用户名: 密码: 验证码:
金银花黄酮活性成分分离纯化与生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金银花为常用的传统中草药,功能清热解毒,临床上主要治疗细菌感染、感冒等症。现代药理研究显示金银花中主要化学成分有黄酮类、有机酸类、苷类及挥发油等。其中苷类中三萜皂苷类成分主要与金银花保肝利胆作用有关,而以绿原酸为主的有机酸类化合物和挥发油被认为与其抗菌活性相关。但金银花黄酮是其组成中仍未经充分药理学研究的成分,其相关的生物学活性研究甚少。对其它植物药黄酮的研究提示,该类成分多具有抗菌和抗氧化作用,因此本研究在国家自然科学基金的支持下,对金银花中黄酮类物质进行分离纯化,并考察其生物学效应,为说明金银花发挥药理作用的机制奠定实验基础。
     第一部分金银花总黄酮的分离纯化及抑菌活性考察
     一、实验方法:
     1.金银花总黄酮的提取金银花总黄酮以醇提法提取,并采用均匀设计对提取条件进行优化。
     2.金银花总黄酮初步分离及抑菌活性考察金银花总黄酮浸膏以DM130型大孔吸附树脂柱采用不同浓度乙醇(0,20%,40%,60%)梯度洗脱进行初步分离,对获得的分离组分按A、B、C等依序命名。微量稀释法考察各分离组分对金黄色葡萄球菌(n=7)、肺炎克雷伯菌(n=5)、大肠杆菌(n=6)、铜绿假单胞菌(n=4)等细菌的MIC值。
     3.金银花黄酮组分分离纯化及抑菌活性考察对方法2中分离所得且体外抑菌活性较好的黄酮组分采用制备型HPLC分离制备,对制备组分按A1、A2、…B1、B2等依序命名,并采用微量稀释法考察各制备组份对金黄色葡萄球菌(n=7)、肺炎克雷伯菌(n=5)、大肠杆菌(n=6)、铜绿假单胞菌(n=4)等细菌体外抑菌活性。
     4.金银花黄酮抑菌活性成分结构鉴定对方法3中制备所得且体外抑菌活性较好组分采用HPLC分离提纯,并对纯化分离所得纯度较高单一成分进行LC-MS、1H NMR、13C NMR等鉴定。
     二、实验结果:
     1.金银花总黄酮醇提法最佳提取工艺为:在10g金银花粉末(60目)中加入10倍体积50%乙醇溶液于90℃条件下提取1h。
     2.金银花总黄酮浸膏经大孔吸附树脂柱分离后共收集到5组含有黄酮的洗脱液(0%洗脱组分按洗脱液的澄清与否分为A、B两组分;C为20%洗脱组分,D为40%洗脱组分,E为60%洗脱组分),各分离的洗脱组分对金黄色葡萄球菌、肺炎克雷伯菌、大肠杆菌、铜绿假单胞菌等细菌均有抑制作用,组分B、C抑菌作用优于其他组分,对耐甲氧西林金黄色葡萄球菌(Methicillin Resistant Staphylococcus aureus, MRSA)的MIC值均≤4 mg·mL-1。
     3. B组分经HPLC初步纯化制备共获得6个组分(B1~B6)、C组分共获得2个组分(C1~C2),其中C2组分抑菌效果较好且稳定,对MRSA的MIC值≤2 mg·mL-1。
     4. C2组分经HPLC进一步分离纯化,得到一纯度较高单一化合物,经LC-MS、1H NMR、13C NMR等进行结构鉴定为金丝桃苷。
     第二部分金丝桃苷体外抑菌活性的研究
     一、实验方法:
     1.金丝桃苷体外抑菌活性初步考察微量稀释法考察金丝桃苷对金黄色葡萄球菌(n=7)、肺炎克雷伯菌(n=5)、大肠杆菌(n=6)、铜绿假单胞菌(n=4)等细菌的体外抑菌活性。
     2.金丝桃苷与抗菌药物联用后对金黄色葡萄球菌体外抑菌活性考察采用棋盘法考察金丝桃苷与β-内酰胺类及喹诺酮类抗菌药物联用后对金黄色葡萄球菌(n=20)抑菌活性,计算FIC值。
     3.金丝桃苷与绿原酸联用后体外抑菌活性考察棋盘法考察金丝桃苷与绿原酸联用后对金黄色葡萄球菌(n=7)、肺炎克雷伯菌(n=5)、大肠杆菌(n=6)、铜绿假单胞菌(n=4)等细菌的抑菌活性,计算FIC值。
     4.金丝桃苷对金黄色葡萄球菌粘附能力的影响采用半定量粘附法从20株金黄色葡萄球菌中筛选具有较强粘附能力的菌株;再对所筛选出的细菌采用粘附抑制实验考察不同浓度(0.03125、0.0625、0.125、0.25、0.5mg.mL-1)金丝桃苷对其粘附能力的影响。
     5.金丝桃苷对金黄色葡萄球菌NorA外排泵的影响
     采用携带NorA基因的金黄色葡萄球菌SA26592(pUT-norA)菌株为工具菌,通过PCR扩增的方法确认该菌株携带NorA基因。采用微量稀释法考察金丝桃苷与常用喹诺酮类药物联用后对金黄色葡萄球菌SA26592(pUT-norA)菌株的抑菌活性。
     二、实验结果:
     1.金丝桃苷对金黄色葡萄球菌体外抑菌作用最强,MIC为0.5~1mg·mL-1,对大肠杆菌,铜绿假单胞菌,肺炎克雷伯菌作用相当,均为2 mg·mL-1。
     2.金丝桃苷与β-内酰胺类及喹诺酮类抗菌药物联用,对20株金黄色葡萄球菌的抑菌实验结果显示,金丝桃苷与苯唑西林钠、青霉素钠、加替沙星和左氧氟沙星联用后,表现为相加作用的菌株分别占55%、30%、25%和15%。表明金丝桃苷与β-内酰胺类及喹诺酮类抗菌药物存在一定的联用效果。
     3.金丝桃苷与绿原酸联用,仅对铜绿假单胞菌ATCC27853菌株表现为明显的相加作用(FIC为0.75),其余多表现为无关作用。
     4.金丝桃苷浓度低于MIC时(<0.5mg.mL-1),不能抑制金黄色葡萄球菌的生长,对其粘附能力亦无明显影响。
     5. SA26592(pUT-norA)菌株药敏结果显示,该菌株对新霉素、卡那霉素耐药,对其它抗生素敏感。SA26592(pUT-norA)菌株对环丙沙星、氧氟沙星等亲水性喹诺酮类药物的MIC,较之于司帕沙星等疏水性喹诺酮类药物增加了32~64倍。
     6.金丝桃苷在1/2 MIC浓度时(0.25mg·mL-1),能显著降低环丙沙星、氧氟沙星等亲水性喹诺酮类药物对SA26592(pUT-norA)菌株的MIC值,而对疏水性喹诺酮类药物影响不大。
     第三部分金丝桃苷对CCl4诱导肝损伤模型的保护作用实验研究
     一、实验方法:
     1.确定CCl4诱导L-02人肝细胞损伤的最佳浓度在L-02人肝细胞培养液中加入不同浓度(2.5,5,10,15,20,30mM)的CCl4,MTT法检测存活率,确定CCl4诱导肝细胞损伤的最佳浓度。
     2.金丝桃苷对CCl4诱导L-02人肝细胞损伤的影响向肝细胞培养液中加入CCl4及不同浓度金丝桃苷(5~160μg·mL-1),用MTT比色法检测细胞存活率;用赖氏法检测培养上清中ALT、AST含量;裂解细胞后,用硫代巴比妥酸法检测MDA含量,用比色法检测GSH水平。
     3.金丝桃苷对CCl4诱导大鼠急性肝损伤模型的保护作用成年雄性SD大鼠36只随机分为6组(每组6只),①正常对照组、②CCl4损伤组、③金丝桃苷组(30 mg·kg-1)、④~⑥金丝桃苷+CCl4组(金丝桃苷剂量分别为10 mg·kg-1, 20 mg·kg-1, 30 mg·kg-1)。①和②给予生理盐水、③给予金丝桃苷30 mg·kg-1、④~⑥给予设定剂量的金丝桃苷,连续灌胃三天,于末次给药后6h灌胃给予1.25 mL·kg-1 CCl4液致急性中毒。24h后断颈处死所有大鼠,收集大鼠血液及肝脏组织进行检测。
     4.大鼠生化指标检测用赖氏法检测大鼠血清中ALT、AST含量;肝脏组织中MDA、GSH及8-OHdG水平检测分别采用硫代巴比妥酸法、比色法及ELISA法。
     5.病理检查取大鼠肝脏组织常规HE染色,光学显微镜下观察。
     二、实验结果:
     1. CCl4浓度为15mM时为肝细胞损伤模型最理想的造模浓度。
     2.金丝桃苷5、10、20、40、80、160μg·mL-16个剂量组中, 80μg·mL-1剂量组肝细胞保护作用显著,明显降低ALT、AST、MDA含量,抑制GSH水平降低,且光镜下细胞结构未见明显损伤,MTT结果显示肝细胞存活率增加。
     3.金丝桃苷10 mg·kg-1, 20 mg·kg-1, 30 mg·kg-1剂量组均有一定肝保护效应,肝脏组织病理检查和各项生化指标与模型组比较均有明显改善(p<0.05),其中30 mg·kg-1剂量组各项生化指标与正常对照组最接近。
     4.金丝桃苷组(30 mg·kg-1)连续灌胃三天对大鼠肝脏无明显毒性。
     全文结论
     1.金银花中黄酮类物质具有较强的抗菌活性,其中金丝桃苷具有较强的体外抑菌作用,特别是对MRSA作用明显,MIC达0.5 mg.mL-1。因此金银花黄酮应成为评价金银花抗菌活性的重要指标。
     2.金丝桃苷与β-内酰胺类及喹诺酮类抗菌药物合用,对临床常见致病菌部分菌株有一定增效作用。
     3.金丝桃苷浓度低于MIC时(<0.5mg.mL-1),对金黄色葡萄球菌的粘附能力无明显影响。但能显著增强环丙沙星、氧氟沙星等亲水性喹诺酮类药物对多药外排耐药菌株SA26592(pUT-norA)的抗菌作用,而对疏水性喹诺酮类药物影响不大。
     4.金丝桃苷能明显减轻CCl4诱导的L-02肝细胞株的损伤,显著降低ALT、AST、MDA水平,增加GSH水平,增加细胞存活率。
     5.金丝桃苷对于CCl4诱导的SD大鼠急性肝损伤具有保护效应,组织学和各项生化指标均有明显改善(p<0.05),其中30 mg·kg-1剂量组各项生化指标已接近正常。
Lonicera japonica, a traditional Chinese herb medicine known as its effects of heat-cleaning and detoxification, has been used to mainly treat bacterial infections and common cold in clinic practice. There were several active components including flavonoids, organic acids, glycosides and volatile has been found in this herb medicine by modern pharmacological studies. Among them, the triterpenoid saponin in glycosides, caffeotannic acid in organic acids and aetherolea are believed to be associated with the hepatoprotective and antibacterial effects, respectively. However, little investigation on the bioactivities of flavonoids of Lonicera japonica was carried out to date. Since the results that there had been a antibacterial and antioxidation effects found with flavonoids extracted from other herb medicine, in order to understand better the pharmacological basis of lonicera japonica, the active flavonoid components were extracted and then the bioactivities were investigated in the present study. This work was supported by grants from National Natural Science Foundation, China (30572366).
     Section 1. Isolation and antimicrobial effects test of crude flavonoids from lonicera japonica
     Methods:
     1. Extraction of crude flavonoids from lonicera japonica The crude flavonoids in lonicera japonica was extracted by the method“alcohol extract technology”and optimized by“Even design”.
     2. Preliminary separation of different components in crude flavonoids and antibacterial effect test The crude flavonoids was separated by macroporous adsorption resin and eluted with gradient concentrations (0, 20, 40, and 60%) of alcohol, then the different elution that contained components were designated as A, B…and so on, respectively. The minimal inhibitory concentration (MIC) of the components for Staphylococcus aureus(n=7), Klebsiella pneumonia(n=5), Escherichia coli(n=6) and Pseudomonas Aeruginosa(n=4) were determined by micro-dilution method, respectively.
     3. Separation of active flavonoid components and antibacterial effect test The components which exhibited significant antimicrobial effects obtained from method 2 was further separated by HPLC, then the prepared components were designated as A1, A2…B1,B2 and so on, respectively. The minimal inhibitory concentration (MIC) of each prepared components for Staphylococcus aureus(n=7), Klebsiella pneumonia(n=5), Escherichia coli(n=6) and Pseudomonas Aeruginosa(n=4) were determined by micro-dilution method, respectively.
     4. Structure identification of active flavonoid monomer The components which exhibited significant antimicrobial effects obtained from method 3 was further purified by HPLC, then the structure of monomer component with highest purification was identified by LC-MS, 13CNMR,1HNMR.
     Results:
     1. The optimum extraction method of crude flavonoids in lonicera japonica was established as follows: The crude flavonoids was extracted from lonicera japonica powder (10.0g, 60 mesh) by added 10 times solvent of ethanol concentration 50% (weight : volume = 1 : 10), at 90℃for 1 h.
     2. There had been total 5 flavonoids elutions contained flavonoids obtained with macroporous adsorption resin and eluted with gradient concentrations of alcohol. Elution A and B was obtained by 0% alcohol with a difference of clarity between them. Elution C by 20%, D by 40% and E by 60%l, respectively. All 5 elutions contained flavonoids were found with a significant bactericidal effects, especially B and C, the both had a similar low MIC value of≤4 mg·mL-1 for methicillin resistant staphylococcus aureus (MRSA) strains.
     3. There were 6 components (B1~B6) from the elution B and 2 (C1~C2) from elution C were prearaed by HPLC, respectively. Among them, component C2 had a MIC of≤2 mg·mL-1 on MRSA strains.
     4. A monomer component with highest purification was isolated from C2 by HPLC and identified as hyperoside by LC-MS, 1H NMR and 13C NMR. Section 2. Study of antibacterial effects of hyperoside in vitro.
     Methods:
     1. Preliminary study of antibacterial effects of hyperoside in vitro The MICs of hyperoside for the strains of Staphylococcus aureus(n=7), Klebsiella pneumonia(n=5), Escherichia coli(n=6) and Pseudomonas Aeruginosa(n=4) were determined by micro-dilution method.
     2. Study of antibacterial effects of hyperoside combined with antibiotics in vitro The antimicrobial effects of hyperoside combined withβ-lactams or quinolones for the strains of Staphylococcus aureus(n=20) were measured by checkerboard method, respectively. The FIC values were calculated to indicate the combined antibacterial effect.
     3. Study of antibacterial effects of hyperoside combined with chlorogenic acid in vitro The antibacterial effects of hyperoside combined with chlorogenic acid for the strains of Staphylococcus aureus (SA)(n=7), Klebsiella pneumonia(n=5), Escherichia coli(n=6) and Pseudomonas Aeruginosa(n=4) were evaluated by checkerboard method. The FIC values were calculated to indicate the combined antibacterial effect.
     4. The effect of hyperoside on adhesion ability of SA 11strains of SA with a obvious adhesion ability were elected from 20 clinical isolations by demi-quantitation of bacterial adhesion. Then the adhesion of elected SA strains were observed when treated with hyperoside at concentrations of 0.03125、0.0625、0.125、0.25、0.5mg.mL-1.
     5. Study of antibacterial effects of hyperoside combined with quinolones for SA26592 strain(pUT-norA) in vitro The expression of NorA gene in strain SA26592 was confirmed by PCR. The antimicrobial resistant characteristics of SA26592 was examined by K-B slip. The antibacterial effects of hyperoside combined with quinolones for SA26592 were measured by micro-dilution method.
     Results:
     1. Hyperoside showed a excellent antibacterial effect on SA strains with a low MIC of 0.5~1mg/ml, and the MIC of 2mg/ml for strains of Escherichia Coli, Pseudomonas Aeruginosa, Klebsiella pneumonia were observed.
     2. The FIC index indicated that the addition effects were found in 55%、30%、25% and 15% of MRSA strains ( n=20) when hyperoside combined with oxacillin, benzylpenicillin, gatifloxacin and levofloxacin, respectively. The results suggested that hyperoside could enhance the anti-MRSA efficency of theseβ-lactams or quinolones.
     3. Hyperoside combined with chlorogenic acid showed an obvious cumulate bactericidal action on Pseudomonas aeruginosa ATCC27853 with a FIC index of 0.75, but not for other strains.
     4. Hyperoside had no significant effects on bacteria growth and adhesion at sub-MIC concentration under 0.5mg.mL-1.
     5. SA26592(pUT-norA)was only resistant to neomycin and Kanamycin. The MICs of hydrophilic quinolones (ciprofloxacin, ofloxacin) were 32~64 times higher than that of hydrophobic quinolones (sparfloxacin) on SA26592.
     6. Hyperoside at the half-MIC (0.25mg.mL-1) could make MICs of ciprofloxacin or ofloxacin for SA26592 decrease obviously, but little changes found for the hydrophobic
     quinolones.
     Section 3. Hepatoprotection effect of hyperoside against carbon tetrachloride- induced acute liver injury in vitro and in vivo
     Methods:
     1. Determination of the appropriate CCl4 concentration to induce the L-02 hepatocytes injury The appropriate CCl4 concentration to induce the hepatocytes injury was determined according to the survival rates of L-02 hepatocytes incubated with series concentrations (2.5,5,10,15,20,30mmol·L-1)of CCl4. The cell survival rate was measured by MTT method.
     2. The effects of hyperoside on the L-02 hepatocytes injuried by CCl4 CCl4 solutions were added to hepatocytes in present of various concentrations of hyperoside (5~160μg·mL-1) and the MTT method was used to test the survival rate of cells. The concentrations of ALT and AST in supernatants were determined by King’s method. After cells lysis, the MDA and GSH in hepatocytes were measured by TBARS and colorimetric method, respectively.
     3. Hepatoprotection effect of hyperoside against CCl4 -induced acute liver injury in rats 36 male SD rats were divided into six groups (six in each) including①normal control,②the injury model,③hyperoside alone(30 mg·kg-1), and④~⑥injury rats treated with hyperoside (10 mg·kg-1, 20 mg·kg-1, 30 mg·kg-1).The same volume of saline for①and②, hyperoside of 30 mg·kg-1 for③and the designed concentrations of hyperoside for④~⑥were administered by gavage, respectively, once a day for 3 days. Then rats in②and④~⑥were received CCl4 1.25 ml·kg-1 by gavage at 6 h after the administration of saline or hyperoside, and 24 h after which, all rats were sacrificed under ether anesthesia, and their blood and liver samples were collected and analyzed.
     4. Test of biochemical index of rats The concentrations of ALT and AST in serum were determined by King’s method. The levels of MDA, GSH and 8-OHdG in hepatocytes were measured by TBARS, colorimetric method and ELISA, respectively.
     5. Pathological examination of liver tissue The histopathology examination of liver tissue samples was observed under microscope by HE stain.
     Results:
     1. The appropriate concentration of CCl4 that could induce hepatocytes injury was determined as 15mM.
     2. In the 6 concentrations of hyperoside, 80μg·mL-1 exhibited the best protective effects for hepatocytes injuried by CCl4, characterized as the levels of ALT, AST and MDA decreasing, elevation of GSH level and survival hepatocytes increasing with little damage in cell structure.
     3. The significant hepatoprotective effects for CCl4-attatcked rats were found in three dosages of hyperoside (10 mg·kg-1, 20 mg·kg-1, and 30 mg·kg-1) with the obvious improve biochemical indexes and liver histopathology examination. The results of animals received hyperoside of 30 mg/kg were almost similar to that of normal controls.
     4.There were not any liver toxic reactions observed in rats gavaged hyperoside of 30 mg·kg-1 per day for 3 days.
     Conclusions:
     1. Flavonoids from lonicera japonica had a strong antibacterial action, especially for MRSA (MIC≤5 mg·mL-1). This result suggested that flavonoids should be regarded as an important index in the bacterical effects evaluation of lonicera japonica.
     2. Hyperoside combined withβ-lactams or quinolones could make the antibacterial effects better on some strains of common pathogenic bacteria.
     3. At the sub-MIC concentration (<0.5mg.mL-1), hyperoside had no significant inhibitory effects on the adhesion ability of MRSA, but could enhance the antibacterial effects of hydrophilic quinolones on bacteria SA26592(pUT-norA).
     4. Hyperoside could relieve cell injury induced by CCl4 in hepatocyte L-02 with the level of ALT, AST and MDA decrease, GSH and cell survival rate increase.
     5. Hyperoside showed a significant hepatoprotective effect in CCl4-attatcked rats at three dosages used in this study. The biochemical indexes and liver histopathology examination of rats treated with hyperoside of 30 mg·kg-1 were almost similar to that of untreated animals.
引文
1.石钺,石任兵,陆蕴如.我国药用金银花资源,化学成分及药理研究进展[J].中国药学杂志,1999;34(11):724~727
    2.何显忠,兰荣德.金银花的药理作用与临床应用[J].时珍国医国药,2004;15(12):865~867
    3.黄丽瑛,吕植桢,李继彪,周炳南.中药金银花化学成分的研究[J].中草药,1996;27(11):645~647
    4.王燕,王智民,林丽美,高慧敏,刘塔斯.金银花及其同属植物化学成分研究进展[J].中国中药杂志,2008;33 (8): 968~972
    5.时京珍,陈秀芬,宛蕾.黄褐毛忍冬和灰毡毛忍冬几种成分对大、小鼠化学性肝损伤的保护作用[J].中国中药杂志,1999;24(6):363~365
    6.张体灯,潘瑞娥,毕志明,李会军,李萍.金银花忍冬地上部分的黄酮类成分研究[J].中国药学杂志,2006;41(10):741~743
    7.黄雄,李松林,李萍,李会军,柴兴云,宋越. HPLC法同时测定金银花中8种黄酮的含量[J].药学学报,2005;40(3):285~288
    8. Suzgec S, Mericli AH, Houghton PJ, Cubukcu B. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity[J]. Fitoterapia. 2005;76(2):269
    9. Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells[J]. Antimicrob Agents Chemother. 2004;48(6):1968
    10. Sato Y, Shibata H, Arai T, Yamamoto A, Okimura Y, Arakaki N, Higuti T.Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin- resistant Staphylococcus aureus to beta-lactam antibiotics[J]. Int J Antimicrob Agents. 2004;24(3):226
    11. Guz NR, Stermitz FR,Johnson JB,et al. Flvonolignan and flavone inhibitors of a staphylococcus aureus multidrug resistance pump: structure-activity relationships[J]. J Med Chem. 2001, 44(2): 261
    12.武雪芬,白雁.金银花叶药用成分的提取及抑菌试验研究.中成药.2001;23(6):448
    13.候会娜,曾耀英,等.金银花提取物对小鼠淋巴细胞体外活化与增殖的影响[J].免疫学杂志,2008,24(2):178~183
    14.胡成穆,姜辉,等.金银花总黄酮对免疫性肝损伤小鼠的影响[J].安徽医药,2008;12(4):295~297
    15.曾昭钧.均匀设计及其应用[ M] .沈阳:辽宁人民卫生出版社, 1994
    16.陈宝玉,管庆霞.均匀设计优化葛根总黄酮提取工艺[J].黑龙江医药,2006;19(5):373~374
    17. George M, Eliopoulos Robert C, Antimicrobial Combination[M]. Antibiotics in Laboratory Medicine, 4th ed, 1996,330
    18.候冬岩,回瑞华,杨梅,唐蕊,刘晓媛,朱永强.金银花中总黄酮的光谱分析及抗氧化性能测定[J].分析实验室,2004;23(11):52~55
    19.王丽婷,赵堂,杨敏丽.金银花叶中黄酮类物质的提取工艺[J].华西药学杂志,2006;21(6):520~523
    20.李荣,胡成穆,彭磊,李俊.正交设计研究金银花总黄酮提取工艺[J].安徽医科大学学报,2006;41(4):410~412
    21.朱英,裘德胜,陈民,蔡锦添.金银花叶总黄酮的水提取工艺研究[J].中成药,2007;29(1):60~63
    22.王宇翎,张艳,方明,李前进,江勤,明亮.白花蛇舌草总黄酮的抗炎及抗菌作用[J].中国药理学通报,2005;21(3):348~350
    23. Kuroyanagi M, Arakawa T, Hirayama Y, Hayashi T. Antibacterial and antiandrogen flavonoids from Sophora flavescens[J]. J Nat Prod, 1999;62(12):1595~1599
    24.张成伟,周亚球,陈磊.金丝桃苷药理作用研究进展[J].安徽医药,2007;11(11):961~963
    25.马传庚,向泽茂,徐叔云,等.金丝桃苷中枢镇痛作用及其机制的研究[J].中国药理学通报,1991;7(5):345~348
    26.彭国平,魏尔清,葛求富,李筱筱.金丝桃苷对离体缺氧/缺糖再灌注脑损伤的保护作用[J].中国药学杂志,2005;40(6):434~437
    27. George M. Eliopoulos , Robert C. Moellering, JR. Antimicrobial Combinations. In Antibootics in LaboratoryMedicine[M]. 4th ed, N W Washington US, Society for microbiology,1996,330
    28. Yamagishi J, Kojima T, Oyamada Y, Fujimoto K, Hattori H, Nakamura S, Inoue M.Alterations in the DNA topoisomeraseⅣgrlA gene responsible for quinolone resistance in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 1996;40(5):1157~1163
    29. Arciola C R, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains f rom catheter-associated Infections [J ] . J Clin Microbiol, 2001; 39(6):2151~2156
    30. Yamada H, Kurose-Hamada S, Fukuda Y, Mitsuyama J, Takahata M, Minami S, Watanabe Y, Narita H. Quinolone susceptibility of nor-A disrupted Staphylococcus aureus[J]. Antimicrob Agents Chemother, 1997;;41(10):2308~2309
    31. Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quilonoes[J]. J Bacteriol,1990;172(12):6942~6949
    32. Min K, Ebeler S E. Flavonoid effects on DNA oxidation at low concentrations relevant to physiological levels[J]. Food Chem Toxicol, 2008;46(1):96~104
    33. Leung H W, Kuo C L, Yang W H, Lin C H, Lee H Z. Antitoxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis[J]. Eur J Pharmacol,2006,534(1-3):12~18
    34. A.R. Chowdhury, S.Sharma, et al. Luteolin, an emerging anti-cancer flavonoid, posions eukaryotic DNA topoisomeraseⅠ[J]. Biochemistry,2002,366:653~661
    35.郑洁净,续洁鲲,等.藤茶总黄酮对拘束符合引起小鼠肝损伤的保护作用[J].中国药理学通报,2006;22(10):1249~1253
    36.徐颖,马轶,等. Hyp对培养的乳鼠心肌细胞的保护作用[J].沈阳医科大学学报,2000;17(5):365~367
    37.李庆林,陈志武,等. Hyp对原代培养的大鼠心肌细胞缺氧-再给氧损伤的影响[J].中草药,2006;37(4):575~577
    38. Clawson GA. Mechanisms of carbon tetrachlorid hepatotoxicity[J]. Pathol Immunopathol Res, 1989;8(2):104~112
    39. Boll M, Weber LW, Becker E, et al. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites[J]. Z Naturforsch [C], 2001;56(7-8):649~659
    40.潘勤,李定国,杜学良,徐芹芳.生长抑素及奥曲肽的肝细胞保护作用及其机制研究[J].中国病理生理杂志,2008;24(4):730~733
    41.焦杨,段小群,林兴,黄仁彬.玉郎伞多糖对四氯化碳诱导大鼠原代肝细胞损伤的保护作用[J].中国医院药学杂志,2006;26(11):1333~1335
    42.陈蕾,吴皓,姚静倩,等.珠蚌多糖对四氯化碳诱导肝细胞损伤的保护作用[J].中国海洋药物杂志,2008;27(2):18~21
    43.戴城烽,李娟,金璐燕.姜黄素-3脂质体对小鼠四氯化碳急性肝损伤的保护作用及其机制[J].中国临床药理学与治疗学,2008;13(4):401~405
    44.杨莉莉,董文,贺巾超,等.重组牛胰蛋白酶抑制剂对小鼠急性肝损伤的保护作用[J].中国药理学通报,2008;24(4):448~451
    45.耿涛,谢海林,孙晓飞.生姜油对急性肝损伤的保护作用[J].中成药,2007;29(8):1123~1126
    46. Zheng QS, Sun XL, Xu B, et al. Protective effects of luteolin-7-glucoside against liver injury caused by carbon tetrachloride in rats[J]. Pharmazie,2004;59:286~289
    47. Shigenaga MK, Ames BN. Assay for 8-ohdg, a biomarker of in vivo oxidative DNA damage[J]. Free Radic Biol Med, 1991;10:211~216
    48. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, as a marker of cellular stress during carcinogenesis[J]. Muta Res, 1997;387:147~163
    1.何显忠,兰荣德.金银花的药理作用与临床应用[J].时珍国医国药,2004;15(12):865~867
    2.单爱莲,权菊香,等.对预防与治疗非典型肺炎的中药处方情况调查分析[J].中国临床药理学杂志,2003;19(30):289~290
    3.中国医学科学院药用植物资源开发研究所,中国医学科学院药物研究所.中药志(第5册)[M].北京:人民卫生出版社,1994,p256
    4.国家药典编委会.中华人民共和国药典2005版一部[M].北京:化学工业出版社,2005,p21
    5. Peng LY,Mei SX,Jiang B,et al. Constituents from Lonicera japonica[J]. Fitoterapia , 2000,71: 713~715
    6.王燕,王智民,林丽美,等.金银花及其同属植物化学成分研究进展[J].中国中药杂志,2008;33 (8): 968~972
    7.肖根培.新编中药志(第二卷)[M].北京:化学工业出版社,2002,p736
    8.张永清,程炳篙,赵连山.忍冬体内化学成分含量日变化的研究[J].中草药,1992,15(3):4~6
    9.周日宝,童巧珍.灰毡毛忍冬与中品金银花的绿原酸含量比较[J].中药材, 2003,26(6):399~400
    10. Zhang B, Yang RY, et al. Microwave-assisted extraction of chiorogenic acid from flower buds of Lonicera japonica Thunb[J]. Separation and Purification Technology, 2008, 62: 480~483
    11.张体灯,潘瑞娥,毕志明,等.金花忍冬地上部分的黄酮类成分研究[J].中国药学杂志, 2006,41(10):741~743
    12.高玉敏.金银花化学成分的研究[J].中草药,1995,26(11): 568~569.
    13.黄丽瑛,吕植桢,李继彪,等.中药金银花化学成分的研究[J].中草药,1996;27(11):645~647
    14. Kumar N,Singh B, Bhandari P,et al. Biflavono ids from Lonicera japonica[J]. Phytochemistry , 2005 (66): 2740~44
    15.景小琦,武雪芬.金银花枝叶中粗黄酮、无机元素和蛋白质含量测定[J].河南中医,2001,21(4):66-67
    16.武雪芬,景小琦.金银花叶药用成分的提取及抑菌试验[J].天然产物研究与开发,2001,13(3):43-44
    17. Suh SJ, Chung TW, Son MJ, et al. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-κB regulation, in RAW264.7 cell[J]. Archives of Biochemistry and Biophysics, 2006,447(2):136~146
    18.茅青,贾宪生.黄褐毛忍冬化学成分研究[J].药学学报,1989,24(4):269~270
    19.贾宪生,吴家其,茅青.吊子银花的品质研究[J].贵阳中医学院学报,1997,19(4):58~59
    20.娄红祥,郎伟君,吕木坚.金银花中水溶性化合物的分离与结构确定[J].中草药,1996,27 (4) :195~196
    21. Kwak WJ, Han CK, Chang HW, et al. Loniceroside C, an Antiinflammatory Saponin from Lonicera japonica[J]. Chem.Pharm. Bull, 2003,51(3):333~335
    22. Chai XY, Li SL, Li P, et al. Quality evaluation of Flos Lonicerae through a simultaneous determination of seven saponins by HPLC with ELSD[J]. Journal of Chromatography A, 2005, 1070(1-2): 43~48
    23. Li HJ, Li P, Ye WC, et al. Determination of five major iridoid glucosides in Flos Lonicerae by high-performance liquid chromatography coupled with evaporative light scattering detection[J]. Journal of Chromatography A,2003,1008(2):167~172
    24. Song Y, Li SL, Wu MH, et al. Qualitative and quantitative analysis of iridoid glycosides in the flower buds of Lonicera species by capillary high performance liquid chromatography coupled with mass spectrometric detector[J]. Analytica Chimica Acta,2006,564(2):211~218
    25. Kakuda R, Imai M, Yaoita Y, et al. Secoiridoid glycosides from the flower buds of Lonicera Japonica[J]. Phytochemistry,2000,55(8):879~881
    26. Machida K, Asano J, Kikuchi M, et al. Caeruleosides A and B, bis-iridoid glucosides from Lonicera Caerulea[J]. Phytochemistry, 1995,39(1):111~114
    27.王玉莉,戴静秋,等.金银花忍冬中一个新的二聚体环烯醚萜苷的2D NMR研究[J].波谱学杂志,2003,20(2):137~141
    28.李会军,李萍,等.金银花中一个罕见的二聚体环烯醚萜苷[J].中国药学杂志,2006,41(11):818~819
    29.毕跃峰,田野,等.金银花中裂环环烯醚萜苷类化学成分研究[J].中草药,2008,39(1):18~21
    30. Choi CW, Jung HA, Kang SS, et al. Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae[J]. Arch Pham Res, 2007,30(1):1~3
    31. Wang YL, Wei QY, et al. Iridoid glucosides from Chinese herb Lonicera chrysatha and their antitumor activity[J]. J Chem Res, 2003,(10):676~678
    32.苏香萍,宋必卫,等. CO2超临界萃取金银花挥发油工艺及抗炎活性研究[J].天然产物研究与开发,2006,18:663~666
    33.吴元夔,方洪矩.金银花挥发油化学成分研究[J].化学学报,1980,38(6):573~576.
    34.张玲,彭广芳,林慧彬,等.山东金银花挥发油化学成分研究[J].中国药学杂志,1995,3 (11):651~53 .
    35.李俊波.不同产地金银花挥发油GC-MS比较分析[J].中草药,2002,33(9):784
    36.狄留庆,蔡宝昌,等.金银花挥发性成分的GC-MS分析[J].中药材,2003,7(7):491~492
    37.张军,赵光莉,等. SFE-MD技术分离提纯金银花挥发油及其成分分析[J].精细化工. 2008,25(1):49~53
    38.邢俊波,李萍,张重义,等.不同产地金银花挥发油GC/MS比较分析[J].中草药,2002,11(11): 856~58
    39.吉力,潘炯光,徐植灵.忍冬挥发油的GC/MS分析[J].中国中药杂志,1990,15(11):680~84.
    40.王国亮,朱信强,王金风,等.豫北平原栽培金银花精油化学成分分析[J].中国中药杂志, 1992,17,(5):268~69
    41.吴二喜.忍冬与灰毡毛忍冬微量元素的分析[J].中草药, 1998,9(6):45~47
    42.张胜帮、李锦燕,等.金银花中多种金属元素的炭化酸溶法-ICP-AES研究[J].光谱学与光谱分析, 2007,27(6):1222~1224
    43. Kumar N, Singh B, Gupta AP, et al. Lonijaposides, novel cerebrosides from Lonicera japonica[J]. Tetrahedron, 2006,62(18):4317~4322
    44.宋海英,邱世翠,王志强.金银花的体外抑菌作用[J].时珍国医国药,2003,14(5):26~29
    45.孙德梅.金银花叶提取物的抗氧化活性和抑菌作用研究[J].河南科学,2002,20 (5) : 511~13
    46.马双成,刘燕,等.金银花药材中抗呼吸道病毒感染的黄酮类成分的定量研究[J].药物分析杂志,2006,26(4):426~430
    47.胡克杰,孙孝群,等.绿原酸体外抗病毒作用研究[J].哈尔滨医科大学学报,2001,35(6):430~432
    48.李永梅,李黎,等.金银花的抗腺病毒作用研究[J].华西药学杂志,2001,16(5):327~329
    49. Tae J, Han SW, Yoo JY, et al. Anti-inflammatory effect of Lonicera japonica in protinase-activated receptor 2-mediated paw edema [J]. Clinica Chimica Acta,2003,330(1-2):165~171
    50. Xu YB, Oliverson BG, Simmons DL, et al. Trifunctional inhibition of cox-2 by extracts of Lonicera japonica: Direct inhibition, transcriptional and post-transcriptional down regulation[J]. Journal of Ethnopharmacology,2007,111(3):667~670
    51.罗中华,黄文华,等.中草药对改善烫伤小鼠受损免疫功能的作用[J].中华整形烧伤外科杂志,1993,9(1):56~58
    52.何保斌,罗中华,等.三味中药配伍应用对改善烫伤小鼠受损免疫功能的作用[J].第三军医大学学报,2001,23(10):1164~1166
    53.罗中华,黄文华,等.中药对烧伤患者免疫功能及急性期蛋白的影响[J].中华外科杂志,1998,36(6):366~369
    54.罗中华,黄文华,等.三七等四种中药对烫伤小鼠巨噬细胞功能的作用[J].中华医学杂志,1994,74(10):634~635
    55.李斐,黎海芪.金银花水提物对卵清蛋白致敏小鼠的免疫调控作用[J].中华儿科杂志,2005,43(11):852~857
    56.候会娜,曾耀英,等.金银花提取物对小鼠淋巴细胞体外活化与增殖的影响[J].免疫学杂志,2008,24(2):178~183
    57.时京珍,宛蕾,陈秀分.黄褐毛忍冬皂苷对几种化学毒物致小鼠肝脏毒性的保护作用[J].中药药理与临床,1990,6(1):33~34
    58.时京珍,刘耕陶.黄褐毛忍冬皂苷对对乙酰氨基酚致小鼠肝脏毒性的保护作用[J].药学学报, 1995, 30(4):311~13
    59.胡成穆,姜辉,等.金银花总黄酮对免疫性肝损伤小鼠的影响[J].安徽医药,2008,12(4):295~297
    60. Bassoli B K, Cassolla P, Borba-Murad G R, et al. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia[J]. Cell Biochem Funct, 2008;26(3):320~328
    61.黄艳英,黄敏,陆中海.金银花炮制的实验研究[J].中药材,1994,17(1):25~26
    62.文宪先.金银花不同炮制品的应用[J].时珍国医国药,2004;15(12):825
    63. Chaudhury RR. The quest for a herbal contraceptive[J]. Natl Med J india, 1993;6(5):199
    64.曹采萍,黄正南,钱蓓丽,等.金银花抗生育作用的研究[J].医药工业,1986;17(3):19
    65.李会军、李萍,等.金银花类中药提取物清除自由基的作用[J].中国药科大学学报,2002,33(6):496~698
    66.兰华,高丹,等.金银花提取液抗氧化酶活性与清除自由基能力的研究[J].中国食品学报,2007,7(2):27~32
    67.侯冬岩,回瑞华,等.金银花中总黄酮的光谱分析及抗氧化性能的测定[J].分析实验室,2004,23(11):52
    68. Leung HW, Kuo CL, Yang WH, et al. Antitoxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis[J]. Eeropean Journal of Pharmacology,2006,534(1-3):12~18
    69. Thanabhorn S, Jaijoy K, Thamaree S, et al. Acute and subacute toxicity study of the ethanol extract from lonicera japonica Thunb[J]. Journal of Ethnopharmcology,2006,107(3):370~373
    70.蔡永敏.最新中药药理与临床应用[M].北京:华夏出版社,1999,p77~78
    71.王浴生,邓文龙,薛春生.中药药理与应用[M].第2版.北京:人民卫生出版社,1998,730~43.
    72. Spiegel W. Anaphylaxis to honeysuckle[J]. Journal of Allergy and Clinical Immunology,2004,113(2):S243
    73.郭宏亮,吴良金.双黄连粉针治疗急性病毒性心肌炎88例疗效观察[J].临床医学,1999,19(9):54-55.
    74.季建军,戴妙庆.双黄连针剂辅助治疗肝硬化腹水并发性腹膜炎[J].中国新药与临床杂志,1999,18(6):399-400.
    75.钱学射,黄奇碧.金银花在化妆品中的应用[J].中国化妆品,1994,(8):31.
    76.武雪芬,白雁.金银花叶药用成分的提取及抑菌试验研究[J].中成药,2001;23(6):448.
    77. Chowdhury AR , Sharma S, et al. Luteolin, an emerging anti-cancer flavonoid, posions eukaryotic DNA topoisomeraseⅠ[J]. Biochemistry,2002,366:653~661
    78. Leung HW, Wu CH, Lin CH, et al. Luteolin induced DNA damage leading to human lung squamous carcinoma CH27 cell apoptosis[J]. European Journal of Pharmacology,2005,508(1-3):77~83
    79. Suzgec S, Mericli AH, Houghton PJ, Cubukcu B. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity[J]. Fitoterapia. 2005;76(2):269
    80. Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells[J]. Antimicrob Agents Chemother. 2004;48(6):1968
    81. Sato Y, Shibata H, Arai T, Yamamoto A, Okimura Y, Arakaki N, Higuti T.Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin- resistant Staphylococcus aureus to beta-lactam antibiotics[J]. Int J Antimicrob Agents. 2004;24(3):226
    82. Wu M L, Zhou C S, et al. Study on the extraction of total flavonoids from Ginkgoleaves by enzyme hydrolysis[J]. Nat Prod Res Dev, 2004, 16:557~560
    83.靳学远,安广杰.超临界流体提取金银花中总黄酮研究初报[J].中国农业科学通报,2007;23(9):156-158.
    84.丁利君、吴振辉,等.金银花中黄酮类物质最佳提取工艺的研究[J].食品科学,2002,23(2):62~67
    85.刘湘,汪秋安.天然产物化学[M].北京:化学工业出版社,2005:3
    86.宋晓凯.天然药物化学[M].北京:化学工业出版社,2004:8
    87.米靖宇,宋纯清.大孔吸附树脂在中草药研究中的应用[J].中草药,2001,23(1):911
    88.黄雄,李松林,李萍,等. HPLC法同时测定金银花中8种黄酮的含量[J].药学学报,2005;40(3):285-288.
    89.颜流水,温振东,黄智敏,等[J].毛细管电泳法测定金银花中绿原酸、芦丁和槲皮素.药物分析杂志,2007;27(3):367-370.
    90. Chen J, Song Y, et al. Capillary high-performance liquid chromatography with mass spectrometry for simultaneous determination of major flavonoids, iridoid glucosides and saponins in Flos Lonicerae[J]. Journal of Chromatography A , 2007,1157(1-2):217~226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700