用户名: 密码: 验证码:
IIB族离子荧光探针的研究与细胞成像的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命活动是由许多生物活性物质参加的各种化学反应的结果,金属离子就是其中重要的一种。IIB族元素中,锌是生物体内必需的微量金属元素,直接参与机体内很多重要的生理过程,在维持蛋白质,核酸,肽类和激素等生物大分子的基本结构和实现其正常功能方面起着重要的作用。而IIB族元素中的镉和汞在较低浓度时就会对生物体产生较大的毒性和破坏性。因此,IIB族金属离子的研究和检测特别是对细胞内金属离子的成像检测具有重要的意义。与传统的金属离子检测方法相比,荧光探针检测因其兼备便捷、专一和灵敏的优点,并能对环境体系和生命体系中的分析对象进行实时原位检测而具有广泛的应用前景。因此设计合成金属离子荧光探针,在化学体系中试验其性质,结合荧光成像技术,检测细胞内某种金属离子的浓度变化及其分布。这将对探讨金属离子在生命活动中所发挥的作用以及对某种离子缺陷时出现的病理研究提供重要的帮助。因而用荧光探针检测金属离子成为了超分子化学以及生物医学等领域中重要的研究课题之一。
     本论文基于PCT原理设计合成了BODIPY类镉离子比率型荧光探针BCd1。在识别过程中,镉离子的配位作用减弱了共轭氮原子对荧光团的供电能力,从而引起了荧光波长近60 nm的蓝移,荧光量子产率增大约4倍。BCd1具有很强的抗干扰能力,同时具有较低的pKa(4.1)。BCd1可以完全区分Cd~(2+)和Zn~(2+),并实现了在Hela细胞中镉离子的比率荧光成像。
     基于PET原理设计合成了一系列以BODIPY为荧光团,以开链硫醚作为识别基团的汞离子荧光探针BHg1-3。通过对醚链末端基团的修饰来调整探针分子的油/水溶性以及对汞离子的识别能力。研究表明,探针分子对目标离子的识别能力对探针分子的抗阴阳离子干扰以及细胞内汞离子成像具有重要的影响。
     设计合成了一系列基于汞离子促进水解反应的罗丹明类Hg~(2+)荧光探针RHg1-3,并对该机理进行了详细阐述和验证。RHg1-3能够专一性地识别Hg~(2+),并具有很高的灵敏度。RHg1-3实现了在海水等水体系中ppb级Hg~(2+)的检测,以及在Hela细胞内Hg~(2+)的荧光显微成像。
     基于去质子和PCT原理设计合成了喹啉类锌离子比率荧光分子探针QZn1。在识别过程中,锌离子的配位作用导致荧光波长红移约90 nm,显示了典型的双波长比率荧光探针的光谱特征。
The activity of life is an effect of different chemical reactions by lots of biological active substances,and metal ion is one important kind of them.Essential trace Zinc participates in many important physiological processes.For example,it plays critical roles in maintaining the structure and realizing the normal function of protein,nucleic acid,peptides,incretion and other big biology molecules.However,Cadmium and mercury are toxic and harmful to organism even at very low concentrations.So the detection of them especially the detection in vivo is important to the research of biology,medicine and environment science.Compared with tranditional methods for the detection of metal ions,the fluorescent probes have attracted much attention over the years for its many inherent merits including high specifity and high sensitivity.This technology has been widely used for the real-time detection of the molecular events both in the chemical and biological systems.We can design and synthesize metal ions fluorescent probes,and study the property of the probes in chemical system,and then detect the concentration changes and distribution of metal ions in cells on line according to confocal fluorescence imaging technology.This will be helpful to explore the function of metal ions in life activity and pathology of the shortness of metal ions and afford essential basis in the chemical and the biological systems.
     Therefore the BODIPY ratio-fluorescent Cd~(2+) probe BCd1 based on PCT mechanism has been designed and synthesized.The formation of complex BCdl/Cd2~(2+) weakened the electron-donating character,leading to a blue shift of 60 nm in fluorescence emission and an increase of quantum yield for about 4 fold.BCd1 shows strong anti-jamming and low pKa.It can distinguish Cd2~(2+) from Zn~(2+) and especially can be used in ratiometric fluorescence microscopy in Hela cells.
     The BODIPY fluorescent Hg~(2+) probe BHg1-3 based on PET mechanism have been designed and synthesized with a series of NS_2X_2 catenulate group as recogniation group.The coordination ability and oil/water solubility of the probes can be adjusted by different recognition moiety of catenulate NS_2X_2.The results indicate that comlexation ability between probes and ions is one of most important factors for interference and cell-imaging experiment.
     The rhodamine derivatives of Hg~(2+) fluorescent probes Rltg1-3 based on Hg~(2+)-prompted hydrolysis mechanism have been designed and synthesized.The mechanism was studied and confirmed carefully.RHg1-3 exhibit Hg~(2+) selective among metal ions.RHg series have extremely highly sensitivity for Hg~(2+).RHg1-3 have enabled the detection of ppb level of Hg~(2+) in natural water samples like seawater.More importantly,they hava been also proved of Hg~(2+) fluorescence microscopy in Hela cells.
     The quinoline derivative of ratio-fluorescent Zn~(2+) probe QZn1 based on mechanism of PCT and deprotonation has been designed and synthesized.The formation of complex QZn1/Zn~(2+) leads to a 90 nm red shift in fluorescence emission,which shows typical ratio changes in spectra.
引文
[1]陈锡恩.金属元素与人体健康[J].辽宁教育学院学报,1997,14(5):45-48.
    [2]吴明星.常见微量元素与人体健康[J].安徽卫生职业技术学院学报,2005,4(2):89-91.
    [3]Cotton F A,Wilkinson G.Advanced Inorganic Chemistry[M],fifth ed.,Wiley,1988.
    [4]Bush A I.Metals and neuroscience.Current Opinion in Chemical Biology[J],2000,4:184-191.
    [5]Outten C E,O'Halloran T V.Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis[J].Science,2001,292(5526):2488-2491.
    [6]Lopez-Garcia C,Varea E,Palop J J et al.Cytochemical techniques for zinc and heavy metals localization in nerve cells[J].Microsepy Research and Technique,2002,56:318-331.
    [7]Andrews G K.Cellular zinc sensors:MTF-1 regulation of gene expression[J].BioMetals,2001,14:223-237.
    [8]Lippard S J,Berg J M.Principles of Bioinorganic Chemistry[M].University Science Books,Mill Valley,1994.
    [9]Burdette S C,Lippard S J.ICCC34-golden edition of coordination chemistry reviews.Coordination chemistry for the neurosciences[J].Coordination Chemistry Reviews,2001,216-217:333-361.
    [10]Huang E.Metal ions and synaptic transmission:Think zinc[J].Proceedings of the National Academy of Science of the United States of America,1997,94:13386-13387.
    [11]Thompson R B,Peterson D,Mahoney W et al.Fluorescent zinc indicators for neurobiology[J],Journal of Neuroscience Methods,2002,118:63-75.
    [12]Jiang P J,Guo Z J.Fluorescent detection of zinc in biological system:recent development on the design of chemosensors and biosensors[J].Coordination Chemistry Review,2004,248:205-229.
    [13]徐承水.环境中有害微量元素对人体健康的影响[J].广东微量元素科学,1999,6:1-3.
    [14]刘茂生.有害元素镉与人体健康.微量元素与健康研究[J].2005,22:66-67.
    [15]魏筱红,魏泽义.镉的毒性及其危害.公共卫生与预防医学[J].2007,18:44-46.
    [16]荆镐,王同彦.镉与人体健康.内蒙古环境保护[J].1996,8:32-34.
    [17]Alloway B J,Steinnes E.Cadmium in Soils and Plant[M].Kluwer Academic Publishers:Boston,MA,1999.
    [18]Nordberg G F,Herber R F M,Alessio L.Cadmium in the Human Enviroment[M].Oxford:Oxford University Press.1992.
    [19]Wolfe M F,Schwarzbach S,Sulaiman A.Effects of mercury on wildlife:a comprehensive review [J].Enviromental Toxicology and Chemistry,1998,17:146-160.
    [20]Tchounwou P B,Ayensu W K,Ninashvili N et al.Environmental exposure to mercury and its toxicopatholgic implications for public health[J].Environmental Toxicology,2003,18:149-175.
    [21]Renzoni A,Zino F,Franchi E.Mercury levels along the food chain and risk for exposed populations[J].Environmental Research,1998,77:68-72.
    [22]Boening D W.Ecological effects,transport,and fate of mercury:a general review[J].Chemosphere,2000,40:1335-1351.
    [23]Richardson S D,Temes T A.Water Analysis:Emerging Contaminants and Current Issues[J].Analytical Chemistry,2005,77:3807-3838.
    [24]安建博,张瑞娟.低剂量汞毒性与人体健康[J].国外医学医学地理分册.2007,28:39-42.
    [25]Burg R V.Inorganic Mercury-Toxicology update[J].Journal of Applied Toxicology,1995,15(6):483-493.
    [26]Clarkson T W,Magos L,Myers G J.The toxicology of mercury-current exposure and clinical manifestations[J].New England Journal of Medicine,2003,349:1731-1737.
    [27]Llobet J M,Falco G,Casas C et al.Concentrations of Arsenic,Cadmium,Mercury,and Lead in Common Foods and Estimated Daily Intake by Children,Adolescents,Adults,and Seniors of Catalonia,Spain[J].Journal of Agricultural and Food Chemistry,2003,51:838-842.
    [28]Renzoni A,Zino F,Franchi E.Mercury levels along the food chain and risk for exposed populations[J].Environmental Research,1998,77:68-72.
    [29]Emons H,Schladot J D,Schwuger M D.Potential for secondary poisoning and biomagnification in marine organisms[J].Chemosphere,1997,35:1875-1885.
    [30]Kageyama K,Onoyama Y,Kano E et al.Effects of methylmercuric chloride and sulfhydryl inhibitors on phospholipids synthetic activity of lymphocytes[J].Journal of Applied Toxicology,1986,6:49-53.
    [31]Clarkson T W,Magos L,Myers N et al.The toxicology of mercury-current exposures and clinical manifestations[J].New England Journal of Medicine,2003,349:1731-1737.
    [32]butler O T,Cook J M,Harrington C F et al.Atomic spectrometry update.Environmental analysis [J].Journal of Analytical Atomic Spectrometry,2006,21:217-243.
    [33]Li Y F,Chen C Y,Li B et al.Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS[J].Journal of Analytical Atomic Spectrometry,2006,21:94-96.
    [34]Walker G S,Ridd M J,Brunskill G J.A comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry for determination of mercury in Great Barrier Reef sediments[J].Rapid Communications in Mass Spectrometry,1996,10:96-99.
    [35]Yoon S,Albers A E,Wong A P et al.Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor[J].Journal of the American Chemical Society,2005,127:16030-16031.
    [36]Moon S -Y,Youn N J,Park S M et al.Diametrically Disubstituted Cyclam Derivative Having Hg~(2+)-Selective Fluoroionophoric Behaviors[J].Journal of Organic Chemistry,2005,70:2394-2397.
    [37]Kewei H,Hong Y,Zhiguo Z et al.Multisignal Chemosensor for Cr3+ and Its Application in Bioimaging[J].Organic Letters,2008,10:2557-2560.
    [38]Wang J,Qian X,Qian J et al.Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors[J].Chemistry-A European Journal,2007,13:7543-7552.
    [39]Coskun A,Akkaya E.Signal Ratio Amplification via Modulation of Resonance Energy Transfer:Proof of Principle in an Emission Rationmetric Hg(Ⅱ) Sensor[J].Journal of American Chemical Society,2006,128:14474-14475.
    [40]Coskun A,Yilmaz M,Akkaya E.Bis(2-pyridyl)-Subsituted Boratriazaindacene as an NIR-Emitting Chemosensor for Hg(Ⅱ)[J].Organic Letters,2007,9:607-609.
    [41]Tanaka M,Nakamura M,Ikeda T et al.Synthesis and Metal-lon Binding Properties of Monoazathiacrown Ethers[J].Journal of Organic Chemistry,2001,66:7008-7012.
    [42]Thomas J M,Ting R,Perrin D M.High affinity DNAzyme-based ligands for transition metal cations-a prototype sensor for Hg~(2+)[J].Organic & Biomolecular Chemistry,2004,2:307-312.
    [43]Liu J,Lu Y.Rational design of "turn-on"allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity[J].Angewandte Chemic International Edition,2007,46:7587-7590.
    [44]Seraphine V W,Ayse O,Peng C et al.Design of an Emission Ratiometric Biosensor from MerR Family Proteins:A Sensitive and Selective Sensor for Hg~(2+)[J].Journal of American Chemical Society,2007,129:3474-3475.
    [45]Peng C,Chuan H.A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions[J].Journal of American Chemical Society,2004,126:728-729.
    [46]Suzuki Y,Komatsu H,Ikeda T et al.Design and synthesis of Mg~(2+)-selective fluoroionophores based on a coumarin derivative and application for Mg~(2+) measurement in a living cell[J].Analytical Chemistry,2002,74:1423-1428.
    [47]Komatsu K,Urano Y,Kojima H et al.Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc[J].Journal of the American Chemical Society,2007,129:13447-13454.
    [48]Yoon S,Miller E,He Q et al.A bright and specific fluorescent sensor for mercury in water,cell,and tissue[J].Angewandte Chemie,International Edition,2007,46:6658-6661.
    [49]Zhang X,Xiao Y,Qian X.A ratiometric fluorescent probe based on FRET for imaging Hg~(2+) ions in living cells[J].Angewandte Chemie International Edition,2008,47:8025-8029.
    [50]Zhang J,Campbell R E,Ting A Yet al.Creating New Fluorescent Probes for Cell Biology[J].Nature Reviews Molecular Cell Biology,2002,3:906-918.
    [51]樊江莉.二(2-吡啶甲基)胺为识别基团的Zn~(2+)荧光分子探针的研究[D].博士学位论文,大连理工大学,大连,2005.
    [52]Jiang P J,Guo Z J.Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors[J].Coordination Chemistry Reviews,2004,248:205-229.
    [53]Goldsmith C R,Lippard S J.Analogues of zinpyr-1 provide insight into the mechanism of zinc sensing[J].Inorganic Chemistry,2006,45:6474-6478.
    [54]Xu Z C,Xiao Y,Qian X H et al.Ratiometric and selective fluorescent sensor for Cu-Ⅱ based on internal charge transfer(ICT)[J].Organic Letters,2005,7:889-892.
    [55] Yoon S, Miller E W, He Q et al. A bright and specific fluorescent sensor for mercury in water, cells, and tissue [J]. Angewandte Chemie International Edition, 2007,46:6658-6661.
    [56] Wu C T. Crown Ether Chemistry [M]. Beijing: Academic Press, 1992.
    [57] Gokel G W, Leevy W M, Weber M E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models [J]. Chemical Reviews (Washington, D. C), 2004, 104: 2723-2750.
    [58] Kim S H, Song K C, Ahn S et al. Hg~(2+)-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether [J]. Tetrahedron Letters, 2006,47: 497-500.
    [59] de Silva A P, David B F, Allen J M H et al. Combining luminescence, coordination and electron transfer for signalling purposes [J]. Coordination Chemistry Reviews, 2000,205:41-57.
    [60] Fan J L, Wu Y K, Peng X J. A naphthalimide fluorescent sensor for Zn~(2+) based on photo-induced electron transfer [J]. Chemistry Letters, 2004,33:1392-1393.
    [61] Gunnlaugsson T, Ali H D P, Glynn M et al. Fluorescent photoinduced electron transfer (PET) sensors for anions; From design to potential application [J]. Journal of Fluorescence, 2005, 15: 287-299.
    [62] Thiagarajan V, Ramamurthy P, Thirumalai D et al. A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways [J]. Organic Letters, 2005, 7: 657-660.
    [63] Belser P, De Cola L, Hartl F et al. Photochromic Switches Incorporated in Bridging Ligands: A New Tool to Modulate Energy-Transfer Processes [J]. Advanced Functional Materials, 2006,16: 195-208.
    [64] Magri D C, Brown G J, McClean G D et al. Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype [J]. Journal of the American Chemical Society, 2006,128:4950-4951.
    [65] Sautter A, Kaletas B K, Schmid D G et al. Ultrafast Energy-Electron Transfer Cascade in a Multichromophoric Light-Harvesting Molecular Square [J]. Journal of the American Chemical Society, 2005,127: 6719-6729.
    [66] de Silva A P, Gunaratne H Q N, Gunnlaugsson T et al. Signaling recognition events with fluorescent sensors and switches [J]. Chemical Reviews, 1997, 97:1515-1566.
    [67] Wu Y, Peng X, Guo B et al. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells [J]. Organic & Biomolecular Chemistry, 2005, 3: 1387-1392.
    [68] Guo X, Qian X, Jia L. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg~(2+) in Neutral Buffer Aqueous Solution [J]. Journal of the American Chemical Society, 2004, 126: 2272-2273.
    [69] Rurack K. Flipping the light switch 'ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions [J]. Spectrochimica Acta Part A, 2001, 57: 2161-2195.
    [70] Novaira M, Biasutti M A, Silber J J et al. New insights on the photophysical behavior of PRODAN in anionic and cationic reverse micelles: From which state or states does it emit? [J] Journal of Physical Chemistry B, 2007, 111: 748-759.
    [71] Citterio D, Takeda J, Kosugi M et al. pH-independent fluorescent chemosensor for highly selective lithium ion sensing [J]. Analytical Chemistry, 2007,79:1237-1242.
    [72] Baruah M, Qin W, Vallee R A L et al. A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light [J]. Organic Letters, 2005, 7: 4377-4380.
    [73] Xu Z, Xiao Y, Qian X et al. Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J]. Organic Letters, 2005,7: 889-892.
    [74] Yuan M, Li Y, Li J et al. A Colorimetric and Fluorometric Dual-Model Assary for Mercury Ion by a Molecule [J]. Organic Letters, 2007,9:2313-2316.
    [75] Machi L, Santacruz H, Sanchez M et al. Bichromophoric naphthalene derivatives of ethylenediaminetetraacetate: Fluorescence from intramolecular excimer, protonation and complexation with Zn~(2+) and Cd~(2+) [J]. Supramolecular Chemistry, 2006,18: 561-569.
    [76] Kameta N, Hiratani K. Synthesis of supramolecular boron complex with anthryl groups exhibiting specific optical response for chloride ion [J]. Tetrahedron Letters, 2006, 47: 4947-4950.
    [77] Kim J S, Choi M G, Song K C et al. Ratiometric determination of Hg~(2+) ions based on simple molecular motifs of pyrene and dioxaoctanediamide [J]. Organic Letters, 2007,9: 1129-1132.
    [78] Swanson R, Raghavendra M P, Zhang W Q et al. Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins - Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1 [J]. Journal of Biological Chemistry, 2007, 282: 2305-2313.
    [79] Ko S, Grant, S A. Development of a novel FRET method for detection of Listeria or Salmonella [J]. Sensors and Actuators B-Chemical, 2003,96: 372-378.
    [80] Laurence T A, Kong X X, Jager M et al. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102:17348-17353.
    [81] Zelphati O, Szoka F C. Mechanism of oligonucleotide release from cationic liposomes. Proceedings of the National Academy of Sciences of the United States of America, 1993 [C], 93: 11493-11501.
    [82] Ashok A D, Maxime D, Jocelyn R. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 1999 [C], 96: 3670-3677.
    [83] Ros-Lis J V, Marcos M D, Martinez-manez R. et al. A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg~(2+) Ions [J]. Angewandte Chemie International Edition, 2005,44: 4405-4407.
    [84] Ros-Lis J V, Garcia B, Jimenez D. et al. Squaraines as Fluoro-Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols [J]. Journal of the American Chemical Society, 2004,126:4064-4065.
    [85]Matsumoto T,Urano Y,Shoda T.et al.A Thiol-Reactive Fluorescence Probe Based on Donor-Excited Photoinduced Electron Transfer:Key Role of Ortho Substitution[J].Organic Letters,2007,9:3375-3377.
    [86]Tang B,Xing Y,Li P.et al.A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells[J].Journal of the American Chemical Society,2007,129:11666-11667.
    [87]Chen H,Zhao Q,Wu Y.et al.Selective phosphorescence chemosensor for homocysteine based on an iridium(Ⅲ) complex[J].Inorganic Chemistry,2007,46:11075-11081.
    [88]Yang Y -K,Yook K -J,Tae J.A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media[J].Journal of the American Chemical Society,2005,127:16760-16761.
    [89]Ko S -K,Yang Y -K,Tae J.et al.In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe[J].Journal of the American Chemical Society,2006,128:14150-14155.
    [90]Zhao Y,Lin Z,He C.et al.A "Tur-On"Fluorescent Sensor for Selective Hg(Ⅱ) Detection in Aqueous Media Based on Metal-Induced Dye Formation[J].Inorganic chemistry,2006,45:10013-10015.
    [91]Kim H J,Lee S J,Park S Y et al.Detection of CuⅡ by a chemodosimeter-functionalized monolayer on mesoporous silica[J].Advanced Materials,2008,20:3229-3234.
    [92]Dujols V,Ford F,Czarnik A W.A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ) ion in water[J].Journal of the American Chemical Society,1997,119:7386-7387.
    [93]Lin W,Yuan L,Feng J.et al.A fluorescent-enhanced chemodosimeter for Fe~(3+) based on hydrolysis of bis(coumarinyl)Schiff base[J].European Journal of Organic Chemistry,2008,16:2689-2692.
    [94]Choi M G,Ryu D H,Jeon H L et al.Chemodosimetric Hg~(2+)-Selective Signaling by Mercuration of Dichlorofluorescein Derivatives[J].Organic Letters,2008,10:3717-3720.
    [95]Song F,Garner A L,Koide K.A Highly Sensitive Fluorescent Sensor for Palladium Based on the Allylic Oxidative Insertion Mechanism[J].Journal of the American Chemical Society,2007,129:12354-12355.
    [96]魏筱红,魏泽义.镉的毒性及其危害[J].公共卫生与预防医学,2007,18:44-46.
    [97]Cotton F A,Wilkinson G.Advances Inorganic Chemistry[M].5th ed.Wiley:New York.,1990.
    [98]Dakternieks D.Zinc and cadmium[J].Coordination Chemistry Reviews,1990,98:279-294.
    [99]Prodi L,Montalti M,Zaccheroni N et al.Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium[J].Tetrahedron Lett,2001,42:2941-2944.
    [100]Gunnlaugsson T,Lee T C,Parkesh R.Cd(Ⅱ) Sensing in Water Using Novel Aromatic Iminodaiacetate Based Fluorescent Chemosensors[J].Organic Letters,2003,5:4065-4068.
    [101]Cheng T,Xu Yufang,Zhang S et al.A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell[J].Journal of the American Chemical Society,2008,130,16160-16161.
    [102]Nolan E M,Lippard S J.A "Turn-On"Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media[J].Journal of the American Chemical Society,2003,125:14270-14271.
    [103]Rurack K,Kollmannsberger M,Resch-Genger U et al.A Selective and Sensitive Fluoroionophore for HgⅡ,AgⅠ,and CuⅡ with Virtually Decoupled Fluorophore and Receptor Units[J].Journal of the American Chemical Society,2000,122:968-969.
    [104]Masuhara H,Shioyama H,Saito T et al.Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions[J].Journal of Physical Chemistry,1984,88:5868-5873.
    [105]王娇炳,基于多酰胺受体的汞离子分子荧光探针[D],大连理工大学,2007.
    [106]Lee S J,Jung J.H,Seo J.et al.A Chromogenic Macrocycle Exhibiting Cation-Selective and Anion-Controlled Color Change:An Approach to Understanding Structure-Color Relationships [J].Organic Letters,2006,8:1641-1643.
    [107]He Q,Miller E W,Wong A P et al.A Selective Fluorescent Sensor for Detecting Lead in Living Cells[J].Journal of the American Chemical Society,2006,128:9316-9317.
    [108]Mercury Update:Impact on Fish Advisories.EPA Fact Shere EPA-823-F-01-011;EPA,Office of Water:Washington[S],DC,2001.
    [109]Descalzo A B,Martine-manez R,Radeglia R et al.Couopling Selectivity with Sensitivity in an Integrated Chemosensor Framework:Design of a Hg~(2+)-Responsive Probe,Operating above 500nm[J].Journal of the American Chemical Society,2003,125:3418-3419.
    [110]Wang J,Qian X.A Series of Polyamide Receptor Based PET Fluoredcent Sensor Molecules:Positively Cooperative Hg~(2+) Ion Binding with High Sensitivity[J].Organic Letters,2006,83721-3724.
    [111]Wu D,Huang W,Duan C et al.Highly Sensitive Fluorescent Probe for Selective Detection of Hg~(2+) in DMF Aqueous Media[J].Inorganic Chemistry,2007,46:1538-1540.
    [112]Wu D,Huang W,Lin Z et al.Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg~(2+) in Natural Water and Different Monitoring Environments[J].Inorganic Chemistry,2008,47:7190-7201.
    [113]Zhang Z,Guo X,Qian X et al.Fluorescent imaging of acute mercuric chloride exposure on cultured human kidney tubular epithelial cells[J].Kidney International,2004,66:2279-2282.
    [114]Yang H,Zhou Z,Huang K et al.Multisignaling Optical-Electrochemical Sensor for Hg~(2+) Based on a Rhodamine Derivative with a Ferrocene Unit[J].Organic Letters,2007,9:4729-4732.
    [115]Wang J,Qian X,Qian J et al.Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors[J].Chemistry-A European Journal,2007,13:7543-7552.
    [116]Suresh M,Shrivastav A,Mishra S et al.A Rhodamine-Based Chemosensor that Works in the Biological System[J].Organic Chemistry,2008,10:3013-3016.
    [117]Chen X,Nam S,Jou M J et al.Hg~(2+) Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging[J].Organic Chemistry,2008,10:5235-5238.
    [118]Song F,Watanable S,Shuji F et al.Oxidation-Resistant Fluorogenic Probe for Mercury Based on Alkyne Oxymercuration[J].Journal of the American Chemical Society,2008,130:16460-16461.
    [119] Abley P, Byrd J E, Halpen J et al.Mercury(II)-and thallium(III)-catalyzed hydrolysis of isopropenyl acetate [J]. Journal of the American Chemical Society, 1972,94:1985-1989.
    [120] Kulish L F, Korol O L.Mechanism of the acid hydrolysis of vinyl esters [J]. Ukrainskii Khimicheskii Zhurnal(Russian Edition), 1968, 34: 495-497.
    [121] Haugland R P. Handbook of Fluorescent Probes and Research Chemicals [M]. Oregon: Molecular Probes, Inc., 2002.
    [122] Evans M J, Cravatt B F. Mechanism-based profiling of enzyme families [J]. Chemical Reviews, 2006,106:3279-3301.
    
    [123] 马立人,蒋中华. 生物芯片[M]. 北京:化学工业出版社,2003.
    [124] Kwon J Y, Jang Y J, Lee Y J et al. A highly selective fluorescent chemosensor for Pb~(2+) [J]. Journal of the American Chemical Society, 2005, 127: 10107-10111.
    [125] Dujols V, Ford F, Czarnik AW.A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water [J]. Journal of the American Chemical Society, 1997,119:7386-7387.
    [126] Xiang Y, Tong A J. A new rhodamine-based chemosensor exhibiting selective Fe-III-amplified fluorescence [J]. Organic Letters, 2006, 8:1549-1552.
    [127] Zheng H, Qian Z H, Xu L et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: Design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution [J]. Organic Letters, 2006, 8: 859-861.
    [128] Zhang M, Gao Y H, Li M Y et al. A selective turn-on fluorescent sensor for FeIII and application to bioimaging [J]. Tetrahedron Letters, 2007,48: 3709-3712.
    [129] Lee M H, Wu J-S, Lee J W et al. Highly Sensitive and Selective Chemosensor for Hg~(2+) Based on the Rhodamine Fluorophore [J]. Organic Letters, 2007,9: 2501-2504.
    [130] Lopez-Garcia C, Varea E, Palop J J et al. Cytochemical techniques for zinc and heavy metals localization in nerve cells [J]. Microscpy Research and Technique, 2002, 56: 318-331.
    [131] Zalewski P D, Forbes 1 J, Betts W H. Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-toluenesulphonamide-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II) [J]. Biochemical Journal, 1993,296,403-408.
    [132] Fahrni C J, O'Halloran T V. Aqueous coordination chemistry of quionline-based fluorescence probes for the biological chemistry of zinc [J]. Journal of the American Chemical Society. 1999, 121: 11448-11458.
    [133] Zhang Y, Guo X, Si W et al. Ratiometric and Water-Soluble Fluorescent Zinc Sensor of Carboxamidoquinoline with an Alkoxyethylamino Chain as Receptor [J]. Organic Letters, 2008, 10:473-476.
    [134] Wang H, Gan Q, Wang X et al. A Water-Soluble, Small Molecular Fluorescent Sensor with Femtomolar Sensitivity for Zinc Ion [J]. Organic Letters, 2007, 9:4995-4998.
    [135] Anderegg G, Hubmann E, Podder N G et al. Pyridinderivate als Komplexbildner. XI. Die Thermodynamik der Metallkomplexbildung mit Bis-, Tris- und Tetrakis [(2-pyridyI)methyl] - aminen [J]. Helvetica Chimica Acta, 1977,60:123-140.
    [136] Arsian P, Di Virgillio F, Beltrame M et al. Cytosolic Ca~(2+) homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca~(2+) [J]. Journal of Biological Chemistry, 1985, 260: 2719-2727.
    [137] Walkup G K, Burdette S C, Lippard S J et al. A New Cell-Permeable Fluorescent Probe for Zn~(2+) [J]. Journal of the American Society, 2000,122: 5644-5645.
    [138] Burdette S C, Walkup G K, Spingler B et al. Fluorescent Sensors for Zn~(2+) Based on a Fluorescein Platform: Synthesis, Properties and Intracellular Distribution [J]. Journal of the American Society, 2001,123:7831-7841.
    [139] Burdette S C, Frederickson C J, Bu W et al. ZP4, an Improved Neuronal Zn~(2+) Sensor of the Zinpyr Family [J]. Journal of the American Society, 2003,125:1778-1787.
    [140] Chang C J, Nolan E M, Jaworski J et al. Bright Fluorescent Chemosensor Platforms for Imaging Endogenous Pools of Neuronal Zinc [J]. Current Opinion in Chemical Biology, 2004, 11: 203-210.
    [141] Nolan E M, Burdette S C, Harvey J H et al. Synthesis and Characterization of Zinc Sensors Based on a Monosubstituted Fluorescein Platform [J]. Inorganic Chemistry, 2004, 43: 2624-2635.
    [142] Chang C J, Nolan E M, Jaworski J et al. ZP8, a Neuronal Zinc Sensor with Improved Dynamic Range; Imaging Zinc in Hippocampal Slices with Two-Photon Microscopy [J]. Inorganic Chemistry, 2004,43: 6774-6779.
    [143] Hirano T, Kikuchi K, Urano Y et al. Highly Zine-Selective Fluorescent Sensor Molecules Suitable for Biological Applications [J]. Journal of the American Society, 2000, 122: 12399-12400.
    [144] Hirano T, Kikuchi K, Urano Y et al. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs [J]. Journal of the American Chemical Society, 2002,124: 6555-6562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700