用户名: 密码: 验证码:
泾河流域全新世环境演变及特大洪水水文学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于详细的野外考察,在泾河上游气候敏感区选取了典型的黄土—古土壤剖面——赵家村(ZJC)剖面;在泾河中游彬县至永寿段选取程家川(CJC)剖面,在礼泉至淳化段选择了礼淳桥(LCQ)剖面,这2处剖面中均夹有全新世洪水平流沉积物,为典型的洪水沉积剖面。对ZJC和CJC剖面进行了磁化率、烧失量、CaCO_3含量、粒度和化学元素等环境代用指标的实验分析和测定。
     通过ZJC剖面野外沉积特征和室内实验分析,重建了全新世气候与环境演变过程,为泾河流域全新世古洪水研究提供了气候背景。对CJC、LCQ剖面鉴定识别了古洪水平流沉积层,据此恢复了泾河古洪水水位,利用水文学方法恢复了泾河万年一遇洪水洪峰流量,并通过现代大洪水和洪峰流量—流域面积关系的验证,表明古洪水洪峰流量计算结果是可靠的,使洪水记录长度由实测洪水的数十年尺度延长到万年尺度。加入古洪水数据、结合历史调查洪水资料和实测洪水数据,绘制了泾河一万年来的洪水洪峰流量—频率曲线,使百年、千年一遇洪水的获取由传统的只依据实测几十年数据来外推方法转变为内插法来实现,提高了稀遇特大洪水流量的预测精度,为泾河流域水利水电和防洪减灾等工程建设方面提供了重要的设计洪水依据。本文获得的主要结论为:
     1.通过ZJC剖面多种环境代用指标分析,建立了该区域全新世气候与环境演变的过程,揭示了该区域全新世黄土—古土壤的物质来源。磁化率、烧失量、CaCO_3含量、粒度成分,以及地球化学元素等指标均显示泾河流域经历了晚冰期(14700~11500 a B.P.)、早全新世(11500~8500 a B.P.)、中全新世(8500~3100 a B.P.)、晚全新世(3100 a B.P.至今)4个气候变化阶段,为泾河古洪水发生和规律机制的研究提供了气候变化背景。
     2.通过地层学和沉积学分析准确判定了泾河2个剖面的古洪水平流沉积层,为再现泾河全新世洪水水位及洪峰流量提供了地质证据。通过野外宏观沉积特征识别,以及室内磁化率、烧失量、CaCO_3含量、粒度的分析,准确判定CJC剖面平流沉积层共记录了5次全新世特大洪水事件。结合剖面420~450 cm地层中含有龙山文化晚期的文化遗物,以及与流域内其他剖面热释光所测年代序列对比,确定5次洪水主要发生在龙山文化晚期(4200~4000 a B.P.)。LCQ剖面记录了2次全新世特大洪水事件,地层对比发现洪水事件发生年代与CJC剖面相同。泾河两个剖面古洪水平流沉积层的准确判定,与渭河流域漆水河已有古洪水研究成果的对比,表明在全新世4200~4000 a B.P.期间黄河中游发生特大洪水事件具有普遍性。
     3.通过恢复古洪水水位、过流断面形态,采用水文学中的比降法计算出古洪水洪峰流量,并利用泾河现代大洪水恢复与洪峰流量—流域面积关系进行了验证。基于地层学、考古学和水文学方法,依据CJC剖面、LCQ剖面古洪水平流沉积物的单层厚度、底界高程,利用含沙率恢复古洪水水位;采用比降法,计算出泾河全新世时期的特大洪水的洪峰流量;通过现代洪痕恢复洪水和洪峰流量—流域面积关系验证,结果显示所采用水文学方法合理,计算结果可靠。
     4.加入古洪水数据,结合水文站实测的年最大洪峰流量、前人调查获得的历史洪水洪峰流量,建立了泾河一万年来的洪水洪峰流量—频率皮尔逊Ⅲ型曲线,不仅延长了泾河洪水数据系列的时间尺度,而且使得百年一遇、千年一遇洪水洪峰流量的获取由传统的依据几十年实测水文数据外推转变为内插来实现,提高了洪水频率的精度,该研究成果填补了泾河古洪水研究的空白,对于泾河流域的水利水电工程、防洪减灾、城市和农村生态环境建设、水资源开发利用、水污染防治都具有十分重要的实用价值。
     5.研究发现泾河洪水主要是暴雨洪水,龙山文化晚期(4200~4000 a B.P.)对应全新世大暖期后期的气候恶化过程,这一时期气候变率大,降水年际、年内变化大;加之,4200~4000 a B.P.的期间气候变冷,导致季风雨带的北撤,使雨带在黄河中游地区频繁活动,二者叠加共同作用是造成这一时期特大洪水发生的主要原因。
     本研究通过对泾河流域深入调查研究,在泾河的一级阶地全新世黄土—土壤剖面中发现古洪水沉积夹层,利用沉积地层学、地貌学、考古学等方法,确定泾河在4200~4000 a B.P.发生了特大洪水事件。利用水文学模型,计算出特大洪水的洪峰流量,大大延长了洪水水文数据序列,并建立了泾河全新世洪水频率曲线,科学、系统地提高了泾河洪水水文学计算精度,增强了泾河流域防洪减灾和水资源开发当中洪水频率分析的可靠性。本文研究成果对于泾河流域的防洪减灾、水资源开发和生态环境建设具有重要的应用价值,同时填补了泾河流域古洪水水文学研究的空白,对于泾河流域生态环境综合治理具有重要的科学意义。
Based on comprehensive field survey, the ZJC profile, a typical loess-palaeosol profile, was selected and sampled in high-resolution at the sensitive climatic zone in the upper reaches of the Jinghe River. And two typical slackwater deposits profiles including CJC profile in the middle reaches from Binxian to Yongshou and LCQ profile in the reaches from Liquan to Chunhua, were sampled and studied. The proxy indicators of environment were determined and analysised by experiments with magnetic susceptibility, loss on ignition, percentage composition of calcium carbonate, particle-size distribution and chemical element in laboratory. This research deals with the study of palaeofloods with respect to climate changes over the last few millennia years.
     Through the analysis of macroscopical sedimentologic characteristics and physicochemical property of the ZJC profile, characteristics of the Holocene climatic variability and environmental change in the Jinghe River Bansin were reconstructed, providing the background of climatic variability for the Holocene palaeofloods occurrence. Palaeofloods slackwater deposits of the Jinghe River were identified in the CJC and LCQ profiles, which providing information on hydrologic variability and extreme floods over long-term intervals (100-10 000 yr). Hereby the water levels and peak discharges of the extreme palaeofloods with ten-millennia-year return period were reconstructed by hydrological methods, extending the time scale of floods from decades to millennia. Through the modern flood and the relation of peak discharge and drainage area, the palaeoflood discharges were tested reliable. Palaeofloods were used in combination with historical flood data (last 1 000 yr) and the gauged record (last 30-50 yr), we drew the rating curves of the peak discharges and frequency since ten millennia years. Palaeofloods data can also provide physical evidence for the upper limits of flood events in a basin without relying on instrumental records, improving the conventional procedure involves statistical extrapolations from short gauged hydrological records documenting 30-40 year records of observed floods to the estimation of the discharges of very large, rare floods, and the discharges precision was also improved. Thus it is significant to the engineering construction of flood mitigation, water conservancy and hydropower in the Jinghe River Basin.
     The main results are as following:
     1. Through the analysis of proxy environmental indicators of the ZJC profile, this paper revealed the Holocene loess-palaeosol material origin and established the process of the Holocene climatic and environmental changes in the Jinghe River Basin. All the indexes including magnetic susceptibility, loss on ignition, percentage composition of calcium carbonate, particle-size distribution and chemical element, revealed as many as four periods of climatic change in Holocene, they are the late glacial period (14 700-11 500 a B.P.), the early Holocene (11 500-8 500 a B.P.), mid-Holocene (8 500-3 100 a B.P.) and the late Holocene (3 100 a B.P. to present). The characteristics of the Holocene climatic and environmental change in the Jinghe River Basin were reavealed from the ZJC profile, providing a climatic context of palaeofloods occurrence.
     2. Through stratigraphical and sedimentologic analysis, slackwater flood deposits in two profiles were identified accurately, providing geological evidence for reconstruction water level and peak discharge of the palaeofloods in the Jinghe River. Based on identification of field macroscopical sedimentary characteristics and laboratory analysis on the proxy indexes of magnetic susceptibility, loss on ignition, percentage composition of calcium carbonate, particle-size distribution, we identified five extreme floods event recorded in the CJC profile. Cultural relics in the late period of the Longshan Culture were discovered in the stratigraphy between 420 cm and 450 cm, compared with thermoluminescence dating of other profiles in the Jinghe Basin, we obtained that the extreme palaeoloods occured during the late period of the Longshan Culture (4 200-4 000 a B.P.). The LCQ profile recorded two extreme floods, and their chronologies were similar to the CJC profile. Over the last millennium, the palaeoflood chronologies of the Jinghe River are in accord with the paleaofloods period of the Qishui River in the Weihe River Basin, so it is common that extreme floods occurred during 4 200-4 000 a B.P. in the middle reaches of the Yellow River.
     3. Reconstruction of water level and shape of cross-section, the peak discharge of palaeoflood were worked out by hydrological method. Through reconstruction of modern floods and the relation of peak discharge and catchment area, the results were verified. From sedimentological evidence of floodwater elevations reached by past floods, water level of palaeoflood were reconstructed by riverload during the late period of the Longshan Culture. Baesd on the methodology of Stratigraphy, Archaeology, Hydrology and referred to 1/10000 terrain map, shape of cross-sections was restored and regulated, other parameters including channel roughness and slope of river bed were determined, adopting slope-area method and hydraulic calculations, peak discharges of extreme palaeofloods during the Holocene were received. The modem extraordinary floods were reconstructed from floodmarks by slope-area method. The error of the calculated results was less than 5%, and rationality of application the slope-area method was verified. Relation between peak discharge and catchment area tested that the calculated peak discharges of palaeofloods were reasonable and credible.
     4. Taking advantage of palaeoflood discharge data, together with gauged data and historical flood infromation, applying procedure of the Pearson curves in Hydrology, peak discharge-frequency curves of the Jinghe River have been established, which prolonging flood data timeseries of the Jinghe River. The method of design flood calculation altered extrapolation into interpalation, improving the precision of flood frequency, reducing unnecessary funds waste. This research fills the domestic gap of palaeoflood in the Jinghe River, and it is very valuable to the engineering construction of flood mitigation, water conservancy and hydropower, development and utilization of water resources, eco-environmental construction between urban and rural areas, water pollution control in the Jinghe River Basin.
     5. The research discovered that floods mainly resulting from rainstorm of the Jinghe River Basin were highly sensitive to climate change, and Holocene extreme palaeofloods occurred in the late period of Longshan Culture (4 200-4 000 a B.P.). Extreme floods were unequivocally related to anomalous weather (rainfall) conditions in the late Megathermal of the Holocene. Climatic instability, uneven distribution of annual precipitation within a year, change of intensity of summer monsoon, monsoonal rain-belt moving to the north and activating frequently in the middle reaches of the Yellow River during 4 200-4 000 a B.P., which are the main reasons to the extreme floods in the period.
     Through field survey, the palaeoflood deposits were found and analyzed on T_1 terrace of the Jinghe river. Using stratigraphy, physiognomy and archaeology, it is certain that the extreme palaeoflood events happened in the period of 4 200-4 000 a B.P. since 11 500 a B.P., respectively. Then the peak discharges of palaeofloods were calculated by the hydrological model, which greatly prolonged the flood data series of the Jinghe River. And the flood rating curves were established to improving the reliability to the engineering construction of flood mitigation, water conservancy and hydropower in this basin. This research results are not only practical to the flood mitigation, water resources exploitation and eco-environmental construction, but also fill in the blank of the palaeoflood hydrological study in the Jinghe River Basin, which are of great scientific significance to the comprehensive improvement of the eco-environment of the basin.
引文
[1]联合国社会发展研究所.全球化背景下的社会问题[M].北京:北京大学出版社,1997,108.
    [2]张志强,孙成权.国际全球变化研究十年新进展[J].科学通报,1999,44(5):464-477.
    [3]陈宜瑜,陈泮勤,葛全胜,等.全球变化研究进展与展望[J].地学前缘,2002,9(1):11-18.
    [4]符超峰,安芷生,强小科,等.全球变化研究进展和面临的挑战及应对策略[J].干旱区研究,2006,23(1):1-7.
    [5]张志强,孙成权.全球变化研究十年新进展[J].科学通报,1999,44(5):464-477.
    [6]孙枢.对我国全球变化与地球系统科学研究的若干思考[J].地球科学进展,2005,20(1):6-10.
    [7]叶笃正,符淙斌,董文杰.全球变化科学进展与未来趋势[J].地球科学进展,2002,17(4):467-469.
    [8]叶笃正,符淙斌.全球变化科学领域的若干研究进展[J].中国科学院院刊,2004,19(5):336-341.
    [9]李家洋,陈泮勤,葛全胜,等.全球变化与人类活动的相互作用—我国下阶段全球变化研究工作的重点[J].地球科学进展,2005,20(4):371-377.
    [10]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望[J].地球科学进展,2005,20(5):556-560.
    [11]曲建升,孙成权,张志强,等.全球变化科学中的碳循环研究进展与趋向[J].地球科学进展,2003,18(6):980-987.
    [12]安芷生,符淙斌.全球变化科学的进展[J].地球科学进展,2001,16(5):671-680.
    [13]黄健民,徐之华.气候变化与自然灾害[M].北京:气象出版社.2005,46-47.
    [14]赵忠宝.黄河的六次大变迁[J].陕西水利科技,1994,44-45.
    [15]崔耀武.对泾河干流陕西段防洪问题的认识及思考[J].西北水力发电,2002,18(2):1-53.
    [16]黄春长,庞奖励,周群英,等.渭河流域先周-西周时代环境和水土资源退化及其社会影响[J].第四纪研究,2003,23(4):404-414.
    [17]董彦雄,马鹏里,白虎志,等.泾河流域近60年降水演变规律[J].干旱地区农 业研究,2004,22(3):154-159.
    [18]中华人民共和国水利部.水利水电工程水文计算规范(SL278—2002).北京:水利电力出版社,2002.
    [19]中华人民共和国水利部.防洪标准(GB50201—94).北京:水利电力出版社,1994.
    [20]谢悦波,李致家.频率计算加入古洪水资料后对设计洪水的作用[J].河海大学学报,1995,23(6):100-103.
    [21]刘东生.黄土与环境[M].北京:科学出版社,1985.1-412.
    [22]An Z.S.,Kutzbach J.E.,Prell W.,Porter S.C.Evolution of Asian mosoons and phased up lift of the Himalaya-Tibetan plateau since Late Miocene times.Nature,2001,411:62-66.
    [23]岳乐平,杨利荣,李智佩,等.西北地区干枯湖床沉积粒度组成与东亚沙尘天气[J].沉积学报,2004,22(2):325-331.
    [24]Pan B.T.,Burbank D.,Wang Y.X.,et al.A 900 k.y record of sWath terrace formation during glacial-interglacial transitions in northwest China.Geology,2003,30(11):957-960.
    [25]鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比—红粘土风成成因的新证据[J].沉积学报,1999,17(2):226-232.
    [26]Rea D.K.,Snoeckx H.,Joseph L.H.Late Cenozoic eolian deposition in the North Pacific:Asian drying,Tibetan up lift,and cooling of the northern hemisphere.Paleoceanography,1998,13(3):215-224.
    [27]Guo Z.T.,Ruddiman W.F.,Hao Q.Z.,et al.Onset of Asian desertification by 22M yr ago inferred from loess deposits in China.Nature,2002,416(14):159-163.
    [28]Chen J.,An Z.S.,Head J.Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology.Quaternary Research,1999,51:215-219.
    [29]马锋,刘立,王安平,等.图门江下游沙丘粒度分布与石英表面结构研究.沉积学报[J],2004,22(2):261-266.
    [30]Zhou L.P.,Oldfield F.,Wintle A.G.,et al.Partly pedogenic origin of magnetic variations in Chinese loess.Nature,1990,346:1-3.
    [31]Xiao J.L.,Porter S.C.,An Z.S.,et al.Grain size of quartz as an indicator ofwintermonsoon strength on the Loess Plateau of cenwal China during the last 130,000 yr.Quaternary Research,1995,43:22-29.
    [32]Ding Z.L.,Yu Z.W.,Rutter N.W.,Liu T.S.Towards an orbital times scale for Chinese loess deposits.Quaternary Science Reviews,1994,13:39-57.
    [33]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42(1):66-69.
    [34]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑),1998,28(3):278-283.
    [35]赵景波.黄土的本质与形成模式[J].沉积学报,2003,21(2):198-204.
    [36]谢悦波,姜洪涛.古洪水研究—挖掘河流大洪水的编年史[J].南京大学学报(自然科学),2001,37(3):390-394.
    [37]谢悦波,王文辉,王平.古洪水平流沉积粒度特征[J].水文,2000,20(4):18-20.
    [38]谢悦波,杨玉荣,王辉.三峡河段古洪水平流沉积指标体系[J].人民长江,1999,30(8):4-7.
    [39]詹道江,谢悦波.古洪水研究[M].北京:中国水利水电出版社,2001,1-89.
    [40]Baker V.R.A bright future fox old flows;Origins,status and future of paleoflood hydrology.In:Thorndycrafl V.R.,Benito G,Bardendos M.,et al.(eds).Palaeofloods,Historical Data and Climatic Variability:Applications in Flood Risk Assessment(Proceedings of the PHEFRA International Workshop held in Barcelona,16-19th October,2002)[M].Madrid:CSIC,2003,13-18.
    [41]Knox J.C.Large increases in flood magnitude in response to modest change in climate,Nature,1993,361:430-432.
    [42]曹银真.古水文学及其研究方法[J].地理研究,1988,7(2):94-102.
    [43]Wells L.E.Holocene history of the ElNino phenomenon as recorded in flood sediments of northern coastal Peru.Geology,1990,18(11):34-37.
    [44]Newson M.and Lewin J.Climatic change,river flow extremes and fluvial erosion-scenarios for England and Wales.Progress in Physical Geography,1991,15:1-17.
    [45]Martin C.The response of fluvial systems to climatic change:an example from the central Great Plains.Physical Geography,1992,13:101-114.
    [46]Rind D.,Rosenzweig C.and Goldberg R.Modelling the hydrological cycle in assessments of climate change.Nature,1992,358:119-122.
    [47]Branson J.,Brown A.G,Gregory K.J.Global continental changes:the context of palaeohydrology.Geological Society of London,Special Publication,1996,115.
    [48]Knox J.C.Sensitivity of modern and Holocene floods to climate change.Quaternary Science Reviews,2000,19:439-457.
    [49]Brakenridge G.R.Widespread episodes of streamerosion during the Holocene and their climatic cause.Nature,1980,283:655-656.
    [50]Chatters J.C.,Hoover K.A.Changing late Holocene flooding frequencies on the Columbia River,Washington.Quaternary Research,1986,26:309-320.
    [51]Stedinger J.R.,Cohn T.A.Flood frequency analysis with historical and paleoflood information.Water Resources Research,1986,22:785-793.
    [52]Smith A.M.Extreme palaeofloods:their climatic significance and chances of similar magnitude floods reoccurring.SA Journal of Science,1991,87:219-220.
    [53]Brown A.G.,Cooper L.,Salisbury C.R.,Smith D.N.Late Holocene channel changes of the Middle Trent:channel response to a thousand-year flood record.Geomorphology,2001,39:69-82.
    [54]Alila Y.,Mtiraoui A.Implications of heterogeneous flood-frequency distributions on traditional stream-discharge prediction techniques.Hydrological Processes,2002,16:1065-1084.
    [55]Bretz J.H.Valley deposits immediately east of the channeled scabland of Washington.Journal of Geology,1929,37:393-427,505-554.
    [56]Dury G H.Discharge prediction,present and former,from channel dimensions.Hydrology,1976,30(11):219-245.
    [57]Schumm S.A.River adjustment to altered hydrologic regimen-Murrumbidgee River and paleochannels,Australia.U.S.Geological Survey Professional Paper,1968,598:1-65.
    [58]Kochel R.C.,Baker V.R.Paleoflood hydrology.Science,1982,215:353-361.
    [59]Greis N.P.Flood frequency analysis:a review of 1979-1982.Review of Geophysics,1983,21:699.
    [60]Shih F.,Yi Y.,Han M.Investigation and verification of extraordinary large floods of the Yellow River in China.Proceedings of the U.S.China Bilateral Symposium on the Analysis of Extraordinary Flood Events.Nanjing,China,1985.
    [61]Pilgrim D.H.Australian rainfall and runoff.A guide to flood estimation.Institution of Civil Engineers,Australia,Barton,ACT,Australia,1987,374.
    [62]Boshoff P.,Kovacs Z.,Van Bladeren D.,Zwada P.K.Potential benefits from palaeoflood investigation in South Africa.South African Engineer,1993,35: 25-26.
    [63]Baker V.R.Paleoflood hydrology and extreme flood events.Journal of Hydrology,1987,96:79-99.
    [64]Wintle A.G.,Huntley D.J.Thermolumonescence dating of sediments.Quatery Science Review.1982,1:31-53.
    [65]Taylor R.E.,Donabue D.J.,Zabel T.H.,et al.Radiocarbon dating by particle accelerators:an archaeological perspective.In:Lambert J.B.ed."Archaeoological chemistry-Ⅲ",American Chemical Society Advances in Chemistry Series.1984,205:333-356.
    [66]Stokes S.,Walling D.E.Radiogenic and isotopic methods for the direct dating of fluvial sediments.In:Kondolf G M.,Piegay H.(Eds.),Tools in Fluvial Geomorphology.Wiley Chichester,2003,233-267.
    [67]Macklin M.G,Lewin J.River sediments,great floods and centennial-scale Holocene climate change.Journal of Quaternary Science,2003,18:101-105.
    [68]Macklin M.G,Benito G,Gregory K.J.,et al.Past hydrological events reflected in the Holocene fluvial record of Europe.Catena,2006,66:145-154.
    [69]Gregory K.J.,Benito G,Dikau R.,et al.Past hydrological events and global change.Hydrological Processes,2006,20:199-204.
    [70]O'Connor J.E.,Webb R.H.Hydraulicmodeling for paleoflood analysis.In:Baker V.R.,Kochel R.C.,Patton P.C.(Eds.),Flood Geomorphology.Wiley NY,1988,403-420.
    [71]Webb R.H.,Blainey J.B.,Hyndman D.W.Paleoflood hydrology of the Paria River,southern Utah and northern Arizona,USA.In:House P.K.,Webb R.H.,Baker V.R.,Levish D.R.(Eds.),Ancient Floods,Modern Hazards:Principles and Applications of Paleoflood Hydrology.Water Science and Application,vol.5.American Geophysical Union,Washington D.C.,2002,295-310.
    [72]Kutija V.Hydraulic modelling of floods.In:Thomdycraft V.R.,Benito G.,Barriendos M.,Llasat M.C.(Eds.),Palaeofloods,Historical Data and Climatic variability:Applications in Flood Risk Assessment.CSIC,Madrid,2003,163-169.
    [73]Denlinger R.P.,O'Connell D.R.H.,House P.K.Robust determination of stage and discharge:an example form an extreme flood on the Verde River,Arizona.In:House P.K.,Webb R.H.,Baker V.R.,Levish D.R.(Eds.),Ancient Floods,Modern Hazards:Principles and Applications of Paleoflood Hydrology.Water Science and Application, vol. 5. American Geophysical Union, Washington D.C., 2002,127-146.
    [74] Pelletier J. D., Mayer L., Pearthree P. A., et al. An integrated approach to alluvial-fan flood hazard assessment with numerical modeling, field mapping, and remote sensing. Geological Society of America Bulletin, 2005,117: 1167-1180.
    [75] Miyamoto H., Itoh K., Komatsu G, Baker V. R., et al. Numerical simulations of large-scale cataclysmic floodwater: a simple depth-averaged model and an illustrative application. Geomorphology, 2006,76: 179-192.
    [76] Carrivick J. L. Hydrodynamics and geomorphic work of Jokulhlaups (glacial outburst floods) from Kverkfjoll volcano, Iceland. Hydrological Processes, 2007, 21:725-740.
    [77] Costa J. E. Holocene stratigraphy in flood-frequency research. Water Resources Research, 1978,14: 626-632.
    [78] Baker V. R. Flood geomorphology and palaeohydrology of bedrock rivers. In: Dardis G F., Moon B. P. (Eds.), Geomorphological Studies in Southern Africa. A.A. Balkema, Rotterdam, The Netherlands, 1988,473-486.
    [79] Lane W. L. Paleohydrologic data and flood frequency estimation. In: Singh V. P. (Ed.), Regional Flood Frequency Analysis. D. Reidel, Dordrecht, 1987,287-298.
    [80] Redmond K. T., Enzel Y., House P. K., Biondi F. Climate impact on flood frequency at decadal to millennial time scales. In: House P. K., Webb R. W., Baker V. R., Levish D. R. (Eds.), Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology. Water Science and Application Series, vol. 5. American Geophysical Union, Washington D. C, 2002,21-45.
    [81] Diane Saint-Laurent. Palaeoflood hydrology: an emerging science. Progress in Physical Geography, 2004,28 (4): 531-543.
    [82] Victor R. Baker. Palaeoflood hydrology in a global context. Catena, 2006, 66: 161-168.
    [83] Enzel Y., Ely L. L., House P. K., Baker V. R. and Webb R. H. Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado River basin. Water Resources Research, 1993,29: 2287-2297.
    [84] Mc Queen K. C, Vitek J. D., Carter B. J. Paleoflood analysis of an alluvial channel in the south-central Great Plains: Black Bear Creek, Oklahoma. Geomorphology, 1993,8:131-146.
    [85]Grimm M.M.,Wohl E.E.,Jarrett R.D.Coarse-sediment distribution as evidence of an elevation limit for flash flooding,Bear Creek,Colorado.Geomorphology,1995,14:199-210.
    [86]House P.K.and Baker V.R.Paleohydrology of flash floods in small desert watersheds in western Arizona.Water Resources Research,2001,37:1825-1839.
    [87]Ostenaa D.A.,O'Connell D.R.H.,Waiters R.A.,Creed R.J.Holocene paleoflood hydrology of the Big Lost River,western Idaho.National Engineering and Environmental Laboratory,Idaho.Geological Society of America Special Paper,2002,353:91-110.
    [88]Yang D.Y.,Yu B.,Xie Y.B.,Zhan D.J.,Li Z.Sedimentary records of large Holocene floods from the middle reaches of the Yellow River,China.Geomorphology,2000,33(1-2):73-88.
    [89]Zhu C.,Zheng C.,Ma C.,Zhu B.,Wang H.,Gao H.,Wang P.,Huang R.Identifying paieoflood deposits archived in Zhongba Site,the Three Gorges reservoir region of the Yangtze River,China.Chinese Science Bulletin(English Edition)(part 21),2005,50:2493-2504.
    [90]詹道江,谢悦波.洪水计算的新进展——古洪水研究[J].水文,1997,(1):1-5.
    [91]谢悦波,杨达源.古洪水平流沉积基本特征[J].河南大学学报,1998,26(6):5-10.
    [92]谢悦波,费宇红,沈起鹏.古洪水平流沉积与水位[J].地球学报,2001,22(4):320-323.
    [93]刘卫东.岗南和黄壁庄水库除险加固方案论证[J].水利水电技术,2005,36(4):12-17.
    [94]杨达源,谢悦波.黄河小浪底段古洪水沉积与古洪水水位的初步研究[J].河海大学学报,1997,25(3):86-89.
    [95]朱诚,于世永,卢春成.长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究[J].地理学报,1997,52(3):268-278.
    [96]朱诚,于世永,史威,等.南京江北地区全新世沉积与古洪水研究[J].地理研究,1997,16(4):23-30.
    [97]朱诚,郑朝贵,马春梅,等.长江三峡库区中坝遗址地层古洪水沉积判别研究[J].科学通报,2005,50(20):2240-2250.
    [98]朱诚,马春梅,王慧麟,等.长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究[J].科学通报,2008,53:1-16.
    [99]史威,朱诚,徐伟峰,等.重庆中坝遗址剖面磁化率异常与人类活动的关系[J].地理学报,2007,62(3):257-267.
    [100]史威,朱诚.太湖流域水灾演变与环境变迁的相关分析[J].自然灾害学报,2004,13(1):32-37.
    [101]张强,姜彤,施雅风,等.6000aBP以来长江下游地区古洪水与气候变化关系初步研究[J].冰川冻土,2003,25(4):368-274.
    [102]张强,杨达源,施雅风,等.川江中坝遗址5000年来洪水事件研究[J].地理科学,2004,24(6):715-720.
    [103]谢远云,李长安,王秋良,等.江汉平原近3000年来古洪水事件的沉积记录[J].地理科学,2007,27(1):81-84.
    [104]殷春敏,邱维理,李容全.全新世华北平原古洪水[J].北京师范大学学报(自然科学版),2001,37(2):280-284.
    [105]袁宝印,邓成龙,吕金波,等.北京平原晚第四纪堆积期与史前大洪水[J].第四纪研究,2002,55(5):474-482.
    [106]葛兆帅,杨达源,何太蓉,等.3万年前长江大洪水沉积的初步分析[J].湖泊科学,2003,(15):230-234.
    [107]葛兆帅,杨达源,李徐生,等.晚更新世晚期以来的长江上游古洪水记录[J].第四纪研究,2004,24(5):555-560.
    [108]葛兆帅,杨达源,谢悦波,等.沁河流域全新世特大洪水及其重现期初步研究[J].自然灾害学报,2004,13(5):144-148.
    [109]张理华,朱诚,张强.苏皖沿江平原全新世气候变化与洪水事件研究[J].武汉大学学报(理学版),2002,48(6):709-714.
    [110]夏正楷,王赞红,赵青春.我国中原地区3500aBP前后的异常洪水事件及其气候背景[J].中国科学(D辑),2003,33(9):881-888.
    [111]杨晓燕,夏正楷,崔之久.黄河上游全新世特大洪水及其沉积特征[J].第四纪研究,2005,25(1):80-85.
    [112]夏正楷,杨晓燕,叶茂林.青海喇家遗址史前灾难事件[J].科学通报,2003,44(11):1200-1204.
    [113]朱诚,宋健,尤坤元,等.上海马桥遗址文化断层成因研究[J].科学通报,1996,41(2):148-152.
    [114]张芸,朱诚,史威.上海马桥地区全新世中晚期气候变化、海面变化和古洪水[J].海洋科学,2002,26(1):54-58.
    [115]高炜,张岱海,高天麟.陶寺遗址的发掘与夏文化的探讨[A].见:郑杰祥编. 夏文化论集[C].北京:文物出版社,2002,298-306.
    [116]Huang C.C.,Pang J.L.,Zha X.C.,et al.Impact of monsoonal climatic change on Holocene overbank flooding along Sushui River,middle reach of the Yellow River,China.Quaternary Science Reviews,2007,(26):2247-2264.
    [117]查小春,黄春长,庞奖励.关中西部漆水河全新世特大洪水与环境演变[J].地理学报,2007,62(3):291-300.
    [118]杨达源,谢悦波.古洪水平流沉积特征[J].沉积学报,1997,15(3):29-32.
    [119]Baker V.R.Magnitude and frequency of paleofloods in Beven and Carling.Floods Hydrological,Sedimento-logical and Geomorphological Implication.John Wiley and Sons Ltd,1989,179-182.
    [120]G.Benito,V.R.Thorndycraft.Paleaoflood hydrology and its role in applied hydrological sciences.Journal of Hydrology,2005,313:3-15.
    [121]袁胜元,赵新军,李长安.古洪水事件的判别标志[J].地质科技情报,2006,25(4):55-58.
    [122]费永法.历史特大洪水对设计洪水频率曲线参数及设计值的影响[J].水力发电学报,1999,67(4):45-50.
    [123]Nathan A.Sheffer,Mayte Rico,Yehouda Enzel,et al.The palaeoflood record of the Gardon River,France:a comparison with the extreme 2002 flood event.Geomorphology,2008,98:71-83.
    [124]赵新军.我国全新世特大低频洪水事件研究.沈阳农业大学学报(社会科学版),2007,9(5):776-778.
    [125]Kochel R.C.,Baker V.R.Paleoflood hydrology.Science,1982,215:353-361.
    [126]Waythomas C.F.,Jarrett R.D.Flood geomorphology of Arthurs Rock Gulch,Colorado:Paleoflood history.Geomorphology,1994,11:15-40.
    [127]Springer G.S.,Kite J.S.River-derived slackwater sediments in cavesalong Cheat River,West Virginia.Geomorphology,2001,18:91-100.
    [128]谢悦波,刘金涛,沈起鹏.黄河小浪底河段古洪水沉积[J].河海大学学报,2001,29(4):27-30.
    [129]黄春长.环境变迁[M].北京:科学出版社.1998.
    [130]Vishwash S.Kale,Ashok K.Singhvi,Praveen K.Mishra,et al.Sedimentary records and luminescene chronology of Late Holocene palaeoflods in the Luni River,Thar Desert,northwest India.Catena,2000,40:337-358.
    [131]Singhvi A.K.,Krbetschek M.R.Luminescence dating:a review and a perspective for arid zone sediments.Annuals of Arid Zone,1996,35:249-279.
    [132]史小丽,秦伯强.湖北网湖~(137)Cs、~(210)Pb计年与沉积速率研究[J].宁波大学学报(理工版),2008,21(3):418-422.
    [133]Ely L.L.,Webb R.H.,Enzel Y.Accuracy of post-bomb ~(137)Cs and ~(14)C in dating fluvial deposits.Quaternary.Reshearch,1992,38:196-204.
    [134]Walling D.E.,He Q.Use of fallout ~(137)Cs in investigations of overbank sediment deposition on river floodplains.Catena,1997,29:263-282.
    [135]Huang C.C.,Pang J.L.,Zhao J.B.Chinese loess and the evolution of the East Asian monsoon.Progress in Physical Geography,2000,24(1):75-96.
    [136]Huang C.C.,Pang J.L.,Huang P.An early Holocene erosion phase on the loess tableland in the southern Loess Plateau of China.Geomorphology,2002,43:209-218.
    [137]Huang C.C.,Pang J.L.,Chen S.E.,Zhang Z.P.Holocene dust accumulation and the formation of policyclic Ustic Luvisols in the Chinese loess plateau.Earth Surface Processes and Landforms,2003,28(12):1259-1270.
    [138]Huang C.C.,Jia Y.F.,Pang J.L.,Zha X.C.,Su H.X.Holocene colluviation and its implications for tracing human-induced soil erosion and redeposition on the piedmont loess lands of the Qinling mountains,Northern China.Geoderma,2006,136:838-851.
    [139]Diane Saint-Laurent.Palaeoflood hydrology:an emerging science.Progress in Physical Geography,2004,28(4):531-543.
    [140]Gerardo Benito,Alfonso Sopena,Yolanda Sanchez-Moya,et al.Palaeoflood record of the Tagus River(Central Spain) during the Late Pleistocene and Holocene.Quaternary Science Reviews,2003,22:1737-1756.
    [141]Thomdycraft V.R.,Benito G.,Rico M.,et al.A long-term flood derived from slackwater flood deposits of the Llobregat River,NE Spain.Journal of Hydrology,2005,313:16-31.
    [142]Alpa Sridhar.Amid-late Holocene flood record from the alluvial reach of the Mahi River,Western India.Catena,2007,70:330-339.
    [143]Benito G.,Thomdycraft V.R.,Rico M.,Sanchez-Moya Y.,Sopena A.Palaeoflood and floodplain records from Spain:Evidence for long-term climate variability and environmental changes.Geomorphology.2008,101:68-77.
    [144]John F.England Jr.,Robert D.Jarrett,Jose D.Salas.Data-based comparisons of moments estimators using historical and paleoflood data.Journal of Hydrology,2003,278:172-196.
    [145]Gerardo Benito,Michel Lang,Mariano Barriendos,et al.Use of systematic,paleaoflood and historical data for the improment of flood risk estimation.Review of scientific methods.Natural Harzards,2004,31:623-643.
    [146]谢悦波,时明立,王井泉.黄河2360 a B.P.古洪水流量推算误差分析[J].人民黄河,1998,20(9):1-3.
    [147]乔来禄,高治定,慕平.黄河小浪底河段古洪水期行洪断面的论证[J].人民黄河,1998,20(3):8-10.
    [148]徐润滋,李华金,徐健.九洲江鹤地水库古洪水的应用研究[J].红水河,2000,19(4):51-53.
    [149]陕西师大地理系.咸阳市地理志[M].西安:陕西人民出版社,1991,35-86.
    [150]王秀春,吴姗,毕晓丽.泾河流域水系分维特征及其生态意义[J].北京师范大学学报(自然科学版),2004,40(3):364-368.
    [151]韦中兴,蔺生睿.泾河流域水文特性分析[J].水文,1996,2:52-59.
    [152]冉大川,吴永红.泾河流域水土保持生态环境建设与治理方略刍议[J].水土保持研究,2003,10(2):58-60.
    [153]陈操操,谢高地,甄霖.泾河流域降雨量变化特征分析[J].资源科学,2007,29(2):172-177.
    [154]袁素芬,唐海萍.全球气候变化下黄土高原泾河流域近40年的气候变化特征分析[J].干旱区资源与环境,2008,22(9):43-48.
    [155]刘俊峰,苏英.甘肃平凉地区约80万年以来的植被与气候变迁[J].地理研究,1994,13(4):90-97.
    [156]冉大川,刘斌,罗全华,等.泾河流域人为活动对水沙变化的影响分析——兼议泾河流域治理方略[J].水土保持学报,2001,15(6):32-35.
    [157]冉大川.泾河流域年最大洪水量及洪沙量变化分析[J].人民黄河,1998,20(12):27-29.
    [158]宋永锋.泾河流域水资源可持续开发利用探讨[J].甘肃水利水电技术,2001,37(2):92-93.
    [159]李海林.泾河流域水环境评价及污染防治对策[J].环境保护,2001,9:54-58.
    [160]巨天珍,索安宁.基于遥感的泾河流域植被覆盖格局分析[J].农村生态环境,2005,21(1):17-20.
    [161]杨晓华.平凉地区秋季旱涝气候特征[J].甘肃气象,1998,16(3):11-12.
    [162]李海林.平凉地区水文特性[J].甘肃科技,2001,2:61.
    [163]毛泽秦.平凉地区泾河流域水资源可持续开发探讨[J].西北水资源与水工程,2001,12(3):63-64.
    [164]国家文物局.中国文物地图集—陕西分册.西安:西安地图出版社,1998.
    [165]Huang C.C.,Pang J.L.,Chen S.E.Charcoal records of the fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J].Palaeogeography Palaeoecology Palaeoclimatology.2006,239:28-44.
    [166]Huang C.C.,Pang J.L,Zhou Q.Y.,et al.Holocene pedogenic change and the emergence and decline of rain-fed cereal agriculture on the Chinese Loess Plateau[J].Quaternary Science Reviews.2004,23:2529-2539.
    [167]Huang C.C.,Zhao S.C.,Pang J.L.,et al.Climatic aridity and the relocations of the Zhou Culture in the Southern Loess Plateau of China[J].Climatic Change.2003,61(3):361-378.
    [168]刘良梧,茅昂江,胡雪峰.磁化率—沉积、成土作用环境的指示剂[J].土壤,2001,2:98-101.
    [169]陈忠,马海州,曹广超,等.关于黄土碳酸盐与气候环境关系探讨[J].云南地理环境研究,2007,19(3):7-10.
    [170]石建省,石迎春,叶浩,等.黄土堆积序列“高温烧失量”指标对古气候演化的指示意义[J].地理学与国土研究,2002,18(4):104-106.
    [171]孙建中.黄土学[M].香港:香港考古学会出版,2005,1-25,182-183.
    [172]刘东生.黄土与环境[M].北京:科学出版社,1985:1-481.
    [173]杨怀仁.第四纪地质学[M].北京:高等教育出版社,1987.
    [174]丁仲礼,任剑璋,刘东生,等.晚更新世季风—沙漠系统千年尺度的不规则变化及其机制问题[J].中国科学(D楫),1996,26(5):385-391.
    [175]Heller F.,Liu T.S.Magnetism of Chinese loess deposits[J].Geophs.J.R.Astron Soc,1984,77:125-141.
    [176]Kulda G.Loess stratigraphy in cetral China[J].Quaternary Science Review,1987,6:191-219.
    [177]Kulda G.J.Correlation of Chinese,European and American loess series with deep-sea sediments.Loesss Research[D].Beijing:China Ocean Press.1987,27-38.
    [178]Kulda G.,An Z.S.,Melice J.L.,et al.Magnetic susceptibility record of Chinese loess[J].Translations of the Royal Society of Edinburgh.Earth Science,1990,81: 203-288.
    [179]安芷生,Kukla G.,刘东生.洛川黄土地层学[J].第四纪研究,1989,2:155-168.
    [180]安芷生,吴锡浩,汪品先,等.最近130 ka中国的古季风——Ⅰ.古季风记录[J].中国科学(B辑),1991,10:1076-1081.
    [181]安芷生,吴锡浩,汪品先,等.最近130 ka中国的古季风——Ⅱ.古季风变迁[J].中国科学(B辑),1991,10:1209-1215.
    [182]Zhou L.P.,Oldfield F.,Wintle A.G.,et al.Partly peogenic origin of magnetic variation in Chinese loess[J].Nature,1990,346(23):737-739.
    [183]Mather B.A.,Thompson R.Mineral magnetic record of the Chinese loess[J].Geology,1991,19:3-6.
    [184]刘秀铭,刘东生,F.Heller.中国黄土磁性颗粒分析及其古气候意义[J].中国科学(B辑),1991,6:639-644.
    [185]徐立,刘东生,陈明杨,等.黄土中磁性矿物的穆斯堡尔效应及其磁化率解析[J].科学通报,1991,11:1011-1013.
    [186]Mather B.A.,Thompson R.Palaeoclimatic significance of the mineral magnetic record of the Chinese loess[J].Quaternary Science Reviews,1992,37:155-170.
    [187]Heller F.,Evans M E.Loess magnetism[J].Review of Geopgysics,1995,33:211-240.
    [188]Mather B.A.Magnetic properties of modern soil and Quaternary loessic paleosols:Paloeclimatic implications[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1998,137(1):25-54.
    [189]孙东怀,周杰,吴锡浩,等.末次间冰期黄土高原及黄土/沙漠过度区年降水量的初步恢复[J].中国沙漠,1995,15(4):339-344.
    [190]吕远厚,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B辑),1994,24(12):1290-1297.
    [191]朱广伟,秦伯强,高光,等.灼烧对沉积物烧失量及铁、磷测定的影响[J].分析实验室,2004,23(8):72-76.
    [192]刘子亭,余俊清,张保华.烧失量分析在湖泊沉积与环境变化研究中的应用[J].盐湖研究,2006,14(2):67-72.
    [193]张佳华,孔昭宸,杜乃秋,等.烧失量数值波动对北京地区过去气候和环境的特征响应[J].生态学报,1998,18(4):343-347.
    [194]柴岫.泥炭地学[M].北京:地质出版社,1990,32-42.
    [195]黄麒.柴达木盆地察尔汗湖区气候波动模式的初步研究[J].中国科学(B辑),1990,652-663.
    [196]Andre J.,L evesque,et al.A previously unrecognized late-glacial cold event in eastern North America[J].Nature,1993,361:623-625.
    [197]黄成彦,孔昭寰,浦庆余,等.颐和园昆明湖3500余年沉积物研究[M].北京:海洋出版社,1996,191-217.
    [198]白光润.从泥炭分布的演化过程分析中国东部和日本一万年来的干湿变迁[J].地理科学,1995,15(1):30-38.
    [199]张佳华,孔昭宸,杜乃秋.北京房山16000-7000年以来的植被与环境变迁[J].微体古生物学报,1999,16(4):421-430.
    [200]谭红兵,马海州,张西营.碳酸盐研究与其记录的环境变化[J].盐湖研究,2003,11(4):21-27.
    [201]陈忠,马海州,曹广超,等.黄土碳酸盐的研究[J].盐湖研究,2006,14(4):66-72.
    [202]卢演俦.黄土地层中CaCO_3含量变化与更新世气候旋回[J].地质科学,1981,2:122-125.
    [203]管东红,奚晓霞,郝永萍,等.北塬剖面碳酸钙记录的末次间冰期气候不稳定性[J].冰川冻土,1996,18(2):119-124.
    [204]刘丛强,张劲,李春来.黄土中CaCO_3含量及其Sr同位素组成变化与古气候波动记录[J].科学通报,1999,44(10):1088-1092.
    [205]赵景波.淀积理论与黄土高原环境演变[M].北京:科学出版社,2002,35-37.
    [206]朱宏,赵成义,李军,等.土壤CaCO_3淀积对降水量及环境变化的指示[J].土壤通报,2007,38(4):810-812.
    [207]任明达,王乃梁.现代沉积环境概论[M].北京:科学出版社,1981,8-25.
    [208]华东石油学院岩矿教研室.沉积岩石学(上册)[M].北京:石油工业出版社,1982,79-96.
    [209]华东石油学院勘探系、基础地质、石油地质教研室.沉积岩[M].北京:石油化学工业出版社,1977,66-93.
    [210]成都地质学院.沉积岩石学[M].北京:地质出版社,1980,307-320.
    [211]刘东生.黄土与环境[M].北京:科学出版社,1985.
    [212]徐馨,何才华,沈志达,等.第四纪环境研究方法[M].贵阳:贵阳科技出版社,1992,74-75.
    [213]成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社, 1976,90-100.
    [214]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42(1):66-69.
    [215]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑),1998,28(3):278-283.
    [216]张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J].第四纪研究,2001,21(1):29-40.
    [217]Chen F.H.,Bloemendal L.,Feng Z.D.,et al.East Asian monsoon variations during oxygen isotope stage 5:evidence from the northwestern margin of the Chinese loess plateau[J].Quaternary Science Review,1999,18:1127-1135.
    [218]Ding Z.L.,Derbyshire E.,Yang S.L.,et al.Stacked 2.6Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ ~(18)O record[J].Paleoceanography,2002,17(3):725-756.
    [219]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,22(1):21-26.
    [220]Xiao Jule,Porter S.C.,An Z.S.,et ai.Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr[J].Quaternary Research,1995,43:22-29.
    [221]Xia J.L.,Inouchi Y.,Kumai H.,et al.Eolian quartz flux to Lake Biwa,central Japan,over the past 145,000 years.Quaternary Research,1997,48:48-57.
    [222]Porter S.C.,An Z.S.Correlation between climate events in the North Atlantic and China during the last glaciation[J].Nature,1995,375:305-308.
    [220]Burke K.,Francis P.,Wells G.Importance of the geological record in understanding global change[J].Palaeogeography,Palaeoclimatology,Palaeoecology(Glob.Plan.Chang.Sect.),1990,89:193-204.
    [221]Patrick M.Verhaar,Pascale M.Biron,Robert I.Ferguson,Trevor B.Hoey.A modified morphodynamic model for investigating the response of rivers to short-term climate change[J].Geomorphology,2008,101(4):674-682.
    [222]谢又予.沉积地貌分析[M].北京:海洋出版社,2000,3.
    [223]张祖陆.鲁北平原黄河古河道初步研究[J].地理学报,1990,45(4):457-466.
    [224]李元芳.西汉古黄河三角洲初探[J].地理学报,1994,49(6):543-549.
    [225]王红亚,石元春,于澎涛,等.河北平原南部曲周地区早、中全新世冲积物的分析及古环境状况的推测[J].第四纪研究,2002,22(4):381-393.
    [226]陈志清.黄河龙门—三门峡段河漫滩组成物质的粒度特征[J].地理学报,1997,52(4):308-315.
    [227]李铮华,王玉海.黄土沉积的地球化学记录与古气候演化[J].海洋地质与第四纪地质,1998,18(2):41-47.
    [228]靳鹤龄,苏志珠,孙忠.浑善达克沙地全新世中晚期地层化学元素特征及其气候变化[J].中国沙漠,2003,23(4):366-371.
    [229]张虎才,张林源,Mahaney W.C.兰州九州台黄土剖面元素地球化学研究[J].地球化学,1991,20(1):79-86.
    [230]Gu Z.Y.,La D.,Liu T.S.,et al.Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic ~(10)Be[J].Geochimicaet Cosmochimica Acta,1997,61:5221-5231.
    [231]文启忠,刁桂仪,余素华,等.黄河中游地区马兰黄土微量元素分布图[J].地球化学,1986,(4):325-337.
    [232]隋玉柱.黄土不同指标的古环境意义探讨[J].中国沙漠,2006,26(1):14-19.
    [233]靳鹤龄,李明启,苏志珠,等.220 ka以来萨拉乌苏河流域地层磁化率与气候变化[J].中国沙漠,2006,26(5):680-686.
    [234]李志文,李保生,孙丽,等.影响中国黄土磁化率差异的多因素评述[J].中国沙漠,2008,28(2):231-237.
    [235]胡雪峰.“黄土—古土壤”序列中氧化铁和有机质对磁化率的影响[J].土壤学报,2004,41(1):7-12.
    [236]郭玉文,加藤诚,宋菲,等.黄土高原黄土团粒组成及其与碳酸钙关系的研究[J].土壤学报,2004,41(3):362-368.
    [237]宋友桂,方小敏,李吉均,等.六盘山东麓朝那剖面红粘土年代及其构造意义[J].第四纪研究,2000,20(5):457-463.
    [238]陈骏,季峻峰,仇刚,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑),1997,26(7):531-536.
    [239]李铮华,王玉海.黄土沉积的地球化学记录与古气候演化[J].海洋地质与第四纪地质,1998,18(2):41-47.
    [240]庞奖励,黄春长.陕西五里铺黄土剖面中微量元素地球化学特征[J].长春科技大学学报,2001,31(2):180-184.
    [241]Taylor S.R.,McLennan S.M.The Continental Crust:Its Composition and Evolution.London:Blackwell,1985,277.
    [242]靳鹤龄,苏志珠,孙忠.浑善达克沙地全新世中晚期地层化学元素特征及其 气候变化[J].中国沙漠,2003,24(3):366-371.
    [243]Dasch E.J.Strontium isotopes in weathering profiles,deep sea sediments and sedimentary rocks[J].Geochim Cosmochim Acta,1969,33:1521-1552.
    [244]Chen J.,An Z.S.,Head J.Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during last 130 000 years and their implications for monsoon paleoclimatology[J].Quaternary Research,1999,51:215-219.
    [245]Chen J.,Wang Y.J.,Chen Y.,et al.Geochemical characterization of Rb and Sr in the Chinese loess stratigraphy and its implications for paleomonsoon climate[J].Acta Geologica Sinica,2000,4(2):279-288.
    [246]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B辑),1994,24(12):1290-1297.
    [247]陈骏,安芷生,汪永进,等.最近800 ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J].中国科学(D辑),1998,28(6):498-504.
    [248]赵锦慧,王丹,樊宝生,等.延安地区黄土堆积的地球化学特征与最近13万年东亚夏季风气候的波动[J].地球化学,2004,33(5):495-500.
    [249]Nesbitt H.W.,Markovics G.,Price R.C.Chemical processes affecting alkalis and alkaline earths during continental weathering[J].Geochimicaet Cosmochimica Acta,1980,44:1659-1666.
    [250]Nesbitt H.W.,Young G.M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299:715-717.
    [251]余守武,刘宜柏.土壤—水稻系统重金属污染的研究现状和展望[J].江西农业学报,2004,16(1):41-48.
    [252]庞奖励,黄春长,刘安娜,等.黄土高原南部全新世黄土—古土壤序列若干元素分布特征及意义[J].第四纪研究,2007,27(3):357-364.
    [253]Blaser P.,Zimmermanna S.,Luster J.,et al.Critical examination of trace element enrichments and depletions in soils:As,Cr,Cu,Ni,Pb,and Zn in Swiss forest soils[J].The Science of the Total Environment,2000,249:257-280.
    [254]卢瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160.
    [255]郑袁明,陈同斌,陈煌,等.北京市不同土地利用方式下土壤铅的积累[J].地理学报,2005,60(5):791-797.
    [256]王建,刘泽纯,姜文英,等.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996,51(2):155-163.
    [257]田晓泗,朱诚,尹茜,等.长江三峡库区中坝遗址地层洪水沉积粒度特征及其沉积环境[J].沉积学报,2007,25(2):261-266.
    [258]宋友桂,方小敏,李吉均,等.六盘山东麓朝那剖面红粘土年代及其构造意义[J].第四纪研究,2000,20(5):457-463.
    [259]曹兴山.甘肃第四纪古地理环境[J].甘肃地质学报,1996,5(2):40-56.
    [260]孙东怀,鹿化煜,David Rea,等.中国黄土粒度的双峰分布及其古气候意义[J].沉积学报,2000,18(3):327-335.
    [261]张仁健,韩志伟,王明星,等.中国沙尘暴天气的新特征及成因分析[J].第四纪研究,2002,22(4):374-380.
    [262]史培军,严平,袁艺.中国北方风沙活动的驱动力分析[J].第四纪研究,2001,21(1):41-47.
    [263]郑自宽.泾河流域暴雨洪水特性[J].水文,2003,23(5):57-60.
    [264]王兮之,索安宁,洪军,等.黄土高原泾河流域水沙特征分析[J].水土保持学报,2006,20(2):22-25.
    [265]王小艳,高建恩,安梦雄.泾河水沙基本特性分析[J].西北水资源与水工程,2001,12(3):21-24.
    [266]梁琴.泾河污染的原因及其治理与管理[J].陕西农业科学,2006,1:114-116.
    [267]史辅成,易元俊,慕平.黄河历史洪水调查、考证和研究[M].郑州:黄河水利出版社,2002,81-123.
    [268]《陕西历史自然灾害简要纪实》编委会.陕西历史自然灾害简要纪实[M].北京:气象出版社,2002,130-160.
    [269]刘光文.水文频率计算评议[J].水文,1986(3):10-18.
    [270]崔耀武.泾河干流陕西段防洪治理对策初探[J].陕西水利水电技术,2002,1:47-50.
    [271]景可.泾河、北洛河泥沙输移规律[J].人民黄河,1999,21(12):18-19.
    [272]陕西省水利水土保持厅.《中华人民共和国陕西省洪水调查资料》(第一册)黄河流域部分的洪水调查资料,1984.
    [273]詹道江,叶守泽.工程水文学[M].北京:高等教育出版社,2000,275-276.
    [274]Alpa Sridhar.A mid-late Holocene flood record from the alluvial reach of the Mahi River,Western India[J].Catena,2007,70:330-339.
    [275]Noam Greenbaum,Naomi Porat,Ed Rhodes,Yehouda Enzel.Large floods during late Oxygen Isotope Stage 3,southern Negev desert,Israel[J].Quaternary Science Reviews,2006,25:704-719.
    [276]白玉川.水流泥沙水质数学模型理论及应用[M].天津:天津大学出版社,2005,125-127.
    [277]史念海.论泾渭清浊的变迁.《河山集》二集[M].北京:三联书店,1981.
    [278]谢悦波,张素亭,毕东生.古洪水行洪断面面积的估算[J].河海大学学报,1999,27(5):8-11.
    [279]武汉水利电力学院水力学教研室编.水力学[M].北京:高等教育出版社,1986,335-336.
    [280]王国安.关于我国水库的防洪标准问题[J].水利学报,2002,(12):22-25.
    [281]吴文祥,葛全胜.夏朝前夕洪水发生的可能性及大禹治水真相[J].第四纪研究,2005,25(6):741-749.
    [282]吴文祥,刘东生.4000 a B.P.前后降温事件与中华文明的诞生[J].第四纪研究,2001,21(5):443-451.
    [283]吴文祥,刘东生.4000 a B.P.前后东亚季风变迁与中原周围地区新石器文化的衰落[J].第四纪研究,2004,24(3):278-284.
    [284]刘嘉麒,吕厚远,Negendank J.,等.湖光岩玛洱湖全新世气候波动的周期性[J].科学通报,2000,45(11):1190-1195.
    [285]Wang L.J.,Samthein M.Holocene variations in Asian Monsoon moisture:A bidecadal sediment record from the South China Sea.Geophysical Research Letters,1999,26(18):2889-2892.
    [286]王青.大禹治水的地理背景[J].中原文物,1999,1:34-42.
    [287]Yao T.D.,Thompson L.G.Trend and features of climatic changes in the past 5000 years recorded by the Dunde ice core.Annals of Glaciology,1992,16:21-24.
    [288]Zhou S.Z.,Chen F.H.,Pan B.T.,et al.Environment change during the Holocene in western China on a millennial timescale[J].The Holocene,1991,(2):151-156.
    [289]Hong Y.T.,Hong B.,Lin Q.H.,et al.Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene.Earth and Planetary Science Letters,2003,211(3-4):371-380.
    [290]崔建新,周尚哲.4000 a前之中国洪水与文化的探讨[J].兰州大学学报(自然科学版),2003,39(3):94-97.
    [291]Weiss H.Beyond the Younger Dryas-collapse as adaptation to abrupt climate change in ancient West Asia and the eastern Mediterranean.In:Bawden G.,Reycraft Reds.Confronting Natural Disaster:Engaging the Past to Understand the Future.Albuquerque:University of New Mexico Press,2000,75-98.
    [292]Bar-matthews M.,Ayalon A.,Kaufman A.,et al.The eastemMediter-ranean paleoclimate as a reflection of regional events:Soreq Cave,Israel.Earth and Planetary Science Letters,1999,166(1-2):85-95.
    [293]Cullen H.M.,deMenocal P.B.,Hemming S.,et al.Climate change and the collapse of the Akkadian Empire:Evidence from the deep sea.Geology,2000,28(4):379-382.
    [294]Thompson L.G.,Thompson E.M.,Davis M.E.,et al.Kilimanjaro ice core records:Evidence of Holocene climate change in Tropical Africa.Science,2002,298:589-593.
    [295]Thompson L.G.,Thompson E.M.,Henders on K.A.Ice-core palaeo-climate records in tropical South America since the Last Glacial Maximum.Journal of Quaternary Science,2000,15(4):377-394.
    [296]郑斯中,冯丽文.我国冷的时期气候超常不稳定的历史证据[J].中国科学(B 辑),1985,11:1038-1044.
    [297]Zhang D.Climate changes in recent 1 000 years in China.In:Liu Tung shenged.Quaternary Geology and Environment in China.Beijing:Science Press,1991.208-213.
    [298]侯甬坚,祝一志.历史记录提取的近5-2.7 ka黄河中下游平原重要气候事件及其环境意义[J].海洋地质与第四纪地质,2000,20(4):23-29.
    [299]施雅风,孔昭宸,王苏民,等.中国全新世大暖期气候与环境的基本特征[M].北京:海洋出版社,1992,1-18.
    [300]姚檀栋,Thompson L.G敦德冰芯记录与过去5 ka温度变化[J].中国科学(B 辑),1992,10:1089-1093.
    [301]方修琦,张兰生.我国北方农牧交错带3500 ka的降水突变事件研究[J].北京师大学报(自然科学版),1998,(增刊):18-23.
    [302]洪叶汤,江洪波,陶发祥,等.近5ka温度的金川泥炭记录[J].中国科学(D 辑),1997,27(6):525-530.
    [303]Bond G.,Showers W.,Cheseby M.,et al.A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates.Science,1997,278(14):1257-1266.
    [304]deMenocal P.B.,Prtiz J.,Guilderson T.,et al.Coherent high and low latitude climate variability during the Holocene warm period.Science,2000,288(23):2198-2202.
    [305]Weiss H.,Courty M.A.,Wetterstrom W.,et al.The genesis and collapse of third millennium North Mesopotamian civilization.Science,1993,261(20):995-1004.
    [306]Cullen H.M.,deMenocal E B.,Hemming S.,et al.Climate change and the collapse of the Akkadian empire:Evidence from the deep sea.Geology,2000,28(4):379-382.
    [307]郭正堂,Petit-Made N.,刘东生.全新世期间亚洲-非洲干旱区环境的短尺度变化[J].古地理学报,1999,1(1):68-74.
    [308]姚檀栋,施雅风,Thompson L.G,et al.祁连山敦德冰芯记录的全新世气候变化.见:施雅风,孔昭宸编.中国全新世大暖期气候与环境[M].北京:海洋出版社,1992,206-210.
    [309]陈吉阳.中国西部山区全新世冰碛层的划分及地层年表[J].冰川冻土,1987,9(4):342-351.
    [310]刘金陵.长白山孤山屯沼泽地13 000年以来的植被和气候变化[J].古生物学报,1989,28(4):495-511.
    [311]方修琦,孙宁.降温事件:4.3 kaBP岱海老虎山文化中断的可能原因[J].人文地理,1998,13(1):71-76.
    [312]唐领余.江苏建湖庆丰剖面1万年来的植被与气候[J].中国科学(B辑),1993,23(6):637-643.
    [313]郭其蕴.气候变化与东亚季风.见:施雅风主编.中国气候海面变化及其趋势和影响(1)—中国历史气候变化[M].济南:山东科学技术出版社,1996.468-483.
    [314]刘晓东,安芷生,李小强,等.最近18ka中国夏季风气候变迁的数值模拟研究.见:刘东生,安芷生,吴锡浩主编.黄土·第四纪地质·全球变化(第四集)[M].北京:科学出版社,1996.142-150.
    [315]Perry C.A.,Hsu K.J.Geophysical,archaeological,and historical evidence support a solar output model for climate change.Proceedings of National Academy of Science of USA,2000,97(23):12433-12438.
    [316]许靖华.太阳、气候、饥荒与民族大迁移[J].中国科学(D辑),1998,28(4):366-384.
    [317]张兰生,方修琦,任国玉.我国北方农牧交错区的环境演变[J].地学前缘,1997,4(1-2):127-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700