用户名: 密码: 验证码:
船用核动力装置二回路系统预测控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一体化核动力装置二回路系统,由于强耦合、非线性和动态特性不同等特性,使其控制系统的设计具有一定的挑战性。随着核动力系统自动化程度的提高以及近年来数字设备的可靠性和性能日趋成熟,核动力系统的控制和仪表开始逐渐采用数字设备和网络技术,这使新的控制算法在核动力系统中的应用成为可能。预测控制作为近年来发展起来的一类新型控制算法,由于该方法对实际系统数学模型的依赖性弱、控制综合效果好等诸多优点,使其在核动力系统的应用中受到关注。为此,本文在深入研究核动力装置特性的基础上,对其建模和预测控制方法进行了研究。
     在研究了直流蒸汽发生器的结构和换热等特点基础上,应用可移动边界,集总参数法,根据质量、能量和动量守恒方程,建立了直流蒸汽发生器的数学模型,并对其进行了动静态特性仿真研究,这些研究是实现核动力装置二回路系统控制的基础。
     基于一体化核动力装置的特点,在直流蒸汽发生器和汽轮机等模型基础上,建立了核动力装置二回路的仿真系统,并对其动态特性进行仿真研究,揭示了其内在固有的特性。在此基础上,根据蒸汽发生器出口蒸汽压力恒定方案,对核动力装置二回路的非线性模型预测协调控制方法进行了研究。结果表明,在负荷动态变化过程中,尤其在大负荷变化时,二回路系统各主要参数(蒸汽发生器出口蒸汽压力和汽轮机功率)波动较大,这对核动力装置二回路系统在变负荷运行的安全性不利。
     针对非线性模型预测协调控制方法解决核动力装置变工况及耦合性问题的能力不足,在预测控制算法基础上,应用模糊控制机理,给出了汽轮机转速和蒸汽发生器出口蒸汽压力的多变量模糊预测模型,实现了模糊辨识与预测控制的结合,据此给出了核动力装置二回路系统的多变量模糊模型预测控制方法。仿真结果表明,与非线性模型预测协调控制系统相比,多变量模糊模型预测控制系统获得了更好的控制性能。
     由于核动力系统存在严重的耦合性与非线性,并且各设备的动态特性不同,为此,引入将人工神经网络模型与多变量线性预测模型相结合的集成模型,对预测模型进行动态优化,给出了核动力装置二回路多变量集成模型预测控制方法。仿真结果表明,在变工况特别是大负荷变化时,其表现出良好的控制性能,从而,证明了此种方法的可行性。但在控制过程中出现短暂的幅值较大的波动。
     针对核动力装置二回路多变量集成模型预测控制过程中存在波动的缺点,引入模糊理论,建立核动力装置二回路控制系统输入量的模糊控制性能评价表,通过模糊决策选择最优输入量,实现了多变量集成模型模糊预测控制。仿真结果表明,应用多变量集成模型模糊预测控制系统后,减小了控制系统输出波动的幅度,取得了更好的控制性能。从而保证了核动力装置安全可靠地运行。
The control of the secondary system of the integrated nuclear power plant is challenging since 1) the control is a multi-objective task for which many manipulated variables are coordinated to achieve satisfactory plant transients; 2) the system is a nonlinear system; 3) the dynamic characteristics of the plant change with operating conditions. With the performance of digital devices is improved, digital devices and network technology is applied into the control system of nuclear power system, which makes advanced control arithmetic applying into the nuclear power system turn true. The predictive control is advanced control arithmetic of late years. It is noticed with its low depend on the real system math model and the well control result in the nuclear power system. Therefore, in the basis of studying deeply characteristic of the integrated nuclear power plant, modeling and predictive control of the integrated nuclear-powered system are researched in this paper.
     In the basis of researching the structure and heat transfer features of once-through steam generator, and then according to the mass, energy and momentum balance equation, the steam generator's model is built by lumped parameters with moving boundary. With the built model, static and dynamic characteristics are analyzed. Accomplishing control system of the secondary system of the integrated nuclear power plant base these researches.
     Aimed at the specialty of the integrated nuclear power plant, in the basis of the built once-through steam generator and turbine model, simulation system of the secondary system of the integrated nuclear power plant is built. The analysis of dynamic characteristic shows the intrinsic features. By the invariableness project of the pressure of outlet steam, the nonlinear model predictive coordinated control arithmetic is applied into the secondary system of the integrated nuclear power plant. The simulation results show the parameters of system fluctuate more greatly during dynamic variety of load, especially operating over a wide power range, which is not in favor of the security of nuclear power plant.
     Aimed at nonlinear model predictive coordinated control arithmetic is lack of solving coupling and variety of load, in the base of predictive control arithmetic, the turbine speed and outlet steam pressure multi-variable fuzzy model predictive model is designed applying fuzzy control theory, which synthesizes the fuzzy recognition and predictive control arithmetic, and then multi-variable fuzzy model predictive control system is gotten. Compare with nonlinear model predictive coordinated control system, the simulation results show that multi-variable fuzzy model predictive control improves performance of control of the secondary system of the integrated nuclear power plant.
     Because of serious coupling, nonlinearity and different dynamic characteristic, the multi-variable predictive control of the secondary system of the integrated nuclear power plant based on the integration model is presented. It synthesizes the artificial neural networks model and multi-variable linear predictive model which ameliorates the predictive model in line. The simulation results show that it improve the control capability of the whole system during dynamic variety of load, especially operating over a wide power range. Thereby, the feasibility of this control arithmetic is proved. But there is fluctuation in the control course.
     Aimed at the lack of being fluctuation in the multi-variable nonlinear predictive control based on the integration model, the multi-variable fuzzy predictive control of the secondary system of the integrated nuclear power plant based on the integration model is designed applying fuzzy theory, which built the fuzzy control capability evaluate form of the input of the control system, selected the best input during fuzzy decision. The simulation results show that the multi-variable fuzzy predictive control based on the integration model improves briefly the dynamic feature of the secondary system of the integrated nuclear power plant and reduced the breadth of the fluctuation of the control system.
引文
[1]陈世君.国外舰船一体化压水堆技术发展趋势及其应用前景.国外核动力,2003,(1):2-11页
    [2]杨山.核动力向数字化I&C发展.国外核动力,1998,(6):18-20页
    [3]Blanchard,Dave;Fink,Robert;Lang,Glenn,et al.Defense-in-depth and diversity assessments for digital I and C upgrades in nuclear power plants.Technical Papers of ISA,2004,v452:117-126P
    [4]Lee,Jae Min;Park,Tae Rim;Kim,Hyung Seok,et al.A communication network with high safety,maintainability,and user convenience for digital I and C systems of nuclear power plants.IEEE Symposium on Emerging Technologies and Factory Automation,2001,v1:352-358P
    [5]Korsah,K.;Ewing,P.D.;Kercel,S.,et al.Current research results on the technical basis for environmental qualification of safety-related digital I&C hardware in nuclear power plants.Nuclear Engineering and Design,1999,v194:251-257P
    [6]杨山.Chapin谈:核动力工业进人了数字世界.国外核动力,1998,(1):48-52页
    [7]A.A.Belyave,A.V.Kurachenkov.以一体化反应堆为基础的核能源.国外核动力,1998,(5):35-45页
    [8]Gail H.Marcus.下一代核电站的研究开发.国外核动力,2001,(4):10-14页
    [9]王成孝.核能与核技术应用.原子能出版社,2002
    [10]李满昌,唐传宝.一体化压水堆发展前景.核动力工程,1998,19(4):370-374页
    [11]刘聚奎.法国一体化压水堆C.A.P述评.核动力工程,1990,11(1):42-47页
    [12]Tsutao Hoshi,Masaaki Ochiai.日本一体化反应堆MRX的研究和开发现状.国外核动力,1996,(6):11页
    [13]陈炳德.日本小型核动力反应堆及其技术特点.核动力工程,2004,25(3):192-197
    [14]李桦.日本新反应堆的研究动向.国外核新闻,2002:15-18页
    [15]李满昌.韩国一体化模块式先进堆(SMART).国外核动力,1999,(5):2-8页
    [16]席裕庚,预测控制,北京:国防工业出版社,1993
    [17]Lu S,Hogg B W.Predictive coordinated control for power-plant steam pressure and power output[J].Control Engineering Practice,1997,5(1):79-84
    [18]Zhengyu Huang.Fuzzy adapted sliding mode controller design for a nuclear power plant.The Doctor Dissertation of the University of Pennsylvania State University,2002
    [19]王伟,广义预测控制理论及其应用,北京:科学出版社,1998
    [20]H.Levent Akin,Vural.Akin.Rule-based fuzzy logic controller for a PWR-type nuclear power plant.IEEE Trance on Nuclear Science,1991,(38):882-890P
    [21]Uhrig R E;Tsoukalas L H.Progress in Nuclear Energy,1999,34(1):12-75P
    [22]Jouse,W.C.;Williams,J.G.Safety control of nuclear power operations using self-programming neural networks.Nuclear Science and Engineering,1993,114(1):42-54P
    [23]Jouse,W.C.Self-teaching neural network learns difficult reactor control problem.Transactions of the American Nuclear Society,1989,v60:191P
    [24]Chao-Chee Ku;Lee,K.Y.;Edwards,R.M.Validation and verification of diagonal neural controller for nuclear power plant.ANNPS'92.Proceedings of the Second InternationaI Forum on Applications of Neural Networks to Power Systems,1993,342-348P
    [25]Ku,C.-C.;Lee,K.Y.;Edwards,R.M.Nuclear reactor control using diagonal recurrent neural networks.Automatic Control.World Congress 1992.Proceeding of the 12th Triennial World Congress of the International Federation of Automatic Control Vol.3.Applications Ⅱ.1994,797-800P
    [26]Ku,C.-C.;Lee,K.Y.;Edwards,R.M.Improved nuclear reactor temperature control using diagonal recurrent neural networks.IEEE Transactions on Nuclear Science,1992,39(6):2298-2308P
    [27]Parlos,A.G.;Atiya,A.;Chong,K.T.Empirical modeling of nuclear power plants using neural networks.Transactions of the American Nuclear Society,1991,v63:109-110P
    [28]Parlos,A.G.;Fernandez,B.;Tsai,W.K.Artificial neural networks based system identification and control of nuclear power plant components.Proceedings of the 29th IEEE Conference on Decision and Control,1990,v.3,1702-1706P
    [29]张晓文,张琴舜,沈秀中等.核工业自动化,2001,(1):12-17页
    [30]Hwang,Boon C.Intelligent control for a nuclear power plant using artificial neural networks.1994,(4):2580-2584P
    [31]Mechrdad N.Khajavi;Mohammad B.Menhaj;Amir A.Suratgar.A neural network controller for load following operation of nuclear reactors.Annals of nuclear energy.2002,v29:751-760P
    [32]Moon Ghu Park;Nam Zin Cho.Self-tuning control of a nuclear reactor using a Gaussian function neural network.Nuclear Technology,1995,110(2):285-293P
    [33]Boroushaki,M.~1;Ghofrani,M.B.;Lucas,C.;Yazdanpanah,M.J.An intelligent nuclear reactor core controller for load following operations,using recurrent neural networks and fuzzy systems.Annals of Nuclear Energy,2003,30(1):62-80P
    [34]Dong Hwa Kim.Nuclear steam generator level control by a neural network-tuning 2-DOF PID controller.2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications,2004,168-173P
    [35]Banavar,R.N.;Deshpande,U.V.Robust controller design for a nuclear power plant using H-infinity optimization.IEEE Transactions on Nuclear Science,1998,v45:129-140P
    [36]Etchepareborda,A.;Flury,C.A.Multivariable robust control of an integrated nuclear power reactor.Brazilian Journal of Chemical Engineering,2002,v19:441-447P
    [37]Shyu,Shian-Shing;Edwards.Robert.M.A robust multivariable feedforward/feedback controller design for integrated power control of boiling water reactor power plants.Nuclear Technology,2002,v140:129-146P
    [38]Shaffer,R.;Weidong He;Edwards,R.M.Design and validation of optimized feedforward with robust feedback control of a nuclear reactor,Nuclear Technology,2004,147(2):240-257P
    [39]Duk-Hyun Son;Chang-Goo Lee.Design of model predictive controller for water level control in the steam generator of a nuclear power plant.Transactions of the Korean Institute of Electrical Engineers,2001,50(8):376-383P
    [40]Man Gyun Na;Young Rok Sim.A generalized predictive controller for nuclear reactor power.Transactions of the American Nuclear Society,2002,v86,36-37P
    [41]Man Gyun Na.A model predictive controller for the water level of nuclear steam generators.Journal of the Korean Nuclear Society,2001,33(1):102-110P
    [42]Duk-Hyun Son;Chang-Goo Lee.Design of model predictive controller for water level control in the steam generator of a nuclear power plant.Transactions of the Korean Institute of Electrical Engineers,2001,50(8):376-383P
    [43]史小平,王子才.核电站反应堆中子通量密度的一种预测控制方法.电机与控制学报,2003,6(1):80-83页
    [44]Bereznai,G.T.;Sinha,N.K.Adaptive control of nuclear reactors using a digital computer,IEEE Transactions on Nuclear Science,1971,NS 18(4):387-397P
    [45]张广福,张宇声,周刚等.神经网络自适应给水控制器设计研究.海军工程大学学报,2004,16(4):34-38页
    [46]滕树杰,张乃尧,崔震华.压水堆蒸汽发生器水位的分层自适应模糊控制.核动力工程,2003,24(3):281-284页
    [47]付明玉,林孝工,王宏键.蒸汽发生器单神经元自适应PSD控制策略研究.哈尔滨工程大学学报,2003,24(5):522-525页
    [48]王耀南.广义预测控制在热工过程中的应用.湖南出版社,1996
    [49]赵福宇.核动力装置的协调控制系统.核动力工程,1999,20(1):138-141页
    [50]曾得良,刘吉臻,单元机组智能协调控制系统的发展和应用,电力情报,1998.
    [51]No.3:6-10袁建东.一体化压水堆功率控制系统建模与控制方法研究.硕士论文,哈尔滨工程大学,2004
    [52]杨本坤.船舶核动力装置控制系统的数学模型建立及控制策略的仿真研究.硕士论文,哈尔滨船舶工程学院,1992
    [53]凌备备,杨延洲.核反应堆工程原理(第二版).北京:原子能出版社,1982
    [54]赵兆颐,朱瑞安.反应堆热工流体力学.北京:清华大学出版社,1992
    [55]H.Arab-Alibeik;S.Setayeshi.An adaptive-cost-function optimal controller design for a PWR nuclear reactor.Annals of Nuclear Energy,2003,v30:739-754P
    [56]Boroushaki,M.;Ghofrani,M.B.;Lucas,C.;Yazdanpanah,M.J.An intelligent nuclear reactor core controller for load following operations,using recurrent neural networks and fuzzy systems.Annals of Nuclear Energy,2003,30(1):62-80P
    [57]Mehrdad N.Khajavi,Mohammad B.Menhaj,Amir A.Suratgar.A neural network controller for load following operation of nuclear reactors.Annals of Nuclear Energy,2002,(29):751-760P
    [58]张法邦,吴清泉.核反应堆运行物理.北京:原子能出版社,2000
    [59]张建民.核反应堆控制.西安:西安交通大学出版社,2002
    [60]于涛,罗璋琳.压水堆核电站堆芯集中参数模型的微机仿真.核电子学与探测技术,2001,21(6):457-460页
    [61]傅龙舟.核反应堆控制.北京:原子能出版社,1995
    [62]黄祖洽.核反应堆动力学基础.北京:原子能出版社,1983
    [63]Zhu Xue feng,Dale E Seborg,Nonlinear predictive control based on Hammerstein models,Control Theory and Applications,1994,11(5):564-575
    [64]Seung C Shim,Zeungnarm Bien,Predictive control using a novel type neural network-based model,IFAC 14th Triennial World Congress,Beijing.1999:361-366
    [65]Hogg,G.W.and EI,R.N.N..Multivariable generalized predictive control of a boiler system.IEEE Trans.Energy Conversion.1991,6(2):282-287
    [66]Bolis V,Maffezzoni C,Ferrarini L.Synthesis of boiler-turbine control system by single loop auto-tuning[J].Control Engineering Practice,1995,3(6):761-771
    [67]张化光,吕剑虹,陈来九.模糊广义预测控制及应用[J],自动化学报,1993,19(1):9-17
    [68]Jian Su,Renato M.Cotta.Improved lumped parameter formulation for simplified LWR thermohydraulic analysis.Annals of Nuclear Energy,28(2001):1019-1031P
    [69]萧志云,凌呼君.大型单元机组实现协调预测控制的研究,基础自动化,2001,8(4):58-61
    [70]Nouri-Borujerdi,Layeghi.A review of concentric annular heat pipes.Heat Transfer Engineering,2005,26(6),45-58P
    [71]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(一).中国电机工程学报,1998,21(4):246-253页
    [72]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(二).中国电机工程学报,1998,18(5):350-356页
    [73]范永胜,眭喆,姜学智等.一种高精度的锅炉单相区段集总参数动态修正模型.中国电机工程学报,2000,20(1):50-54页
    [74]赵福宇,营艳,肖泽军等.新型直流蒸汽发生器的稳态分析.核动力工程,2000,21(4):309-313页
    [75]陈忠义,赵福宇,钱程耀等.负荷跟踪中直流蒸汽发生器的动态特性仿真计算.核动力工程,1999,20(1):52-57页
    [76]付明玉,夏国清,常宗虎。直流蒸汽发生器静态和动态特性分析,2002,23(3):28-32页
    [77]解衡,张金玲,贾斗南等.一体化压水堆蒸汽发生器的热工水力瞬态特性分析,核动力工程,1998,19(5):412-418页
    [78]秋穗正,郭玉君,张金玲等.蒸汽发生器瞬态特性分析的数学模型,1995,29(5):112-117页
    [79]黄晓津,冯元琨,郭人俊.HTR-10螺旋管式直流蒸汽发生器的动态数学模型,高技术通讯,2001,(1):96-99
    [80]沈国珍,基于简化模糊模型的广义预测控制器,机电工程,2002,19(4):40-45
    [81]王寅,荣冈,王树青,基于T-S模糊模型的非线性预测控制策略,2002,19(4):599-603
    [82]易维竞,李长顺,魏仁杰等.固定边界与移动边界直流蒸汽发生器模型的比较.核科学与工程,2002,20(4):314-317页
    [83]Kuridan,R.M.,Beynon,T.D.Analysis of the steam generator for the safe integral reactor concept:Ⅰ.steady state.Progress in Nuclear Energy,1997,31(3):272-287P
    [84]Kuridan,R.M.,Beynon,T.D.Analysis of the steam generator for the safe integral reactor concept:Ⅱ.a linearized non-steady state model,progress in nuclear energy,1998,31(3):289-301P
    [85]杨世铭,陶文铨.传热学.高等教育出版社,1998
    [86]Hassan Y.A..Thermal hydraulic predictions of a 19-tube once-through steam generator test using TRAC-PF1.The Winter Annual Meeting of ASME,New York:asme,1985:92-100P
    [87]Collier J G.对流沸腾和凝结.魏先英等译.北京:科学出版社,1982
    [88]阎昌琪.气液两相流.哈尔滨:哈尔滨工程大学出版社,1995
    [89]M.A.Abdalla.A nonlinear dynamic model of a once-through,helical-coil steam generator.Oak Ridge Associated University Master Paper,1993
    [90]徐济鋆,贾斗南.沸腾传热和气液两相流.北京:原子能出版社,1993
    [91]Weilin Qu,Issam Mudawar.Measurement and prediction of pressure drop in two-phase micro-channel heat sinks,International Journal of Heat and Mass Transfer,2003,(46):2737-2753P
    [92]黄山松,黄晓滓,冯元琨等.HTR-10直流蒸汽发生器动态特性的仿真研究.清华大学学报(自然科学版),2000,40(1):95-98页
    [93]刘铭.船用单缸汽轮机动态仿真及控制方法研究,硕士论文,哈尔滨工程大学,2005
    [94]于达仁,张宏光,徐基豫.中间再热抽汽式汽轮机的数学模型.汽轮机技术,1993,35(3):9-12页
    [95]倪维斗,王中泽.双抽汽式汽轮机的动态数学模型和仿真研究.动力工程,1991,11(3):45-50页
    [96]郑艳.300MW汽轮机数学模型的建立.南京工程学院,2002,2(4):29-32页
    [97]李运泽,杨献勇.汽轮机的长期动态模型与仿真.清华大学学报,2003,43(2):281-284页
    [98]崔大龙.核电汽轮机热力系统的主导因素变工况建模方法研究.核动力工程,2003,24(6):521-525页
    [99]张文杰.汽轮机建模和仿真研究的一种新方法.计算机工程,2001,27(9):175-177页
    [100]王希季,钟芳源.船舶汽轮机原理与热计算.北京:北京科学教育编辑室出版,1961
    [101]沈维道,郑佩芝,蒋淡安.工程热力学.北京:高等教育出版社,1983
    [102]朱明善,刘颖,林兆庄等.工程热力学.北京:清华大学出版社,1993
    [103]张东伟,朱津平.秦山300MW核电汽轮机组全范围仿真机汽轮机本体及汽轮机控制系统仿真.核动力工程,1995,17(2):168-174页
    [104]于瑞侠.核动力汽轮机.哈尔滨:哈尔滨工程大学出版社,2000
    [105]Elbert Hendricks,Thomas Vesterholm.The analysis of mean value SI engine models.SAE 920682
    [106]Minghui Kao,John J.Moskwa.Turbocharged diesel engine modeling for nonlinear engine control and state estimation.Transactions of the ASME,1995(3):20-30P
    [107]宋继武,彭义恒等.二回路汽轮机组.武汉:中国人民解放军海军工程学院,1982
    [108]于明义,翁史烈,黄善衡.舰船核动力装置蒸汽轮机系统数模混合实时仿真.动力工程,1997,17(1):45-49页
    [109]B.A库兹涅佐夫编著.船舶核动力装置.中船重工集团第719研究所,2003
    [110]丁宗华.一体化压水堆核动力装置协调控制技术研究,硕士论文,哈尔滨工程大学,2006
    [111]熊淑燕,李国勇.一种改进的隐式广义预测自校正控制算法.太原工业大学学报.1992.
    [112]李国勇.输入受限的广义预测控制算法的稳定性.华北工学院学报.2004(4).
    [113]黄道平,朱学峰,周其节.基于一种集成模型的多变量非线性预测控制.控制理论与应用,1999,16(1):38-42页.
    [114]舒迪前,预测控制系统及其应用.北京:机械工业出版社,1996:66-70页.
    [115]刘吉臻,协调控制与给水全程控制.北京:水利电力出版社,1995.
    [116]席裕庚等.预测控制的研究现状和多层智能预测控制.控制理论与应用.1989
    [117]陈增强,袁著祉.工业锅炉的加权预测自校正控制.自动化学报.1993.
    [118]李国勇,谢克明.广义预测多变量隐式自校正控制算法研究.中国控制会议论文集.1994.
    [119]Dion J M,et al.MIMO Adaptive Generalized Predictive Control with Input-Output Constrains.Proceedings of ADCHEM'88 IFAC International Symposium Series Cepenhagen Denmark.1988.
    [120]Mossca E,et al.Adaptive Predictive Control with Meansquare Input Constraints.Automatica.1992.
    [121]王伟.一种广义预测自适应控制的直接方法.自动化学报,1996,22(3):270-276页.
    [122]S N Singh,M Steinberg,R D DiGirolamo,Nonlinear predictive control of feedback linearizable systems and flight control systems design.J of Guidance,Control and Dynamics,1995,18(5):1023-1028
    [123]Won-Kee Son,h-Kyu Kwon,Control of nonlinear systems via feedback linearization and constrained model predictive control,In 1999 14th Triennial World Congress,Beijing,1999:103-108
    [124]金元郁,顾兴源.改进的多变量广义预测控制算法.信息与控制,1990,19(6):20-23页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700