用户名: 密码: 验证码:
FEZ1在星形胶质细胞中的表达及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星形胶质细胞在中枢神经系统中数量最多、分布最广,在形态、受体的分布及胞质活性物质的含量等方面都存在明显的异质性,不同谱系发生的星形胶质细胞在中枢神经系统中所起的作用至今仍不明确。
     目的:
     (1)分离、培养获得不同谱系来源的两型星形胶质细胞(T1A和T2A),通过基因表达谱芯片技术构建星形胶质细胞基因表达谱,进行对比分析,筛选出细胞特异性差异表达基因。
     (2)从获得的基因表达谱中,选定在胶质细胞中新发现的轴突成束和延伸相关基因FEZ1,分析FEZ1在培养的两型星形胶质细胞中的表达定位。
     (3)分析FEZ1在大鼠脑组织发育过程中的表达变化。
     (4)通过FEZ1基因克隆,瞬时转染及原核表达方法,初步探讨FEZ1对星形胶质细胞活性及神经元突起生长的影响。
     方法:
     第一部分(1)采用振荡法和差速贴壁法,从新生一天SD大鼠大脑皮层分离获得T1A和T2A,免疫荧光双标鉴定;(2)应用BiostarR-40s基因表达谱芯片技术对比分析在培养的T1A和T2A中细胞特异性差异表达基因情况。
     第二部分(1)利用半定量RT-PCR、Realtime RT-PCR、western blot和细胞免疫化学的方法检测FEZ1基因在T1A和T2A中的表达及细胞定位情况,验证基因表达谱芯片结果。(2)取生后1天、3天、7天、2周、1个月、3个月的SD大鼠,灌注后取脑进行冰冻切片,并分别以FEZ1和GFAP或NF对星形胶质细胞和神经元进行免疫荧光双标,检测FEZ1在脑组织发育过程中的表达定位。
     第三部分应用RT-PCR方法从大鼠大脑皮层克隆获得FEZ1全长序列,构建pEGFP-N1-FEZ1真核表达重组质粒和FEZ1 RNAi质粒,瞬时转染星形胶质细胞,MTT法检测细胞活力,初步观察FEZ1基因对星形胶质细胞生长的影响;构建pET-28a-FEZ1原核表达重组质粒,体外原核表达His-FEZ1融和蛋白,观察FEZ1对背根节神经元突起生长的影响。
     结果:
     (1)应用上海博星基因芯片公司星形胶质细胞基因表达谱芯片BiostarR-40s,四次芯片结果交集显示,在4096个检测点中,发现差异表达基因138条,99个为已知基因,其中42个在T1A中高表达,57个在T2A中高表达。与神经轴突传导相关基因均在T2A中表达上调,其中新发现的与轴突成束和延伸相关的FEZ1基因在胶质细胞中的表达及作用国内外尚未见相关研究报道。
     (2)RT-PCR及western blot结果显示FEZ1在体外培养的两型星形胶质细胞中mRNA水平及蛋白水平均有表达,且在T2A中表达明显增加,与基因表达谱芯片结果一致。细胞免疫荧光双标结果显示,FEZ1蛋白在O2A祖细胞、T1A、T2A细胞中均有表达,分布于细胞胞浆及突起,在T1A及T2A中可与GFAP共定位,细胞核中没有表达。
     (3)FEZ1在大鼠脑组织嗅球的僧帽细胞和颗粒细胞,海马齿状回的颗粒细胞,海马CA1-3区的锥体细胞,皮层锥体细胞也有表达,嗅球及海马齿状回星形胶质细胞有表达,生后7天FEZ1表达量达最高。
     (4)构建的pEGFP-N1-FEZ1真核重组质粒和FEZ1 RNAi质粒经测序鉴定正确,瞬时转染星形胶质细胞,干扰FEZ1基因表达可降低细胞活力,抑制细胞生长。
     (5)构建的pET-28a-FEZ1原核表达重组质粒经测序鉴定正确,在BL21大肠杆菌中经诱导可表达His-FEZ1融和蛋白,该蛋白对大鼠背根节突起生长有一定促进作用。
     结论:
     (1)不同谱系来源的两型星形胶质细胞基因表达谱存在明显差异,其中与神经轴突传导相关基因表达差异提示T1A和T2A可能在诱导轴突生长方面有不同功能。
     (2)首次研究证实,FEZ1基因在体外培养的星形胶质谱系细胞中均有表达,但在T2A中表达明显增加。
     (3)FEZ1在大鼠脑组织发育过程中嗅球、海马神经元及星形胶质细胞中有表达。
     (4)成功构建了pEGFP-N1-FEZ1真核重组质粒、FEZ1 RNAi质粒以及pET-28a-FEZ1原核表达重组质粒,为进一步研究FEZ1对星形胶质细胞生物学特性的影响及在其中枢神经系统中的作用机制等奠定了实验基础。
Astrocytes play a more important role than simply providing physical support for neurons, however, the function(s) of type 1 and type 2 astrocytes (T1As, T2As), remains unclear.
     Objective:
     The aim of this study was (1) to establish and analyze gene expression profiles of cultured T1As and T2As, determine the possible biological function of these genes expressed in T1As and T2As; (2) to confirm the expression and location of FEZ1 in T1As and T2As. (3) to investigate the expression of FEZ1 in rat developing brain; (4) to evaluate the infuence of FEZ1 on cellular activity of astrocytes through transient transfection; (5) to establish FEZ1 fusion protein expression system in the E.coil and evaluate the influence of ectogenic FEZ1 on neurons.
     Methods:
     Part one (1) Based on the differential properties of developmental time-course and cellular adhesions in T1A cell linage and O-2A cell linage, Primary rat T1As and T2As were isolated from postnatal day 1 (P1) rat cortex. (2) A DNA microarray was used to identify gene expression in cultured T1As and T2As. Different gene expression profile of purified T1As and T2As were compared and analyzed.
     Part two (1) Real-time reverse transcription-polymerase chain reactions (RT-PCR), western blots and immunocytochemistry were performed to demonstrate the expression of FEZ1 in cultured T1As and T2As. (2) The expression of FEZ1 in developing brain from rat postnatal 1day, 3 days, 7 days, 2 weeks, 1 month, 3 months were investigated using immunohistochemistry assays.
     Part three RT-PCR was used to obtain the full length FEZ1 gene from rat cortex. The recombinant plasmids of pEGFP-N1-FEZ1 and FEZ1 RNAi were transfected into asrocyte respectively, and cell activities were examined by MTT. The recombinant protein of FEZ1 with His tag was expressed in prokaryotic cells and its function on dorsal root ganglia outgrowth was observed.
     Results:
     (1) Gene profiling, using the BiostarR-40 genechip array, created a transcriptome database of the expression levels of 4096 genes for T1A and T2A. Of the 4069 analyzed genes, a total of 138 were differentially expressed between T1A and T2A, 60 of which were highly expressed in T1As, and 78 in T2As. Approximately 28% (39 of 138) of the genes with altered expression were unknown genes. The remaining 99 genes were involved in metabolism, growth factors, structural molecules, signal transduction, neurite outgrowth, tumors, migration, cell adhesion and transporter activity. There were 57 up-regulated genes (Ratio>2.0) and 42 down-regulated genes (Ratio<0.5) among the 99 known ones. Four genes were found that, according to previous reports, may participate in neurite outgrowth. The four genes were related to the protein tyrosine Phosphatase receptor-type Z polypeptide 1 (PTPRZ1), the dihydropyrimidinase-like 2 (DPYSL2), the fasciculation and elongation protein zeta 1 (FEZ1) and the growth associated protein 43 (GAP-43). All of them were 3-6 fold more highly expressed in T2As compared with T1As. The fasciculation and elongation protein zeta-1 (FEZ1) gene was studied further because it has been suggested that it is not expressed by astrocytes.
     (2) RT-PCR and Western blots confirmed the microarray data and showed that FEZ1 was present in T1As and T2As and is more highly expressed in T2As. Immunocytochemistry revealed that FEZ1 was located in the astrocytic cytoplasm and cell processes but not the nucleus.
     (3) Immunohistochemistry assays were performed to demonstrate the expression of FEZ1 in developping rat brain. FEZ1 is preferentially expressed in the olfactory bulb, cortical and hippocampal neurons, and weaker in astrocytes. The highest expression of FEZ1 during the period examined was observed on P7.
     (4) The recombinant of pEGFP-N1-FEZ1 and FEZ1 RNAi plasmid was constructed successfully. Transient transfection assays showed that inhibition of FEZ1 expression in astrocytes can decrease the cell growth.
     (5) The recombinant of pET-28a-FEZ1 plasmid was constructed successfully and the fusion protein can promote axon outgrowth of dorsal root ganglia.
     Conclusions:
     (1) The present results provided a novel genomewide information for further investigations of T1A and T2A.
     (2) It was confirmed for the first time that FEZ1 expressed in both types of astrocytes and upregulated in T2A.
     (3) In rat developing brain, FEZ1 is expressed in the olfactory bulb, cortical and hippocampal neurons, and weaker in astrocytes.
     (4) The presence of FEZ1 in astrocytes may affect cell behavior and make influence on neurons.
     The results contribute to a clearer understanding of the expression and function of FEZ1 in the two types of astrocytes.
引文
1.Benarroch,E.E.Neuron-astrocyte interactions:partnership for normal function and disease in the central nervous system.Mayo Clin Proc,2005,80(10):1326-1338.
    2.Haydon,P.G.and G.Carmignoto.Astrocyte control of synaptic transmission and neurovascular coupling.Physiol Rev,2006,86(3):1009-1031.
    3.Laywell,E.D.and D.A.Steindler.Glial stem-like cells:implications for ontogeny,phylogeny,and CNS regeneration.Prog Brain Res,2002,138:435-450.
    4.Seri,B.,J.M.Garcia-Verdugo,B.S.McEwen,et al.Astrocytes give rise to new neurons in the adult mammalian hippocampus.J Neurosci,2001,21(18):7153-7160.
    5.李春鹏,张晔,夏春林,等.巢蛋白和阶段性胚胎抗原-1在大鼠2型星形胶质细胞中的表达.解剖学报,2007,38(2):153-157.
    6.朱长庚.神经解剖学.第1版.北京:人民卫生出版社.2002,400-407.
    7.Raff,M.C.,R.H.Miller,and M.Noble.A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium.Nature,1983,303(5916):390-396.
    8.夏春林.胶质细胞分化谱系与胶质瘤.见黄强,杜子威主编.脑肿瘤分子外科学.第1版.北京:中国科学技术出版社.1998,50-69.
    9.Espinosa de los Monteros,A.,L.A.Pena,and J.de Vellis.Does transferrin have a special role in the nervous system? J Neurosci Res,1989,24(2):125-136.
    10.Aloisi,F.,C.Agresti,and G.Levi.Establishment,characterization,and evolution of cultures enriched in type-2 astrocytes.J Neurosci Res,1988,21(2-4):188-198.
    11.Schena,M.,D.Shalon,R.W.Davis,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1995,270(5235):467-470.
    12.Golub,T.R.,D.K.Slonim,P.Tamayo,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring.Science,1999,286(5439):531-537.
    13.Bubendorf,L.,M.Kolmer,J.Kononen,et al.Hormone therapy failure in human prostate cancer:analysis by complementary DNA and tissue microarrays.J Natl Cancer Inst,1999,91(20):1758-1764.
    14.Sgroi,D.C.,S.Teng,G.Robinson,et al.In vivo gene expression profile analysis of human breast cancer progression.Cancer Res,1999,59(22):5656-5661.
    15.Wang,K.,L.Gan,E.Jeffery,et al.Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray.Gene,1999,229(1-2):101-108.
    16.刘炎.基因芯片技术进展及应用.神经解剖学杂志,2001,17(3):285-287.
    17.何江虹,严美娟,夏春林,等.星形胶质细胞基因表达谱差异.苏州大学学报,2007,22(6):841-843.
    18.Bloom,L.and H.R.Horvitz.The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation.Proc Natl Acad Sci U S A,1997,94(7):3414-3419.
    19.Kuroda,S.,N.Nakagawa,C.Tokunaga,et al.Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein.J Cell Biol,1999,144(3):403-411.
    20.Ikuta,J.,A.Maturana,T.Fujita,et al.Fasciculation and elongation protein zeta-1(FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility.Biochem Biophys Res Commun,2007,353(1):127-132.
    21.Blasius,T.L.,D.Cai,G.T.Jih,et al.Two binding partners cooperate to activate the molecular motor Kinesin-1.J Cell Biol,2007,176(1):11-17.
    22.Koushika,S.P."JIP"ing along the axon:the complex roles of JIPs in axonal transport.Bioessays,2008,30(1):10-14.
    23.Assmann,E.M.,M.R.Alborghetti,M.E.Camargo,et al.FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region.J Biol Chem,2006,281(15):9869-9881.
    24.Suzuki,T.,Y.Okada,S.Semba,et al.Identification of FEZ1 as a protein that interacts with JC virus agnoprotein and microtubules:role of agnoprotein-induced dissociation of FEZl from microtubules in viral propagation. J Biol Chem, 2005,280(26): 24948-24956.
    
    25. Honda, A., K. Miyoshi, K. Baba, et al. Expression of fasciculation and elongation protein zeta-1 (FEZ1) in the developing rat brain. Brain Res Mol Brain Res, 2004,122(1): 89-92.
    1.Raff,M.C.,R.H.Miller,and M.Noble.A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium.Nature,1983,303(5916):390-396.
    2.刘炎.基因芯片技术进展及应用.神经解剖学杂志,2001,17(3):285-287.
    3.孙继勇.基因表达谱的数据分析.国际病理科学与临床杂志,2005,25(5):386-389.
    4.Janzer,R.C.and M.C.Raff.Astrocytes induce blood-brain barrier properties in endothelial cells.Nature,1987,325(6101):253-257.
    5.Fukazawa,N.,S.Yokoyama,M.Eiraku,et al.Receptor type protein tyrosine phosphatase zeta-pleiotrophin signaling controls endocytic trafficking of DNER that regulates neuritogenesis.Mol Cell Biol,2008,28(14):4494-4506.
    6.Faissner,A.,N.Heck,A.Dobbertin,et al.DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues.Adv Exp Med Biol,2006,557:25-53.
    7. Nakata, K., H. Ujike, A. Sakai, et al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry, 2003, 53(7): 571-576.
    
    8. Zhao, X., R. Tang, Z. Xiao, et al. An investigation of the dihydropyrimidinase-like 2 (DPYSL2) gene in schizophrenia: genetic association study and expression analysis.Int J Neuropsychopharmacol, 2006, 9(6): 705-712.
    
    9. Strata, P., A. Buffo, and F. Rossi. Mechanisms of axonal plasticity. Arch Ital Biol,1999, 137(2-3): 181-192.
    
    10. Meiri, K.F., K.H. Pfenninger, and M.B. Willard. Growth-associated protein, GAP-43,a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A, 1986, 83(10): 3537-3541.
    
    11. Mishra, R., S.K. Gupta, K.F. Meiri, et al. GAP-43 is key to mitotic spindle control and centrosome-based polarization in neurons. Cell Cycle, 2008, 7(3): 348-357.
    
    12. Viberg, H., W. Mundy, and P. Eriksson. Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43,biochemical substrates of neuronal survival, growth, and synaptogenesis.Neurotoxicology, 2008,29(1): 152-159.
    
    13. Bloom, L. and H.R. Horvitz. The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation.Proc Natl Acad Sci U S A, 1997, 94(7): 3414-3419.
    
    14. Honda, A., K. Miyoshi, K. Baba, et al. Expression of fasciculation and elongation protein zeta-1 (FEZ1) in the developing rat brain. Brain Res Mol Brain Res, 2004,122(1): 89-92.
    
    15. Kalil, K. and J.H. Skene. Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J Neurosci,1986, 6(9): 2563-2570.
    
    16. Hoffman, P.N. Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J Neurosci, 1989, 9(3): 893-897.
    17.Sensenbrenner,M.,M.Lucas,and J.C.Deloulme.Expression of two neuronal markers,growth-associated protein 43 and neuron-specific enolase,in rat glial cells.J Mol Med,1997,75(9):653-663.
    18.Favre-Kontula,L.,A.Rolland,L.Bernasconi,et al.GlialCAM,an immunoglobulin-like cell adhesion molecule is expressed in glial cells of the central nervous system.Glia,2008,56(6):633-645.
    19.Deloulme,J.C.,T.Janet,D.Au,et al.Neuromodulin(GAP43):a neuronal protein kinase C substrate is also present in 0-2A glial cell lineage.Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen.J Cell Biol,1990,111(4):1559-1569.
    20.da Cunha,A.and L.Vitkovic.Regulation of immunoreactive GAP-43 expression in rat cortical macroglia is cell type specific.J Cell Biol,1990,111(1):209-215.
    21.Laywell,E.D.and D.A.Steindler.Glial stem-like cells:implications for ontogeny,phylogeny,and CNS regeneration.Prog Brain Res,2002,138:435-450.
    22.Seri,B.,J.M.Garcia-Verdugo,B.S.McEwen,et al.Astrocytes give rise to new neurons in the adult mammalian hippocampus.J Neurosci,2001,21(18):7153-7160.
    23.李春鹏,张晔,夏春林,等.巢蛋白和阶段性胚胎抗原-1在大鼠2型星形胶质细胞中的表达.解剖学报,2007,38(2):153-157.
    24.Raff,M.C.,E.R.Abney,and R.H.Miller.Two glial cell lineages diverge prenatally in rat optic nerve.Dev Biol,1984,106(1):53-60.
    25.McKay,R.D.The origins of cellular diversity in the mammalian central nervous system.Cell,1989,58(5):815-821.
    1. Honda, A., K. Miyoshi, K. Baba, et al. Expression of fasciculation and elongation protein zeta-1 (FEZl) in the developing rat brain. Brain Res Mol Brain Res, 2004,122(1): 89-92.
    
    2. Bloom, L. and H.R. Horvitz. The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation.ProcNatlAcad Sci U S A, 1997, 94(7): 3414-3419.
    
    3. Kuroda, S., N. Nakagawa, C. Tokunaga, et al. Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein. J Cell Biol, 1999,144(3): 403-411.
    
    4. Ikuta, J., A. Maturana, T. Fujita, et al. Fasciculation and elongation protein zeta-1 (FEZl) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun, 2007, 353(1): 127-132.
    
    5. Blasius, T.L., D. Cai, G.T. Jih, et al. Two binding partners cooperate to activate the molecular motor Kinesin-1. J Cell Biol, 2007,176(1): 11-17.
    
    6. Koushika, S.R "JIP"ing along the axon: the complex roles of JIPs in axonal transport.Bioessays, 2008, 30(1): 10-14.
    
    7. Assmann, E.M., M.R. Alborghetti, M.E. Camargo, et al. FEZl dimerization and interaction with transcription regulatory proteins involves its coiled-coil region. J Biol Chem, 2006, 281(15): 9869-9881.
    
    8. Suzuki, T., Y. Okada, S. Semba, et al. Identification of FEZl as a protein that interacts with JC virus agnoprotein and microtubules: role of agnoprotein-induced dissociation of FEZl from microtubules in viral propagation. J Biol Chem, 2005,280(26): 24948-24956.
    
    9. Ono, K., Y. Yasui, U. Rutishauser, et al. Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron, 1997,19(2): 283-292.
    
    10. Bonni, A., Y. Sun, M. Nadal-Vicens, et al. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science, 1997, 278(5337):477-483.
    
    11. Zhang, D., M.F. Mehler, Q. Song, et al. Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression.J Neurosci,1998,18(9):3314-3126.
    12.McManus,M.F.,L.C.Chen,I.Vallejo,et al.Astroglial differentiation of cortical precursor cells triggered by activation of the cAMP-dependent signaling pathway.J Neurosci,1999,19(20):9004-9015.
    13.李春鹏,张晔,夏春林,等.巢蛋白和阶段性胚胎抗原-1在大鼠2型星形胶质细胞中的表达.解剖学报,2007,38(2):153-157.
    14.Kondo,T.and M.Raff.Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells.Science,2000,289(5485):1754-1757.
    15.Gao,F.B.,J.Apperly,and M.Raff.Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells.Dev Biol,1998,197(1):54-66.
    16.Mason,J.L.and J.E.Goldman.A2B5+ and 04+ Cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA,FGF-2,and IGF-1.Mol Cell Neurosci,2002,20(1):30-42.
    17.Laywell,E.D.and D.A.Steindler.Glial stem-like cells:implications for ontogeny,phylogeny,and CNS regeneration.Prog Brain Res,2002,138:435-450.
    18.Seri,B.,J.M.Garcia-Verdugo,B.S.McEwen,et al.Astrocytes give rise to new neurons in the adult mammalian hippocampus.J Neurosci,2001,21(18):7153-7160.
    19.Coskun,V.,D.L.Falls,R.Lane,et al.Subventricular zone neuronal progenitors undergo multiple divisions and retract their processes prior to each cytokinesis.Eur J Neurosci,2007,26(3):593-604.
    1.Elbashir,S.M.,J.Harborth,W.Lendeckel,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature,2001,411(6836):494-498.
    2.Donze,O.and D.Picard.RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase.Nucleic Acids Res,2002,30(10):e46.
    3.Myers,J.W.and J.E.Ferrell.Silencing gene expression with Dicer-generated siRNA pools.Methods Mol Biol,2005,309:93-196.
    4.Miyagishi,M.,S.Matsumoto,H.Akashi,et al.Chemistry-based RNA technologies:demonstration of usefulness of libraries of ribozymes and short hairpin RNAs (shRNAs).Nucleic Acids Symp Ser(Oxf),2005(49):91-92.
    5.Castanotto,D.,H.Li,and J.J.Rossi.Functional siRNA expression from transfected PCR products.RNA,2002,8(11):1454-1460.
    6.Fujita,T.,A.D.Maturana,J.Ikuta,et al.Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells.Biochem Biophys Res Commun,2007,361(3):605-610.
    7. Ikuta, J., A. Maturana, T. Fujita, et al. Fasciculation and elongation protein zeta-1 (FEZl) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun, 2007,353(1): 127-132.
    
    8. Suzuki, T., Y Okada, S. Semba, et al. Identification of FEZl as a protein that interacts with JC virus agnoprotein and microtubules: role of agnoprotein-induced dissociation of FEZl from microtubules in viral propagation. J Biol Chem, 2005,280(26): 24948-24956.
    
    9. Perea, G. and A. Araque. Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 2007, 317(5841): 1083-1086.
    
    10. Fellin, T. and G. Carmignoto. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol, 2004, 559(Pt 1): 3-15.
    
    11. Lalo, U., Y Pankratov, F. Kirchhoff, et al. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci, 2006,26(10): 2673-2683.
    
    12. Benarroch, E.E. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 2005, 80(10): 1326-1338.
    
    13. Haydon, P.G. and G. Carmignoto. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev, 2006, 86(3): 1009-1031.
    
    14. Fields, R.D. and B. Stevens-Graham. New insights into neuron-glia communication. Science, 2002,298(5593): 556-562.
    
    15. Stevens, B. Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neurosignals, 2008, 16(4): 278-288.
    
    16. Slezak, M. and F.W. Pfrieger. New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci, 2003,26(10): 531-535.
    
    17. Christopherson, K.S., E.M. Ullian, C.C. Stokes, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005, 120(3):421-433.
    
    18. Harwood, A.J. Basic DNA and RNA protocols. Introduction. Methods Mol Biol,1996, 58: v-vi.
    
    19. Kim, S.Y, H.J. Chung, and T.L. Thomas. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system.Plant J,1997,11(6):1237-1251.
    20.DeMaria,C.T.and G.Brewer.AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation.J Biol Chem,1996,271(21):12179-12184.
    21.唐威华,张景六,王宗阳,等.SDS.PAGE法测定His-tag融合蛋白分子量差生偏差的原因.植物生理学报,2000,26(1):64-68.
    1.Eng,L.F.,R.S.Ghirnikar,and Y.L.Lee.Glial fibrillary acidic protein:GFAP-thirty-one years(1969-2000).Neurochem Res,2000,25(9-10):1439-1451.
    2.Steiner,J.,H.G.Bernstein,H.Bielau,et al.Evidence for a wide extra-astrocytic distribution of S100B in human brain.BMC Neurosci,2007,8:2.
    3.Benarroch,E.E.Neuron-astrocyte interactions:partnership for normal function and disease in the central nervous system.Mayo Clin Proc,2005,80(10):1326-1338.
    4.Haydon,P.G.and G.Carmignoto.Astrocyte control of synaptic transmission and neurovascular coupling.Physiol Rev,2006,86(3):1009-1031.
    5.Slezak,M.and F.W.Pfrieger.New roles for astrocytes:regulation of CNS synaptogenesis.Trends Neurosci,2003,26(10):531-535.
    6.Christopherson,K.S.,E.M.Ullian,C.C.Stokes,et al.Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005, 120(3):421-433.
    
    7. Pfrieger, F.W. and B.A. Barres. Synaptic efficacy enhanced by glial cells in vitro.Science, 1997,277(5332): 1684-1687.
    
    8. Sauvageot, CM. and CD. Stiles. Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol, 2002, 12(3): 244-249.
    
    9. Ullian, E.M., K.S. Christopherson, and B.A. Barres. Role for glia in synaptogenesis.Glia, 2004, 47(3): 209-216.
    
    10. Perea, G. and A. Araque. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci, 2005, 25(9):2192-2203.
    
    11. Finkbeiner, S.M. Glial calcium. Glia, 1993, 9(2): 83-104.
    
    12. Porter, J.T. and K.D. McCarthy. Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol, 1997, 51(4): 439-455.
    
    13. Perea, G. and A. Araque. Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 2007, 317(5841): 1083-1086.
    
    14. Parri, H.R., T.M. Gould, and V. Crunelli. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci, 2001, 4(8): 803-812.
    
    15. Dingledine, R., K. Borges, D. Bowie, et al. The glutamate receptor ion channels.Pharmacol Rev, 1999, 51(1): 7-61.
    
    16. Bourne, H.R. and R. Nicoll. Molecular machines integrate coincident synaptic signals.Cell, 1993, 72 Suppl: 65-75.
    
    17. Lalo, U., Y. Pankratov, F. Kirchhoff, et al. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci, 2006, 26(10): 2673-2683.
    
    18. Verkhratsky, A. and F. Kirchhoff. NMDA Receptors in glia. Neuroscientist, 2007,13(1): 28-37.
    
    19. Jourdain, P., L.H. Bergersen, K. Bhaukaurally, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci, 2007,10(3): 331-339.
    
    20. Fellin, T. and G. Carmignoto. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol, 2004, 559(Pt 1): 3-15.
    21. Beattie, E.C., D. Stellwagen, W. Morishita, et al. Control of synaptic strength by glial TNFalpha. Science, 2002,295(5563): 2282-2285.
    
    22. Araque, A., V. Parpura, R.P. Sanzgiri, et al. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci, 1998,10(6): 2129-2142.
    
    23. Pascual, O., K.B. Casper, C. Kubera, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science, 2005,310(5745): 113-116.
    
    24. Fields, R.D. and B. Stevens-Graham. New insights into neuron-glia communication.Science, 2002,298(5593): 556-562.
    
    25. Zonta, M., M.C. Angulo, S. Gobbo, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci, 2003, 6(1): 43-50.
    
    26. Takano, T., G.F. Tian, W. Peng, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci, 2006, 9(2): 260-267.
    
    27. Navarrete, M. and A. Araque. Endocannabinoids mediate neuron-astrocyte communication. Neuron, 2008, 57(6): 883-893.
    
    28. Fellin, T., J.Y. Sul, M. D'Ascenzo, et al. Bidirectional astrocyte-neuron communication: the many roles of glutamate and ATP. Novartis Found Symp, 2006,276: 208-17; discussion 217-21,233-7,275-281.
    
    29. Tritsch, N.X. and D.E. Bergles. Defining the role of astrocytes in neuromodulation.Neuron, 2007, 54(4): 497-500.
    
    30. Agulhon, C, J. Petravicz, A.B. McMullen, et al. What is the role of astrocyte calcium in neurophysiology? Neuron, 2008, 59(6): 932-946.
    
    31. Fiacco, T.A., C. Agulhon, and K.D. McCarthy. Sorting out Astrocyte Physiology from Pharmacology. Annu Rev Pharmacol Toxicol, 2008.
    
    32. Mothet, J.P., A.T. Parent, H. Wolosker, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A, 2000,97(9): 4926-4931.
    
    33. Stevens, E.R., M. Esguerra, P.M. Kim, et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A, 2003,100(11): 6789-6794.
    34. Wolosker, H., S. Blackshaw, and S.H. Snyder. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission.Proc Natl Acad Sci U S A, 1999, 96(23): 13409-13414.
    
    35. Panatier, A., D.T. Theodosis, J.P. Mothet, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell, 2006, 125(4): 775-784.
    
    36. Suadicani, S.O., C.F. Brosnan, and E. Scemes. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci, 2006, 26(5):1378-1385.
    
    37. Hussy, N., C. Deleuze, A. Pantaloni, et al. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol, 1997, 502 (Pt 3): 609-621.
    
    38. Hu, R., W.Q. Cai, X.G. Wu, et al. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons.Neuroscience, 2007, 144(4): 1229-1240.
    
    39. Doetsch, F. and R. Hen. Young and excitable: the function of new neurons in the adult mammalian brain. Curr Opin Neurobiol, 2005,15(1): 121-128.
    
    40. Ming, G.L. and H. Song. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci, 2005,28: 223-250.
    
    41. Stevens, B. Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neurosignals, 2008, 16(4): 278-288.
    
    42. Arber, S. and P. Caroni. Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol,1995, 131(4): 1083-1094.
    
    43. Christopherson, K.S., E.M. Ullian, C.C. Stokes, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005, 120(3):421-433.
    
    44. Bonfanti, L. and P. Peretto. Radial glial origin of the adult neural stem cells in the subventricular zone. Prog Neurobiol, 2007, 83(1): 24-36.
    
    45. Ihrie, R.A. and A. Alvarez-Buylla. Cells in the astroglial lineage are neural stem cells.Cell Tissue Res, 2008, 331(1): 179-191.
    46.Gotz,M.and Y.A.Barde.Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons.Neuron,2005,46(3):369-372.
    47.Campbell,K.and M.Gotz.Radial glia:multi-purpose cells for vertebrate brain development.Trends Neurosci,2002,25(5):235-238.
    48.Malatesta,P.,I.Appolloni,and F.Calzolari.Radial glia and neural stem cells.Cell Tissue Res,2008,331(1):165-178.
    49.Galea,E.,P.Dupouey,and D.L.Feinstein.Glial fibrillary acidic protein mRNA isotypes:expression in vitro and in vivo.J Neurosci Res,1995,41(4):452-461.
    50.Laywell,E.D.and D.A.Steindler.Glial stem-like cells:implications for ontogeny,phylogeny,and CNS regeneration.Prog Brain Res,2002,138:435-450.
    51.Chen,K.A.,E.D.Laywell,G.Marshall,et al.Fusion of neural stem cells in culture.Exp Neurol,2006,198(1):129-135.
    52.Seri,B.,J.M.Garcia-Verdugo,B.S.McEwen,et al.Astrocytes give rise to new neurons in the adult mammalian hippocampus.J Neurosci,2001,21(18):7153-7160.
    53.Raff,M.C.,E.R.Abney,J.Cohen,et al.Two types of astrocytes in cultures of developing rat white matter:differences in morphology,surface gangliosides,and growth characteristics.J Neurosci,1983,3(6):1289-1300.
    54.李春鹏,张晔,夏春林,等.巢蛋白和阶段性胚胎抗原-1在大鼠2型星形胶质细胞中的表达.解剖学报,2007,38(2):153-157.
    55.Kondo,T.and M.Raff.Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells.Science,2000,289(5485):1754-1757.
    56.Rosen,D.R.,T.Siddique,D.Patterson,et al.Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature,1993,362(6415):59-62.
    57.Ridet,J.L.,S.K.Malhotra,A.Privat,et al.Reactive astrocytes:cellular and molecular cues to biological function.Trends Neurosci,1997,20(12):570-577.
    58.Migheli,A.,S.Cordera,C.Bendotti,et al.S-100beta protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis.Neurosci Lett,1999,261(1-2):25-28.
    59.Bruijn,L.I.,M.W.Becher,M.K.Lee,et al.ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 1997,18(2): 327-338.
    
    60. Cassina, P., H. Peluffo, M. Pehar, et al. Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res, 2002, 67(1): 21-29.
    
    61. Cassina, P., M. Pehar, M.R. Vargas, et al. Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem, 2005, 93(1): 38-46.
    
    62. Pehar, M., P. Cassina, M.R. Vargas, et al. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem, 2004, 89(2): 464-473.
    
    63. Sasaki, S., T. Komori, and M. Iwata. Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol, 2000,100(2): 138-144.
    
    64. Boston-Howes, W., S.L. Gibb, E.O. Williams, et al. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem, 2006,281(20): 14076-14084.
    
    65. Howland, D.S., J. Liu, Y. She, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS).Proc Natl Acad Sci U S A, 2002, 99(3): 1604-1609.
    
    66. Yamanaka, K., S.J. Chun, S. Boillee, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci, 2008, 11(3):251-253.
    
    67. Vajda, F.J. Neuroprotection and neurodegenerative disease. J Clin Neurosci, 2002,9(1): 4-8.
    
    68. Drouet, B., M. Pincon-Raymond, J. Chambaz, et al. Molecular basis of Alzheimer's disease. Cell Mol Life Sci, 2000, 57(5): 705-715.
    
    69. Jacobsen, J.S., C.C. Wu, J.M. Redwine, et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A, 2006,103(13): 5161-5166.
    
    70. Wyss-Coray, T., C. Lin, F. Yan, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med, 2001, 7(5):612-618.
    
    71. Takano, T., X. Han, R. Deane, et al. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann N Y Acad Sci, 2007,1097: 40-50.
    
    72. Meda, L., P. Baron, and G. Scarlato. Glial activation in Alzheimer's disease: the role of Abeta and its associated proteins. Neurobiol Aging, 2001, 22(6): 885-893.
    
    73. Mouser, P.E., E. Head, K.H. Ha, et al. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. Am J Pathol, 2006,168(3): 936-946.
    
    74. Sospedra, M. and R. Martin. Immunology of multiple sclerosis. Annu Rev Immunol,2005,23:683-747.
    
    75. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell, 1996, 85(3): 299-302.
    
    76. Kimelberg, H.K. Receptors on astrocytes-what possible functions? Neurochem Int,1995, 26(1): 27-40.
    
    77. De Keyser, J., E. Zeinstra, J. Mostert, et al. Beta 2-adrenoceptor involvement in inflammatory demyelination and axonal degeneration in multiple sclerosis. Trends Pharmacol Sci, 2004, 25(2): 67-71.
    
    78. De Keyser, J., E. Zeinstra, and N. Wilczak. Astrocytic beta2-adrenergic receptors and multiple sclerosis. Neurobiol Dis, 2004, 15(2): 331-339.
    
    79. Frohman, E.M., B. Vayuvegula, S. Gupta, et al. Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci U S A, 1988, 85(4): 1292-1296.
    
    80. Frohman, E.M., B. Vayuvegula, S. van den Noort, et al. Norepinephrine inhibits gamma-interferon-induced MHC class II (Ia) antigen expression on cultured brain astrocytes. J Neuroimmunol, 1988,17(2): 89-101.
    
    81. Frohman, E.M., N.L. Monson, A.E. Lovett-Racke, et al. Autonomic regulation of neuroimmunological responses: implications for multiple sclerosis. J Clin Immunol, 2001,21(2):61-73.
    82.Ransohoff,R.M.and M.L.Estes.Astrocyte expression of major histocompatibility complex gene products in multiple sclerosis brain tissue obtained by stereotactic biopsy.Arch Neurol,1991,48(12):1244-1246.
    83.Zeinstra,E.,N.Wilczak,and J.De Keyser.Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2.J Neuroimmunol,2003,135(1-2):166-171.
    84.Nakamura,A.,E.J.Johns,A.Imaizumi,et al.Regulation of tumour necrosis factor and interleukin-6 gene transcription by beta2-adrenoceptor in the rat astrocytes.J Neuroimmunol,1998,88(1-2):144-153.
    85.Janzer,R.C.and M.C.Raff.Astrocytes induce blood-brain barrier properties in endothelial cells.Nature,1987,325(6101):253-257.
    86.Ballabh,R,A.Braun,and M.Nedergaard.The blood-brain barrier:an overview:structure,regulation,and clinical implications.Neurobiol Dis,2004,16(1):1-13.
    87.Abbott,N.J.Astrocyte-endothelial interactions and blood-brain barrier permeability.J Anat,2002,200(6):629-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700