Chem.Soc.1977,99:5215-5217.
    [52]M.Moskovits.Surface-enhanced spectroscopy.Reviews of Modren Physics.1985,57(3):783-826.
    [53]A.Otto.Raman spectra of(CN)~- adsorbed at a silver surface.Surf.Sci.1978,75,392-396.
    [54]F.Barz,et al.Effect of laser illumination oxidation-reduction cycles upon surface-enhanced Raman scaterfing from silver electrodes.Chem.Phys.Lett.1982,91:291-295.
    [55]T.T.Chen,K.U.von Raben,J.F.Chang,B.L.Laube.Laser illumination effects on the surface morphology,cyclic voltammetry,and surface-enhanced raman scattering of Ag electrodes.Chem.Phys.Lett.1982,91:494-500.
    [56]J.Billmann,G.Kovacs,A.Otto.Enhanced Raman effect from cyanide adsorbed on a silver electrode.Surf.Sci.1980,92:153-173.
    [57]R.Holze.Preparation of gold electrodes for surface enhanced Raman spectroscopy SERS.Surf.Sci.1988,202(3):612-620.
    [58]Ping Gao,M.J.Weaver.Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding:benzene and monosubstituted benzenes adsorbed at gold electrodes.J.Phys.Chem.1985,89:5040-5046.
    [59]M.L.Patterson,M.J.Weaver.Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding:simple alkenes and alkynes adsorbed at gold electrodes.J.Phys.Chem.1985,89:5046-5051.
    [60]L.W.H.Leung,M.J.Weaver.Extending surface-enhanced raman spectroscopy to transition-metal surfaces:carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes.J.Am.Chem.Soc.(USA).1987,109(17):5113-5119.
    [61]J.C.Rubin,G.Kanen.Raman spectra of silver coated graphite and glassy carbon electrodes.Appl.Surf.Sci.(Netherlands).1989,37(2):233-243.
    [62]J.A.Creighton,C.G.Blatchford,M.G.Albrecht.Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength.J.Chem.Soc.Faraday Trans Ⅱ,1979,75:790-805.
    [63]C.G.Blatchford,J.R.Cambell,J.S.Creigh.ton.Plasma resonance—enhanced raman scattering by absorbates on gold colloids:The effects of aggregation.Surf.Sci.1982,120:435-455.
    [64]H.Wetzel,H.Gerischer.Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles.Chem.Phys.Lett.1980,76:460-464.
    [65]K.U.yon Raben,R.K.Chang,et al.Wavelength dependence of surface-enhanced Raman scattering from silver colloids with adsorbed cyanide complexes,sulfite and pyridine.J.Phys.CHem.1984,88:5290-5296.
    [66]Fan Ni,Ph.D.The University of Nebraska Lincoln,1989,219,Adviser:Therese M.Cotton,Order Number DA9004697
    [67]Fan Ni,Therese M.Cotton.Chemical procedure for preparing surface-enhanced Raman scattering active silver films.Anal.Chem.1986,58:3159-3163.
    [68]Y.Mo.Et al.Surface enhanced Raman scattering of pyridine on silver surfaces of different roughness.Surf.Sci.1983,133:452-458.
    [69]R.K.Chang,T.E.Furtak.Surface Enhanced Raman Scattering.New York:Plenum Press.1982.
    [70]R.K.Chang,B.L.Laube.CRC Crit Review of Solid State Material Science.1984,12:1-73.
    [71]R.L.Birke,T.Lu,J.R.Lombardi.Techniques for Characterization of Electrodes and Electrochemical Processes.New York:John Wiley & Sons.1991:211-277,
    [72]Z.Q.Tian,B.Ren.Progree in Surface Raman Spectroscopy.Xiamne:Xiamen University Press.2000.
    [73]任斌,田中群。固体催化剂的研究方法 第十六章 电化学催化中的激光拉曼光谱法(上)。石油化工。2002,31(6):488-499。
    [74]张鹏翔,郭伟力,李秀英。表面增强Raman效应(SERS)。光谱学与光谱分析。1984,7(1):1-7。
    [75]Kerker,M.The Scattering of Light and Other Electromagnetic Radiation;Academic:New York,1969.
    [76]D.S.Wang,H.Chew,M.Kerker.Scattering of a Focused beam by moving particles.Applied Optics,1980,19(4),256-261.
    [77]M.Kerker,D.S.Wang,H.Chew.Surface enhanced Raman scattering(SERS) by molecules adsorbed at spherical particles.Applied Optics,1980,19,3373-3388.
    [78]Errata.Surface enhanced Rarnan scattering(SERS) by molecules adsorbed at spherical particles:errata.Applied Optics.1980,19:4159-4165.
    [79]J.I.Gersten and A.Nitzan.Calculation of rotational constants by asymptotic expansion.J.Chem.Phys.1980,70,3023-3026.
    [80]P.K.Aravind,A.Nitzan and H.Metiu.The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres.Surf.Sci.1981,110:189-204.
    [81]J.I.Gersten.The effect of surface roughness on surface enhanced Raman scattering.J.Chem.Phys.1980,72:5779-5780.
    [82]C.Y.Chen,E.Burstein.Evidence for the K~*(1300) in π~-p Interactions at 6 GeV/cPhys.Rev.Lett.1980,19:44-47.
    [83]M.Moskovits.Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals.J.Chem.Phys.1978,69(9):4159-4161.
    [84]R.H.Richit.Plasma Losses by Fast Electrons in Thin Films.Phys.Rev.1957,106:874-881.
    [85]J.A.Porto,P.Johansson,S.P.Apell,et al.Resonance shift effects in apertureless scanning near-field optical microscopy.Phys.Rev.B.2003,67:085409-085410.
    [86]F.W.Kin,R.P.Van Duyne,G.C.Schatz.Theory of Raman scattering by molecules adsorbed on electrode surfaces.J.Chem.Phys.1978,69:4472-4481.
    [87]K.L.Kliewer,R.Fuchs.Anomalous Skin Effect for Specular Electron Scattering and Optical Experiments at Non-Normal Angles of Incidence.Phys.Rev.,1968,172:607-624.
    [88]J.P.Kottmann,O.J.F.Oliver,D.R.Smith,et al.Plasmon resonances of silver nanowires with nonregular cross section.Phys.Rev.B.2001,64:235402-235412.
    [89]J.P.Kottmann,O.J.F.Oliver.Influence of the cross section and the permittvity on the plason-resonance spetrun of silver nanowires.Appl.Phys.B.2001,73:299-304.
    [90]J.P.Kottmann,O.J.F.Oliver,D.R.Smith,et al.Dramatic localized electromagnetic enhancement in plasmon resonant nanowires.Chem.Phys.Lett.2001,341:1-6.
    [91]M.Futamata,Y.Maruyama,M.Ishikawa.Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method.J.Phys.Chem.B.2003,107:7607-7617.
    [92]A.Pack,M.Hietschold,R.Wannemacher.Failure of local Mie theory:optical spetra of colloidal aggregates.Optic.Commu,2001,194:277-287.
    [93]P.K.Aravind and Horia Metiu.The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure;applications to surface enhanced spectroscopy.Surf.Sci.1983,124:506-528.
    [94]Y.Mo.Et al.Surface enhanced Raman scattering of pyridine on silver surfaces of different roughness.Surf.Sci.1983,133:452-458.
    [95]Y.Mo.Et al.The influence of surface roughness on the Raman scattering of pyridine on copper and silver surfaces.Solid Static Comm.1984,50(9):829-832.
    [96]兰燕娜,周玲。表面增强拉曼光谱。南通工学院学报(自然科学版)。2004,3(2):21-23。
    [97]A.Otto,Exicitation of Nonradiative Surface Plasmon Waves in Silver by the Method of Frustrated Total Reflection.Z.Physik.1968,216:389-410.
    [98]E.Kreschmann.Die Bestimmung Optischer Konstanten Von metallen durch Anregung Von Oberflachen plasma schw inggungen.Z.Physik.1971,241:313-324.
    [99]V.M.Agranovich,D.L.Mills.Surface Polariton.North-Holland,Amsterdam.1982.
    [100]H.Raether.Surface Plasmons.Springer-Verlag,Berlin.1988.
    [101]A.D.Boardaman.Electromagnetic Surface Modes.John Wiley &Sons,New York.1982.
    [102]A.V.Zayats,I.I.Smolyaninov,A.A.Maradudin.Nano-optics of surface plasmon polariton.Phys.Rep.2005,408:131-314.
    [103]E.Burstein,Y.J.Chen,C.y.chen et al.Giant Raman scattering by adsorbed molecules on metal surfaces.Solid state communications.1979,29:567-570.
    [104]F.J.Adrian.Charge transfer effents in surface-enhanced Raman scattering.J.Chem.Phys.1982,77(11):5302-5314.
    [105]J.R.Lobardi,R.L.Birke,Tianhong Lu,et al.Charge-transfer theory of surface enhanced Raman spectroscopy:Heraberg-Teller contributions.
    [106]田中群,任斌,王仲权。表面增强拉曼光谱在电化学中的应用及进展。光散射学报。1998,10(3-4):186-199。
    [107]M.Bron,R.Holze.Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ-infrared and surface-enhanced Raman spectroscopy.J.Electroanal.Chem.1995,385:105.
    [108]Z.Q.Tian,B.Ren,B.W.Mao.Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces.J.Phys.Chem.B.1997,101:1338-1346.
    [109]Z.Q.Tian,W.H.Li,Z.H.Qiao.Russian J.Electrochem.1995,31:1014-
    [110]S.Sharonov,I.Nabiev,A.Feofanova,et al.Confocal 3-dimensional scanning laser Raman-SERS-fluorescence microprobe spectral imaging and high-resdution application.J.Raman Spectroscopy.1994,25(8-9):699-707
    [111]R.A.Bailey,S.L.Kozak,T.W.Michelsen,et al.Coord.Chem.Rev.1971,6:407-
    [112]S.Ahrland,J.Chatt,N.R.Davies.The relative affinities of ligand atoms for acceptor molecules and ions.Quart Rev.Chem.Soc.1958,12:265-276.
    [113]田中群。表面增强拉曼光谱研究电化学中的共吸附现象。物理化学学报。1988,4:344-346
    [114]M.Fleischmann,P.J.Hendra,I.R.Hill,et al.J.Electroanal.Chem.1981,117:243-
    [115]B.Pettinger,M.R.Phiopott,J.G.Gordon.Further observations of the surface enhanced Raman spectrum of water on silver and copper electrodes.Surface Sci.1981,105:469-474
    [116]T.T.Chen,P.K.Chang.Surface-enhanced Raman scattering of interfacial DOD,HOD,and OD~-.Surface.Sci.1985,158:325-330.
    [117]D.Gosztola,M.J.Weaver.Electroinduced structural changes in manganese dioxide manganese hydroxide films as characterize by real-time surface-enhanced Raman spectroscopy.J.Electroanal.Chem.1989,271:141-144.
    [118]T.H.Lu,T.M.Cotton,R.L.Birke,et al.Raman and Surface-enhanced Raman spectroscopy of the three redox forms of 4,4'-bipyridine.Langmuir.1989,5:406-414.
    [119]X.P.Gao,D.Gosztola,M.J.Weaver.J.Phys.Chem,1989,93:3753-3760.
    [120]H.G.M.Edwards,A.F.Johnson,I.R.Lewis.Raman Spectroscopy.1993:24:275-
    [121]J.Bukowska,K.Jackowska.Electrochim Acta,1990,35:315
    [122]F.Martin,A.C.Prieto,J.A.Desaja,et al.SERS study of the pyrrole polymerization.J.Mol.Struct,1988,174:363-368.
    [123]田中群,雷良才,景遐斌。苯胺在银和金电极上的表面增强拉曼光谱.物理化学学报,1988,4:458-460.
    [124]M.Fleischmann,G.Sundholm,Z.Q.Tian.A comparative study of the efficiency of some organic inhibitors for the corrosion of copper on aqueous chloride media using electrochemical and surface-enhanced Raman scattering techniques.Electrochim Acta.1985,30(7):879-888.
    [125]Y.J.Xiao,T.Wang,X.Q.Wang,et al.Electroanal.Chem.1997,433:49-
    [126]查英华,魏宝明,田中群,等。用表面增强拉曼光谱演就BMAT对不锈钢的缓蚀机理。电化学。1995,1(2):152-158。
    [127]M.A.Bryant,J.E.Pemberton.Surface Raman scattering of self-assembled monolayers formed forml-alkanethiols at silver electrodes.J.Am.Chem.Soc.1991,113:3629-3633.
    [128]T.Zhu,H.Z.Yu,S.M.Cai,et al.Liq.Cryst.Sci.Tech.A.1997,29479-
    [129]D.W.Hatchett,K.J.Stevenson,W.B.Lacy,et al.Electrochemical Oxidative Adsorption of Ethanethiol on Ag(111).J.Am.Chem.Soc.1997,119:6596-6599.
    [130]M.Tsen,L.Sun.Anal.Chim.Acta.1995,307:333-
    [131]M.L.Patterson,M.J.Weaver.J.Phys.Chem.1985,89:133-
    [132]钟起玲,吴文,李五湖,田中群.电催化甲酸氧化中钯微粒与聚苯胺的相互作用.物理化学学报.1994,10(09):813-817.
    [133]E.Koglin,J.M.Sequaris.Top.Curr.Chem.1986,134:1-
    [134]T.M.Cotton.In Surface and Interfacial Aspects of Biomedical Polymers.J.Andrade,New York:Plenum Press.1985,2:161.
    [135]T.M.Cotton.In Spectroscopy od Surface,edited by R.J.H.Clarke and R.E.Hester.New York:Wiley.1988,91.
    [136]I.R.Nabiev,R.G.Efremov,G.D.Chumanov.Sov.Phys.Usp.1988,31:241-
    [137]熊健、盛蓉生,化学物理学报,1989,2(1):59-
    [138]H.Lee,S.W.Suh,M.S.Kin.J.Raman.Spectroscopy.1990,21:237-
    [139]Sanchez-Cortes,J.V.Garcia-Ramos.J.Raman Spectrosc.1990,21:679-
    [140]I.R.Nabiev,K.V.Sololov,O.N.Voloshin.Surface-enhanced Raman spectroscopy of biomolecules Ⅲ:Determination of the local destabilization regions in the double helix.J.Raman Spectrosc.1990,21:333-336.
    [141]C.Otto,F.P.Hoeben,J.Greve.Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP.J.Rman Spectrosc.1991,22:791-796.
    [142]L.A.Gearheart,H.J.Ploeh,et al.Oligonucleotide adsorption to gold nanoparticles:a surface-enhanced Raman spectroscopy study of intrinsically bent DNAJ.Phys.Chem.B.2001,105(50):12609-12615.
    [143]沈鹤柏,周文俊,等。寡聚脱氧核苷酸吸附状态随电位的变化。物理化学学报,2002,18(6):490-494.
    [144]C.E.Amri,M.H.Baron.Spectrochimica Acta Part A.2003,59
    [145]T.Watanabe,H.maeda.Adsorption-Controlled Redox Activity.Surface-Enhanced Raman Investigation of Cystine versus Cysteine on silver Electrodes.J.Phys.Chem.1989,93:3258-3260.
    [146]R.F.Paisley,M.D.Morris.Prog.Surface enhanced Raman spectroscopy of small biological molecules.Anal.Spectrosc.1988,11:111-140.
    [147]T.M.Heine,A.M.Ahem,R.L.Garrell.J.Am.Chem.Soc.1991,113:846-
    [148]H.Y.Deng,Q.Z.He,Z.S.Xu,et al.Spectrochenica Acta.1993,49A(12):1709:
    [149]Hu Jun,R.S.Sheng,Z.S.Xu.Et al.Spectrochinmica Acta.1995,51A(6):1087-
    [150]K.V.Sokolov,N.E.Byramova,L.V.Mochalova,et al.Detection of sialic acid residues and studies of their organization in normal and tumor al-acid glycoproteins as probed by surface-enhanced Raman spectroscopy.Appl.Spectroscopy.1993,47(5):535-538.
    [151]K.Kneipp,Y.Wang,H.Kneipp,et al.Single molecule detection using Surface-enhanced Raman scattering.Phys.Rev.Lett.1977,78:1667-1670.
    [152]K.Kneipp,H.Kneipp,G.Deinum.Et al.Single molecule detection of a cyanide dye in silver collidal solution using near infrared Surface-enhanced Raman scattering.Appl.Spectrosco.1998,52:175-178.
    [153]K.Kneipp,H.Kneipp,V.B.Kartha,et al.Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering(SERS).Phys.Rev.E.1998,57:R6281.
    [154]S.Nie,S.R.Emory.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science,1997,275:1102-1106.
    [155]K.Kneipp,H.Kneipp,I.Itzkan,et al.Surface-enhanced non-linear Raman scattering at the single molecule level.Chem.Phys.1999,247:155-162.
    [156]胡家文,赵冰,徐蔚青,等。汽界面二维银颗粒表面上的单分子拉曼光谱检测。高等学校化学学报,2002,23(1):123-125。
    [157]Z.H.Zhou,F.R.Xiao,L.Liu,et al.Probing single-molecules by surface-enhanced Raman scattering with linearly and circularly polarized laser.Opt.Comm.2005,
    [158]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's eqution in isotropic media,IEEE Trans.Antennas Propagat..1966,AP-14:302-307.
    [159]R.Holland.THREDE:a free-field EMP couple and scattering code,IEEE Trans.Nuc.Sci.1977,NS-24:2416-2421.
    [160]K.S.Kunz and Luebber.The Finite Difference Time Domain Method for Electromagnetics.Boca Raton,FL:CRC Press,1993.
    [161]Taflove A.Computational Electrodynamics:The Finite Difference Time Domain Method.Norwood,MA:Artech House,1995.
    [162]Taflove A.(Ed).Advances in Computational Electromagnetics:The FDTD Method,Norwood,MA:Artech House,1998.
    [163]王长清,祝西里.电磁场计算中的时域有限插分法.北京:北京大学出版社,1994.
    [164]高本庆.时域有限差分法.北京:国防工业出版社,1995.
    [165]葛德彪,闫玉波.电磁波时域有限差分法.西安:西安电子科技大学出版社,2002.
    [166]王秉中.计算电磁学.北京:科学出版社,2002.
    [167]A.Taflove and M.E.Brodwin.Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Finite-Dependent Maxwells Equations.IEEE Trans.Micro.Theory Tech.1975,MTT-23:623-630.
    [168]Enquist B,Majda A.Absorbing Boundary Conditions for the Numerical Simulation of Waves.Math.Comp.1977,31:629-651.
    [169]G.Mur.Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations.IEEE Trans.EMC.1981,23:377-382.
    [170]J.Y.Fang and K.K.Mei.1988 IEEE AP-S International Symposium,Syracuse.1988,NY,USA,June 6-10:427-475.
    [171]Z.P.Liao,H.L.Wong,and B.P.Yang.Scientia Sinica(series A),1984,27:1063-1076.
    [172]J.P.Berenger.A perfectly match layer for the absorption of electromagnetic waves.Journal of Computational Physics.1994,114:185-200.
    [173]Kenneth Demarest,Richard Plumb,and Zhubo Huang,IEEE Trans.On.Ant.and Propag.,Vol.43,No.10,Oct.1995.
    [174] R. Luebbers, F. Hunsberger, K. Kunz, and R. Standler. A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials. IEEE Trans. Elaectro-magn. Compat. 1990, 32:222-227.
    
    [175] R. Luebbers, F. Hunsberger, and K. Kunz. A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma. IEEE Trans Ctions on Antennas and Propagation, 1991,39: 29-34.
    
    [176] L. D. Landau et al. Electrodynamics of Continuous Media, 2~(nd) ed. Elmsford. NY : Pergamon, 1984.
    
    [177] G. Mie. Beitr(?)ge zur Optik tr(?)ber Medien, speziell kolloidaler Metall(?)sungen. Ann. Phys. 1908, 25:377-445.
    
    [178] P. B. Johnson, R. W. Christy. Optical Constant of the Noble Metal. Phys. Rev. B. 1972, 6:4370-4379.
    
    [179] Van Duyne, R. P, Hulteen, J. C, Treichel, D. A. J. Chem. Phys. 1993, 99,2101-.
    
    [180] Hulteen. J. C, Van Duyne, R. P. J. Vac. Sci.Technol. 1995, A13, 1553.
    
    [181] Kahl. M, Voges. E, Hill. W. Spectrosc. Eur. 1998, 10, 12-20.
    
    [182] Hornyak, G. L, Patrissi, C. J. Martin, et al. Nanostruct. Mater. 1997,9, 575-.
    
    [183] Oldenburg. S. J, Averitt. R. D, Westcott, S. L. J. Chem. Phys. Lett. 1998, 288, 243-.
    
    [184] Liao. P. F, Stem. M. B. Opt. Lett 1982, 7,483.
    
    [185] Collier. C. P, Saykally, R. J, Shiang. J. J, et al. Science 1997,277, 1978.
    
    [186] M. Moskovits. Surface-Enhanced Spectroscopy. Rev. Mod. Phys., 1985, 57: 783-826
    
    [187] K. Kneipp, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering(SERS). Phy.Rev. Lett. 1997, 78: 1667-1670.
    
    [188] S. Nie, S. R. Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997, 75: 1102-1106.
    
    [189] H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson. Spectroscopy of Single Henoglobin molecules by Surface Enhanced Raman Scattering. Phys, Rev. Lett., 1999, 83 :4357-4360.
    
    [190] Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Academic: New York,1969.
    
    [191] Bohren, C. F, Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley Interscience: New York, 1983.
    
    [192] Kreibig. U, Vollmer. M. Optical Properties of Metal Clusters. Springer Series in Materials Science 25;Springer: Berlin, 1995.
    
    [193] Kreibig,U. In Handbook of Optical Properties. Vol. II: Optics of Small Particles,Interfaces and Surfaces; Hummel, R. E., Wissmann, P., Eds.; CRC Press:Boca Raton, 1997; pp 145-190.
    
    [194] A. Pack, M. Hietschold, R. Wannemacher. Failure of local Mie theory: optical spetra of colloidal aggregates. Optic. Commu, 2001, 194: 277-287.
    
    [195] R. Fuchs. Theory of the Optical Properties of ionic Crystal Cubes. Phys. Rev. B., 1975, 11:1732-1740.
    
    [196] T. R. Jensen, G. C. Scharz, R. P. Van Duyne. Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Sliver Nanoparticles by Ultraviolet-Visible Extinction Spectroscopy and Electrodynamic Modeling. J. Phys. Chem. B , 1999, 103: 2394-
    [197] Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe. Strength of the electric field in apertureless near-field optical microscopy. J. Appl. Phis., 2001, 89(10): 5774-5778
    
    [ 198] Miodrag Micic, Nicholas Klymyshyn, Yung Doug Suh, and H. Peter Lu. Finite Element Method Simulation of the Field Distribution for AFM Tip-EnhancedSurface-Enhanced Raman Scanning Microscopy. J. Phys. Chem. B, 2003, 107: 1574-1584.
    
    [199] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B , 2003,107:668-677.
    
    [200] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev, 1957, 106: 874-881.
    
    [201] Burstein, E. in Polaritons (eds Burstein, E. & De Martini, F.) 1-4 (Pergamon, New York, 1974).
    
    [202] Sambles, J. R., Bradbery, G. W, Yang, F. Z. Optical-excitation of surface-plasmons - an introduction.Contemp. Phys, 1991, 32: 173-183.
    
    [203] P. B. Johnson, and R. W. Christy. Optical Constant of Noble Metals. Physical Review B. 1972,6,4370-4379.
    
    [204] T. Vo-Dinh. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trens. In Analy.Chem. 1998, 17 (8-9), 557-582.
    
    [205]G. Vasilyuk, S. Maskevich, S. Podtynchenko. Correlation between structure, optical and Raman enhancing properties of silver films. J. Molecu. Struc. 2001, 565: 389-394.
    
    [206] K. Lance Kelly, Eduardo Coronado, and George C. Schatz. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107:668-677.
    
    [207] E J Ayars, H D Hallen. Electric field gradient effects in Raman spectroscopy. Phys Rev Lett. 2000,85:4180-4183.
    
    [208] S. Nie, R. E. Steven. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997, 275: 1102-1106.
    
    [209] Taekjip. H. Single-molecule fluorescence methods for the study of nucleic acids. Current Opinion in Structure Biology. 2001, 11: 287-292.
    
    [210] W. Shimon. Fluorescence Spectroscopy of Single Biomolecules. Science. 1999, 283: 1676-1682.
    
    [211] C. Zander, J. Fresenius. Anal Chem. 2000, 366: 745.
    
    [212] J. D. Harding, R. A. Keller. Single-molecule detection as an approach to rapid DNA sequencing. Trends Biotechnol. 1992, 10: 55-57.
    
    [213] W. E. Moermer. Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule. Science, 1994, 265: 46-52.
    
    [214] M. Orrit, J. Bernard. Phys. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Rev. Lett. 1990, 65: 2716-2719.
    
    [215] M. Orrit, J. Bernard, R. Personnov. High-resolution spectroscopy of organic molecules in solids:from fluorescence line narrowing and hole burning to single molecule spectroscopy. J. Phys. Chem. 1993,97: 10256-10268.
    
    [216] W. E. Moermer, M. Orrit. Illuminating Single Molecules in Condensed Matter. Science. 1999,283:1670-1675.
    [217]K.Kneipp,Y.Wang,H.Kneipp.Single Molecule Detection Using Surface-Enhanced Raman Scattering(SERS).Phys.Rev.Lett.1997,78(9):1667-1670.
    [218]K.Kneipp,H.Kneipp,G.Deinum.Single-Molecule Detection of a Cyanine Dye in Silver Colloidal Solution Using Near-Infrared Surface-Enhanced Raman Scattering Applied spectroscopy,1998,52(2):175-178.
    [219]D.M.Amit,R.Matthias.A.Jams,et al.Single-Molecule Biomechanics with Optical Methods.Science,1999,283:1689-1690.
    [220]Moskovits M.Surface selection rules.Surface selection rules.J.Chem.Phys.1982,77(9):4408-4416.
    [221]周增会,王桂英,徐至展。表面增强拉曼光谱技术在生命科学及单分子研究中的应用与进展。激光与光电子进展。2005,42(10):39-43。
    [222]X.-M.Qian and S.M.Nie,Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications.Chem.Soc.Rev.2008,37:912-920.
    [223]Surbhi Lai,Nathaniel K.Grady,Janardan Kundu,Carly S.Levin,J.Britt Lassiter and Naomi J.Halas.Tailoring plasmonic substrates for surface enhanced spectroscopies.Chem.Soc.Rev.2008,37,:898-911.
    [224]Matthew J.Banholzer,Jill E.Millstone,Lidong Qin and Chad A.Mirkin.Rationally designed nanostructures for surface-enhanced Raman spectroscopy.Chem.Soc.Rev,2008,37:885-897.
    [225]De-Yin Wu,Jiang-Feng Li,Bin Ren and Zhong-Qun Tian.Electrochemical surface-enhanced Raman spectroscopy of nanostructures.Chem.Soc.Rev.2008,37:1025-1041.
    [226]Roger M.Jarvis and Royston Goodacre.Characterisation and identification of bacteria using SERS Chem.Soc.Rev.,2008,37:931-936.
    [227]吴世法,吴冠英。激励与接受均用隐逝光的超高灵敏拉曼分析样品池。专利号:ZL021544689.
    [228]Y.Saito,J.J.Wang,D.A.Simth,and D.N.Batchelder A Simple Chemical Method for the Preparation of Silver Surfaces for Effcient SERS,Langrnuir.2002,Vol 19 Number 8:2959-2961.
    [229]P.C.Lee and D.Meisel Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols.J.Phys.Chem.1982.86:3391-3396.
    [230]贺蓉,钱雪峰,印杰等.银纳米棱镜的形成及其光学性能的研究.高等学校化学学报.2003,24:1341-1345.
    [231]Del R M,Gouttebaron.R,Dauchot.J.P,et al.Growth and morphology of magnetron sputter deposited silver films.Surface and Coatings Technology.2002,151/152:86-90.
    [232]Rizzo.A,Sagace.M,Galietti.U,et al.Measurements of strain during vapour deposition of thin films and multilayers.Thin Solid Films,2003,433(1/2):144-148.
    [233]Ancelakeris.M,Crisan.O,Papaioannou.E,et al.Fabrication of novel magnetic nano structures by colloidal bimetallic nanocrystals and multilayers.Materials Science and Engineering C.2003,23(6/8):873-878.
    [234]Li.D.C,Chen.S.H,Zhao.S.Y,et al.Simple method for preparation of cubic Ag nano particles and their self-assembled film.Thin Solid Films.2004,460(1/2):78-82.
    [235]Sathaye.S.D,Patil.K.R,Paranjape.D.V,et al.Nanocrystalline silver particulate films by liquid-liquid interface reaction technique(LLIRT).Materials Research Bulletin,2001,36(7/8):1149-1155.
    [236]Ravaine.S,Breton.C,Minqotaud.C,et al.Electrodeposition of two-dimensional silver films under dihexadecyl phosphate monolayers.Materials Science and Engineering C.1999,8/9:437-444.
    [237]杨衡静,方靖准。微波合成银包覆金纳米粒子膜的拉曼散射活性研究。光谱实验室。2005,22(6):1216-1219。
    [238]J.A.Veerman,A.M.Otter,L.Kuipers,and N.F.van Hulst.High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling Appl.Phys.Lett.1998,72:3115-3117.
    [239]E.Betzig and R.J.Chichester.Single molecules observed by near-field scanning optical microscopy.Scicece.1992,262:1422-1425.
    [240]F.Zenhausern,M.P.O'Boyle,H.K.Wickramasinghe.Apertureless near-field optical microscope.Appl.Phys.Lett.1994,65:1623-1625.
    [241]F.Zenhausern,Y.Martin,H.K.Wickramasinghe,Scanning interferometric apertureless microscopy:optical imaging at 10 angstrom resolution,Science 269(1995) 1083-1085.
    [242]Y.Martin,F.Zenhausern,H.K.Wickramasinghe,Scattering spectroscopy of molecules at nanometer resolution,Appl.Phys.Lett.68(1996)2475-2477.
    [243]Y.C.Martin,H.F.Hamann,H.K.Wickramasinghe,Strength of the electric field in apertureless near-field optical microscopy,J.Appl.Phys.89(2001) 5774-5778.
    [244]Y.Inouye,S.Kawata,Near-field scanning optical microscope with a metallic probe tip,Opt.Lett.19(1994) 159-161.
    [245]H.F.Hamann,A.Gallagher,D.J.Nesbitt,Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution,Appl.Phys.Lett.73(1998) 1469-1471.
    [246]Y.C.Martin,H.F.Hamann,H.Ko Wickramasinghe,Strength of the electric field in apertureless near-field optical microscopy,J.Appl.Phys.89(2001) 5774-5778.
    [247]M.Labardi,S.Patan"e,M.Allegrini,Artefact-free nearfield optical imaging in apertureless microscopy,Appl.Phys.Lett.77(2000) 621-623.
    [248]N.Maghelli,M.Labardi,S.Patan"e,F.Irrera,M.Allegrini,Optical near-field harmonic demodulation in apertureless microscopy,J.Microsc.202(2001) 84-93.
    [249]B.Knoll,F.Keilmann,Near-field probing of vibrational absorption for chemical microscopy,Nature 399(1999) 134-137.
    [250]J.A.Porto,R.Carminati,J.-J.Greffet,Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy,J.Appl.Phys.88(2000) 4845-4850.
    [251]N.Garc!ia,M.Nieto-Vesperinas,Theory for the apertureless near-field optical microscope:image resolution,Appl.Phys.Lett.66(1995)3399-3400.
    [252]R.Bachelot,P.Gleyzes,A.C.Boccara,Reflection-mode scanning near-field optical microscopy using an aperturelss metallic tip,Appl.Opt.36(1997) 2160-2170.
    [253]M.Xiao,Theoretical treatment for scattering scanning near-field optical microscopy,J.Opt.Soc.Am.A 14(1997) 2977-2984.
    [254]R.E.Larsen,H.Metiu,Resolution and polarisation in apertureless near-field optical microscopy,J.Chem.Phys.114(2001) 6851-6860.
    [255]S.Gr!esillon,S.Ducourtieux,A.Lahrech,L.Aigouy,J.C.Rivoal,A.C.Boccara,Nanometer scale apertureless near field microscopy,Appl.Surf.Sci.164(2000) 118-123.
    [256]T.Kalkbrenner,M.Rarnstein,J.Mlynek,V.Sandoghdar,Asingle gold particle as a probe for apertureless scanning near-field optical microscopy,J.Microsc.202(2001) 72-76.
    [257]A.V.Zayats,V.Sandoghdar,Apertureless scanning nearfield second-harmonic microscopy,Opt.Commun.178(2000) 245-249.
    [258]Y.Martin,S.Rishton,and H.K.Wickramasinghe.Optical data storage read out at 256 Gbits/in.~2.Appl.Phys.Lett.1997,71:1-3.
    [259]J.Jersch,F.Demming,and K.Dickmann.Nanostructuring with laser radiation in the nearfield of a tip from a scanning force microscope.Appl.Phys.A:Mater.Sci.Process.1977,64:29-32.
    [260]J.Wessel,Surface-enhanced optical microscopy.J.Opt.Soc.Am.B.1985,2:1538-1541.
    [261]Y.Kawata,C.Xu,and W.Denk.Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip.J.Appl.Phys.1999,85:1294-1301.
    [262]E.J.Sanchez,L.Novotny,and X.S.Xie.Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips.Phys.Rev.Lett.1999,82:4014-4017.
    [263]L.Novotny,R.X.Bian,and X.S.Xie.Theory of Nanometric Optical Tweezers.Phys.Rev.Lett.1997,79:645-648.
    [264]M.Speeht,J.D.Pedarnig,W.M.Heckl,and T.W.Haensch.Scanning plasmon near-field microscope.Phys.Rev.Lett.1992,68:476-479.
    [265]U.C.Fischer,J.Koglin,and H.Fuchs,J.Microsc.1994,176:231-235.
    [266]S.Kawata and Y.Inouye.Scanning probe optical microscopy using a metallic probe tip.Ultramicroscopy.1995,57:313-317.
    [267]F.Zenhausern,Y.Martin,and H.K.Wickramasinghe.Scanning interferometric apertureless microscopy:Optical imaging at 10 angstrom resolution.Science.1995,269:1083-1085.
    [268]L.Novotny,E.J.Sa'nchez,and X.S.Xie.Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams.Ultramicroscopy.1998,71,21-29.
    [269]E.J.Sa'nchez,L.Novotny,and X.S.Xie.Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips.Phys.Rev.Lett.1999,82:4014-4017.
    [270]Betzing E,Trautman,J.K,Wolfe Retal.Near-field Magnate-optics and High Density Data Storge.Appl.Phys.Lett.1992,61(2):142-144.
    [271]顾四朋,侯立松.相变光存储研究的新进展.物理学进展,2002,22(2):177-182.
    [272]刘凯,白明,鲁拥华等.用3D-FDTD法分析用于近场光存储的光纤探针电磁波传输特性.中国激光,2001,28(3):253-256.
    [273]Xiaoqiu Wang,Shifa Wu,Guoshu Jian,and Shi Pan.Near-field distribution of pyramidal A1GaAs probe with high throughtput and ultra-small spot size.Chin.Phys,2005,14(1):133-136.
    [274]P.Silvester,G.Pelosi.Finite Elements for Wave Electromagnetics:Methods and Techniques.New York:IEEE Press,1994.
    [275]PL.Arllet,AK.Bahrani,O.Zeinkiewicz.Application of finite elements to the solution of Helmholtz's equation.IEEE Proc.1968,115:1762-1766.
    [276]P.Silvester.Finite element solution of homogeneous waveguide problems.Alta Frequen.1969,38:313-317.
    [277] Mackele. J. Optics and optoelectronics: FEM and BEM analyses A bibliography. Finite Element Anal.Design. 2001,37:575-585.
    
    [278] Sun. Y, Bell, T, Zheng. S. Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation. Thin Solid Film. 1995, 258:198-204.
    
    [279] N. F. V. Hulst (Ed.). Analysis of individual (macro)molecules and proteins using near-field optics. J.Chem. Phys. 2000, 112: 7799-7810.
    
    [280] J.P. Kottman, O.J.F. Martin. Accurate solution of the volume integral equation for high-permittivity scatterers. IEEE Trans. Antenas Propagat. 2000: 48 (11): 1719-1726.
    
    [281] Miodrag Micic, Nicholas Klymyshyn, H. Peter Lu, et al. Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy. J. Phys. Chem.B.2003, 107:1574-1584.
    
    [282] R. C. MacCamy and S. P. Marin. A finite element method for exterior interface problems. Internat. J.Math.Tech. Sci. 1980,3(2): 311-350.
    
    [283] M. Micic, N. Klymyshyn, Y.D. Suh, H.P. Lu. Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy. J. Phys. Chem. B.2003, 107:1574-1584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700