用户名: 密码: 验证码:
三维地震观测系统最优化设计的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要围绕进一步提高复杂条件下野外地震采集数据的信噪比和分辨率,保证地震资料成像质量和降低三维地震勘探成本而开展三维观测系统优化设计的理论和方法研究。针对常规陆上三维地震采集观测系统参数的最优化设计,针对三维地震采集、处理、解释的一体化发展趋势,主要开展了如下几方面的研究工作:(1)首先对常规三维观测系统的设计准则、基本工作流程、类型与特征的归纳总结;(2)结合Taguchi的统计实验设计技术,研究了观测系统优化设计过程中所存在的最优化函数问题。(3)通过对实际资料的观测系统参数的退化性处理试验,研究了与观测系统设计有关的各种参数及其对处理解释的影响程度。(4)从函数优化的角度,研究了适应面元内炮检距均匀分布的观测系统优化设计方法和基于地球物理目标参数的偏差最小化的观测系统优化设计方法。
     本文的研究工作取得了如下几个方面的进展与成果:(1)详细归纳总结了常规10种三维观测系统的分类特征、适用条件及其优缺点,同时从宏观形态到微观的几何结构出发,把现今常用的三维观测系统类型从高到低划分成了四个级别。(2)分析总结了基于统计实验设计技术的三维地震采集优化设计的具体目标、约束条件以及模型空间与数据空间的物理关系。提出了三维观测系统优化设计中基于统计实验设计技术的五大方面的最优化设计问题。(3)通过已有的三维地震数据的“退化性”处理试验分析,提出了三维地震采集设计中最基本的5大类地球物理目标参数,以及在三维观测系统优化设计中3个起决定性作用的地球物理目标参数。(4)提出了在观测系统面元属性分析中,对炮检距均匀性定量刻画的炮检距变化率参数,建立了基于面元内炮检距均匀分布的三维观测系统优化设计的最优化目标函数。(5)针对观测系统设计中3个起决定性作用的论证参数(最大炮检距、覆盖次数、仪器有效道数),建立了基于地球物理目标参数偏差最小化的观测系统设计的最优化目标函数,利用Excel电子表格中的数学规划菜单实现了常规陆上线束状三维观测系统的最优化设计方
    法。
The purpose of this paper is to improving the wild seismic data S/N and resolution power which in the complex conditions, to ensure the seismic data imaging quality and reduce the cost of 3D seismic exploration. We develop 3D seismic geometry optimization design theory and methodology research. Aim at optimizing design of the conventional land 3D seismic acquisition parameters of the geometry, in 3D seismic acquisition, processing, interpretation of the integration trend, mainly for the following areas of research: (1) firstly observation of the conventional 3D design system guidelines, basic workflow, type and characteristics summarized; (2) integration of statistical experimental design techniques Taguchi, studied observation system optimization design process optimization function problems exist;(3) the experiment of practical information on the degradation of the observing system parameters, and study of the system design parameters and their impact on the degree of processing interpretation;(4) From the perspective of optimizing the function, studied the observing systems optimizing design methods that the offset will be evenly distributed and objectives based on geophysical parameters deviation of the smallest observation system optimization design methods.
    The study made the following progress and results: (1) sum up a detailed summary that conclude conventional 10 types of three-dimensional observation of the classification system, application conditions and their advantages and disadvantages, at the same time from the macro to dim-light patterns of geometry, we starting the current commonly used types of three-dimensional observation systems uniformly divided into four grades. (2) Based on statistical analysis summarizes the experimental design of three-dimensional seismic acquisition technologies designed to optimize specific objectives, conditions and restrictions of the model space and data space physics. Put forward the issues of five aspects of 3D design observing system optimization technology based on statistical experimental design. (3) Adoption of existing 3D seismic data "degenerative" processing test analysis, presented three-dimensional seismic data acquisition design of the five basic categories of geophysical parameters goals, and in three-dimensional geometry optimization designs three decisive geophysical target parameters. (4) Made in observing systems face Yuan attributes analysis, for the parameters of offset change rate that seized from quantitative descriptions of offset homogeneous, we established optimization objective function that on the basis of offset seized from being evenly distributed in the three-dimensional geometry optimization design. (5) Observing system design for three decisive proof parameters (maximum offset, covering number, instrumentation effective trace), bring forward the optimization objective function which based on the smallest geophysical parameters deviation of geometry design, use Excel spreadsheet, mathematical planning menu achieved optimizing design methods of conventional land wiring harness 3D geometry.
引文
1.马在田编,三维地震勘探方法,北京:石油工业出版社,1989。
    2.黄德济,贺振华,包吉山编著,地震勘探资料数字处理,北京:地质出版社,1990。
    3.陆基孟主编,地震勘探原理(上、下册),东营:中国石油大学出版社,1993。
    4.谢里夫 R.E.,吉尔达特 L.P.,勘探地震学(上、下册),北京:石油工业出版社,1999。
    5.熊翥,复杂地区油气地球物理勘探技术(数据采集),北京:石油工业出版社,1999.
    6.郝均等编著,三维地震勘探技术,北京:石油工业出版社,1992。
    7.Cordsen,A.and Peirce,J.W,著,俞寿朋等译,陆上三维地震勘探的设计与施工,涿洲:石油地球物理勘探局,1996。
    8.SINOPEC南京物探研究所,CNPC物探局信息中心编,SEG第68届年会论文概要,北京:石油工业出版社,1999。
    9.SINOPEC南京物探研究所,CNPC物探局信息中心编,SEG第69届年会论文概要,北京:石油工业出版社,2000。
    10.郭建,宋玉龙主编,SEG第70届年会论文概要,北京:石油工业出版社,2002。
    11.张永刚主编,油气地球物理新进展——第71、72届SEG年会论文概要,北京:石油工业出版社,2003。
    12.张永刚主编,油气地球物理新进展——第73届SEG年会论文概要,北京:石油工业出版社,2004。
    13.蒋先艺,基于二维与三维复杂结构模型正演的地震数据采集设计方法研究:[博士学位论文].成都:成都理工大学信息工程学院地球物理与信息技术系,2003。
    14.朱海波,射线正演研究与采集参数的设计:[硕士学位论文].成都:成都理工大学信息工程学院地球物理与信息技术系,2004。
    15.梁传坤,尹军杰,王旭日,地震观测系统影响资料分辨率的两种效虑探讨,石油物探,1997,36(2):103-108。
    16.商建瓴 钱绍瑚:常规与面元细分三维观测系统浅析,石油地球物理勘探,1997,32(5):709-716。
    17.刘志成,宗遐龄,马国庆,三维地震勘探数据采集规划设计软件系统,石油物探,1998,37(4):64-74。
    18.阎世信,谢文导,浅谈束状三维地震勘探观测系统,勘探家,1998,3(2):58-62。
    19.阎世信,谢文导,三维地震观测方式应用的几点意见,石油地球物理勘探,1998,33(6):787-795。
    20.李庆珍,地震勘探三维观测系统设计,中国煤田地质,1998,10(2):54-56.
    21.王振国,规则线束状特殊三维观测系统设计,石油地球物理勘探,1998,33(增刊):1-9。
    22.顾培城,卢贵和,一种估算最大炮检距的新算法,石油地球物理勘探,1998,33(增刊):56-60。
    23.潘文锋,钱绍瑚,可变点、面元观测系统设计及其应用,石油物探信息,1999,351(8)。
    24.赵生斌,可分面元三维观测系统设计研究,石油地球物理勘探,2000,35(3):333-338。
    25.李庆珍,张兴民,王书军,3D观测系统中横向覆盖次数及CDP间隔的计算,物探与化探,2000,24(2):135-137.
    26.王永民,李勤学,蒋连斌,砖墙式三维观测系统在委内瑞拉Caracoles区块的应用,石油地球物理勘探,2000,35(5):651-660。
    27.戴志阳,孙建国,DMO方法综述,世界地质,2001,20(4):402-409。
    28.李庆忠.对宽方位角三维采集不要盲从—到底什么叫“全三维采集”,石油地球物理勘探,2001,36(1):122-125。
    29.范国曾,双奇偶小面元三维观测系统的设计及应用,石油地球物理勘探,2001,36(2):227-230。
    30.蒋先艺,刘贤功,地震勘探数据采集工程化技术,物探装备,2001,11(4):235-238。
    31.顾汉明,梁国胜,刘厚顺等,用多次波压制模拟确定观测系统设计参数,石油物探,2001,40(4):43-48。
    32.石君华,唐淑艳,不同地形条件下的三维地震数据采集,河北建筑科技学院学报,2001,18(2):75-78。
    33.赵殿栋,吕公河,张庆淮等,高精度三维地震采集技术及应用效果,石油物探,2001,40(1):1-8。
    34.钱光萍,康家光,王紫娟,基于模型的地震采集参数分析及应用研究,物探化探计算技术,2001,23(2):109-114.
    35.牛鹏程,绿山设计软件在三维地震勘探中的应用,中国煤田地质,2002,14(3):57-59。
    36.俞国柱,姚姚,周玉冰,共聚焦点(CFP)成像技术述评,石油地球物理勘探,2002,37(4):412-422。
    37.于富文,辛可锋,DMO覆盖谱评价观测系统的方法,石油物探,2002,41(6):
    38.蒋先艺,贺振华,黄德济,地震数据采集新概念,物探化探计算技术,2003,25(2):130-134.
    39.潘文锋 王小山:灵活二维观测系统设计及其应用,石油物探,2003,42(1):39-41
    40.刘泰峰等,宁书年,亢俊健,一种自由布置的地震勘探新方法,石油地球物理勘探, 2003,38(1):5-10。
    41.孙建国,勘探地球物理技术最新进展—2002年SEG年会综述Ⅰ:采集与处理,勘探地球物理进展,2003,26(1):66-68。
    42.熊翥,我国物探技术的进步及展望,石油地球物理勘探,2003,38(4):447-459;38(6):701-706;2004,39(2):237-243。
    43.谭绍泉,刘光林,刘泰生等,面元叠加地震采集技术,石油物探,2003,42(2):160-168。
    44.谭绍泉,基于模型分析的潜山断裂带优化观测系统参数设计方法,石油物探,2004,43(5):415-422。
    45.宋玉龙,谭绍泉,胜利油田高精度地震勘探采集技术及应用实例,石油物探,2004,43(4):359-368。
    46.姚本全,三维地震采集设计方法研究,江汉石油学院学报,2004,26(增刊):58-60.
    47.蒋先艺,刘贤功,罗开云,基于3D模型的地震采集观测系统优化设计,北京 2004 CPS/SEG论文集,2004.
    48.刘学伟,尹军杰,王德志等,基于地震数据处理的三维地震观测系统设计——泌阳凹陷南部陡坡带三维地震观测系统设计实例,石油地球物理勘探,2004,39(4):375-380,387.
    49.尹军杰,刘学伟,黄雪继等,基于散射成像数值模拟的地震采集参数论证,石油物探,2005,44(1):58-64.
    50.陈学强,三维地震勘探应慎用Floxi~面元法,勘探地球物理进展,2005,28(5):335-340.
    51.陈浩林,刘军,李文杰等,关于细分面元观测系统的讨论,石油地球物理勘探,2005,40(5):569-575.
    52.薛友兵,尹兵祥,冷桂林等,准噶尔盆地沙窝地高精度三维地震采集参数设计与论证,石油物探,2005,44(4):393~398
    53. Alvarez G., Model-based 3-D seismic survey design as an optimization problem, 74nd Ann. Internat. Mtg: Soc. of Expl. Geophys., 2004
    54. Aversana P., Ceragioli E., Morandi S., Zollo A., A simultaneous acquisition test of high-density 'global offset' seismic in complex geological settings, First Break, 2000, 18(3): 87-96.
    55. Berkhout, A. J., Pushing the limits of seismic imaging, part Ⅰ: Prestack migration in terms of double dynamic focusing: GEOPHYSICS, 1997, 62, 937-953.
    56.Berkhout,A.J.著,张仪宁译,三维地震采集设计准则,石油物探译丛,1999,(1):66-70。
    57. Benyamin, N., Key elements of total seismic field design using Mathematica-A tutorial: GEOPHYSICS, 2002, 67, 1020-1027.
    58. Brown G., Peardon L.G., Survey evaluation and design: Does it work? 65th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1995, 749-752.
    59. Campbell, S., Pramik, B., and Cafarelli, B., Comparative ray-based illumination analysis, 72nd Ann. Internat. Mtg: Soc. of Expl. Geophys., 2002
    60. Carcione, P.V., L., Munoz, A., Ordaz, F., Yanez, E. and Yibirin, R., Model-based simulation for survey planning and optimization, 69th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1999, 625-628.
    61. Chang, T., Canales, L., Kue, C. and Shih, C., Model based illumination for acquisition design, EAGE 62nd Conference and Technical Exhibition, 2000.
    62. Chang, T., Canales, L., Kue, C. and Shih, C., Optimization of acquisition design based on common reflection stack, 71st Ann. Internat. Mtg: Soc. of Expl. Geophys., 2001, 70-73.
    63.Cordsen A.著,李戈圃,刘忠亮译,三维地震资料采集的观测系统设计,国外油气勘探,1998,10(5):586-598。
    64. Cordsen A., Galbraith, M., Narrow- versus wide azimuth land 3D seismic surveys, THE LEADING EDGE, 2002, 21(8): 764-770.
    65. Curtis, A. and Maurer, H., Optimizing the design of geophysical experiments: Is it worthwhile? THE LEADING EDGE, 2000, 19(10): 1058-1062.
    66. Curtis A., Theory of model-based geophysical survey and experimental design, Part 1-linear problems, THE LEADING EDGE, 2004, 23(10): 997-1004; Part 2-nonlinear problems, THE LEADING EDGE, 2004, 23(11): 1112-1117.
    67. Ferber, R., What is DMO coverage?: Geophys. Prosp., 2000, 48, 995-1008.
    68. Galbraith, M., Seismic processing issues in the design of 3-D surveys, 65th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1995, 753-756.
    69. Galbraith, M., 3D seismic surveys-past, present and future, CSEG Recorder, 2001, 26(6): 9-12.
    70. Galbraith, M., 3D geometry for demultiple and noise cancellation, The Leading Edge, 2002, 21(9): 838-851.
    71. Galbraith, M., A new methodology for 3D survey design, THE LEADING EDGE, 2004, 23(10): 1017-1023.
    72. Hilterman, F. J., Three-dimensional seismic modeling, GEOPHYSICS, 1970, 35(6): 1020-1037,
    73. Hoffmann, J., Long, A., Kajl, B., The Value of Subsurface Coverage Modeling for Seismic Acquisition Analysis, SEG International Exposition and 72nd Annual Meeting, 2002, 6-11,
    74. Hubral, P., Hoecht, G, and Jaeger, R., Seismic illumination, The Leading Edge, 1999, 18(9): 1268-1271.
    75. Kajl, B., Long, A., Hoffma, J. and Strandenes, S., High end visualization provides new dimensions in survey design and acquisition quality control, First Break, 2002, 20(3): 181-185.
    76. Liner, C. L., Underwood, W. D. and Gobeli, R., 3-D seismic survey design as an optimization problem: THE LEADING EDGE, 1999, 18(9), 1054-1060.
    77. Liner, C. L. and Underwood, W. D., 3-D seismic survey design for linear v(z) media: THE LEADING EDGE, 1999,18(8): 908-911.
    78. Maurer, H., Zurich, ETH, and Boerner, D. E., 1998, Optimized design of geophysical experiments: THE LEADING EDGE, 17(8): 1119-1125.
    79. Maurer, H., Zurich, ETH, and Boerner, D.E., Optimized and robust experimental design. Geoph. J. Int., 1998,132, 458-468.
    80. Maurer, H., Zurich, ETH, and Boerner, D.E., Geophysical survey design: Get the most for the least! 68~(th) Ann. Internat. Mtg: Soc. of Expl. Geophys., 1998,
    81. Morrice, D. J., Kenyonz, A. S., and Beckett, C. J., Optimizing operations in 3-D land seismic surveys, GEOPHYSICS, 2001, 66(6): 1818-1826.
    82. Muerdter, D. and Ratcliff, D., Understanding subsalt illumination through ray-trace modeling, Part 1: Simple 2-D salt models, The Leading Edge, 2001a, 20(6), 578-594.
    83. Muerdter, D., Kelly, M. and Ratcliff, D., Understanding subsalt illumination through ray modeling, Part 2: Dipping salt bodies, salt peaks, and nonreciprocity of subsall amplitude response, The Leading Edge, 2001b, 20(7), 688-697.
    84. Muerdter, D. and Ratcliff, D., Understanding subsalt illumination through ray-trace modeling, Part 3: Salt ridges and furrows, and the impact of acquisition orientation, The Leading Edge, 2001c, 20(8), 803-816.
    85. Ongkiehong, L., and Askin, H.J., Towards the universal seismic acquisition technique, First Break, 1988,6(2): 46-63.
    86. Ozdenvar, T, McMechan, G A. and Chaney, P., Simulation of complete seismic surveys for evaluation of experiment design and processing: GEOPHYSICS, 1996, 61, 496-508.
    87. Quigley J., Evolution of a seismic acquisition methodology through integrated testing—onshore Abu Dhabi, First Break, 2000, 18(11): 475-480.
    88. Richard, L., Gibson, Jr., and Tzimeas, C, Quantitative measures of image resolution for seismic survey design, Geophysics, 2002, 67(6): 1844-1852.
    89. Roche, S.L., Seismic data acquisition-The new millennium: Geophysics, 2001, 66(1), 3-4.
    90. Sassolas, C, Lescoffit, G and Nicodeme, P., The benefits of 3-D ray tracing in acquisition feasibility, 69th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1999, 629-632.
    91. Tzimeas, C. and Gibson Jr., R., Enhanced spatial resolution measures: An alternative to conventional illumination analysis, 69th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1999, 657-660.
    92. Tzimeas, C. and Gibson Jr., R., Assessment of image quality for large 3-D seismic surveys, 70~(th) Ann. Internat. Mtg: Soc. of Expl. Geophys., 2000,
    93. Vermeer, G J. O., Symmetric sampling: THE LEADING EDGE, 1991, 10(11), 21-27.
    94. Vermeer, G J. O., Rooijen, H. P. G. M and Douma, J., DMO in arbitrary 3-D acquisition geometries, 65th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1995, 1445-1448.
    95. Vermeer, G J. O. and Neidell, N., Round table-is 'coarse' the right course? THE LEADING EDGE, 1995,14(9): 989-993.
    96. Vermeer, G, Factors affecting spatial resolution, GEOPHYSICS, 1999, 64, 942-953.
    97. Vermeer, G, 3-D symmetric sampling: GEOPHYSICS, 1998, 63, 1629-1647.
    98. Vermeer, G, 3-D symmetric sampling in theory and practice: THE LEADING EDGE, 1998, 17(11), 1514-1519.
    99. Vermeer, G, Seismic data acquisition developments in the last decade and in the next - a biased view, CSEG Recorder, June, 2001, 13-16.
    100. Vermeer, G, Understanding the fundamentals of 3D seismic survey design, First Break, 2001,19(3):130-134.
    101. Vermeer, G.J.O., 3-D seismic survey design, Society of Exploration Geophysicists, Tulsa, Oklahoma, 2002
    102. Vermeer, G J.O., Responses to wide-azimuth acquisition special section: THE LEADING EDGE, 2003, 22(1), 26-30.
    103. Vermeer, G.J.O., 3-D seismic survey design optimization, THE LEADING EDGE, 2003, 22(10): 934-941.
    104. Vermeer, G, A comparison of two different approaches to 3D seismic survey design, 73rd Ann. Internat. Mtg.: Soc. of Expl. Geophys., 2003,2152-2155.
    105. Vermeer, GJ.O., An ambitious geometry for 3D land acquisition: THE LEADING EDGE, 2004, 23(10), 1043-1046.
    106. Vermeer, Dr. G J., Processing orthogonal geometry - what is missing? 75th Ann. Internat. Mtg.: Soc. of Expl. Geophys., 2005, 2201-2204.
    107. Volker, A., Blacquiere, G and Berkhout, A., Acquisition design for optimum amplitude accuracy, 71~(st) Ann. Internat. Mtg: Soc. of Expl. Geophys., 2001, 60-63.
    108. Volker, A. and Blacquiere, G., Analysis of 3-D seismic acquisition geometries by focal beams, 69th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1999, 661-664.
    109. Volker, A., Blacquiere, G. and Ongkiehong, L, Noise suppression analysis and 3-D data acquisition geometries, 69th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1999, 1212-1215.
    110. Volker, A. W. F., Blacquiere, G. and Ongkiehong, L, Optimization of 3-D data acquisition geometries, 68th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1998, 86-89.
    111. Wloszczowski D., Gou Y., Faraj A., 3D acquisition parameter: a cost-saving study, 1998, 68th SEG Meeting, Expanded abstracts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700