用户名: 密码: 验证码:
GIS支持下豫中典型烟田土壤养分空间变异及精准管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤作为一个时空连续的变异体,具有高度的空间异质性。我国传统农业生产通常以一家一户的分散田块作为耕作单元,并且单位面积农田上的肥料施用基本没有考虑土壤属性特征,按照经验进行投入。这种方式使得施肥缺乏针对性、肥料利用率低、养分供给不平衡,而且易对水体、大气环境造成污染,也影响到优质烟叶的生产。精确的掌握田间土壤特性的空间分布状况,确定合理的土壤养分管理单元,并以此调整相应的肥料投入量,是实现烟田土壤精准管理的基础。
     在平顶山烟区开展烟田土壤养分精准管理研究可为探索适合烟叶生产管理信息化模式提供参考,也为区域烟田进行土壤养分分区管理、推荐施肥提供必要的科学依据。本研究采用GPS定位,对平顶山市郏县岔河村87 hm2的烟田进行了100×100m的网格取样。综合运用GIS和地统计相结合的方法,分析了土壤养分的空间变异规律,并制作了土壤养分的空间分布格局图。运用主成分分析法进行了主成分的提取,以此为数据源进一步利用模糊聚类方法进行土壤管理分区的划分,最后利用大田试验所建立的推荐施肥模型对各个分区推荐施肥,为实现烟区土壤的差异化管理奠定了基础。主要研究结果如下:
     (1)试验区土壤有机质、全氮、碱解氮的平均含量分别为11.7 g/kg,0.73g/kg和70.6 mg/kg,属偏低范围;土壤速效磷和速效钾的平均含量分别为16.1 mg/kg和105.9mg/kg,基本上属于适宜范围。土壤阳离子交换量的平均值为16.7 cmol/kg,为中等保肥供肥能力的土壤;土壤微量元素中,铁属于缺乏范围,锰、铜、锌三个元素含量适中,但变异性较大。土壤各指标存在不同程度的变异,变异范围在3.4~48.4%。土壤pH、有机质、粉粒、砂粒等变异系数较小,变异系数在3.4%~14.6%之间,表现出相对稳定性;土壤速效磷和有效态微量元素的变异系数较大,在22.0%~48.4%之间,表现出较大的空间异质性,表明有必要进行差异化管理。
     (2)研究区域大部分土壤养分间均存在显著或极显著的相关关系。除速效钾外,所有的养分属性均与土壤pH存在负相关关系,表明在一定程度上降低土壤pH能够提高各养分的含量及有效性,如土壤速效磷和pH之间存在极显著的负相关关系,表明降低pH能够明显提高土壤速效磷的水平。其余养分间均存在正相关关系。土壤有机质和其它养分关系密切,和全氮、速效钾、CEC、有效铁、锰、铜之间都存在极显著正相关关系,与速效磷、有效锌之间也存在显著正相关关系,表明提高土壤有机质含量对提高其它养分的含量有促进作用。土壤养分含量和不同粒级土粒含量密切相关。土壤OM和全氮含量一般随粘粒量增加而呈增加的趋势。土壤中较高的粘粒含量对土壤溶液中的K+有相对强的胶体吸附作用,在一定程度上减少了K+的淋溶,因此,土壤速效钾含量一般随粘粒含量的增加而增加。粘粒也是土壤阳离子交换量(CEC)吸收交换点的主要来源,因而粘粒与CEC有极显著的相关性。这一点也证明了在本研究区域,土壤质地主导着土壤养分含量的空间变异。
     (3)研究区域土壤属性中除有效铁含量外,其余均符合正态分布;对有效铁含量数据进行自然对数转换后呈正态分布,也满足平稳假设。地统计学分析结果表明,研究区域碱解氮的理论模型为直线模型,表现为纯块金效应,模型拟合度低。土壤阳离子交换量的最佳模型为高斯模型,其余各指标均以球状模型为最佳模型;各模型决定系数较大,表明模型的拟合度高。不同观测指标的最大相关距离差异较大,介于185 m– 1066 m之间,其中CEC相关距离最大,达到1066 m;土壤pH、OM速效磷、速效钾的空间自相关距离次之,均在300m以上;土壤全氮和有效态铁、锰、铜、锌等养分的空间自相关距离较小,在300m以下。
     (4)研究区域土壤pH、全氮、有效铁、有效铜、有效锌等指标的C0/(C+C0)比值在16%~24%之间,表现出强烈的空间相关性,表明结构因素主导其空间变异;土壤有机质、速效磷、速效钾、有效锰、阳离子交换量等指标的C0/(C+C0)比值在26%~50%之间,表现出中等强度的空间相关性,表明随机因素和结构因素在决定空间变异性方面同样重要。在本研究尺度下,土壤碱解氮不存在空间相关结构,说明其空间变异主要受随机因素的控制。对于碱解氮的研究还需要进一步加大采样密度。
     (5)利用地统计学方法对研究区域机械组成进行了半方差分析。结果表明,在小尺度上不同粒级土粒含量的空间变异性均存在着半方差结构,具有较强的渐变性分布规律。粉粒的半方差函数理论模型用指数模型进行拟合,砂粒和粘粒用球状模型拟合,三者的决定系数均大于0.97,表明模型的拟合度较高。不同粒级土粒含量的最大相关距离均较大,砂粒(0.02~2mm)、粉粒(0.002~0.02mm)和粘粒(<0.002mm)含量的最大相关距离分别为657,435和609m。
     (6)土壤pH、有机质、全氮、速效磷、速效钾和阳离子交换量之间存在一定的相关性,各指标的信息存在一定程度重叠,通过主成分分析,提取两个特征值大于1的主成分。第一主成分(PC1)能够解释50%的总方差,主要表征有机质、全氮、速效钾和阳离子交换量;第二主成分(PC2)能够解释21%的总方差,主要表征土壤pH和速效磷。因此,PC1与有机质、全氮、速效钾和阳离子交换量的分布图有较高的相似性;同样,PC2与土壤速效磷的分布图非常相似,而与pH的分布相反。
     (7)在充分了解研究区域土壤养分空间变异特征,并利用主成分分析法对原始数据进行压缩后,应用模糊-c均值聚类算法对研究区域烟田进行了精确的田间管理分区划分研究。利用两个聚类效果评价指标模糊效果指数FPI和归一化分类墒NCE,确定了最适宜的分区数。结果表明,研究区域最佳分区数为3个。分区间土壤养分差异显著性检验表明,土壤pH、有机质、速效磷、速效钾和阳离子交换量在分区间均存在显著性差异。分区1和分区2的碱解氮达到显著差异,而全氮差异不显著。总的来讲,经过分区后,分区内养分含量趋于同质性,而分区间差异显著。分区1的土壤有机质、全氮、速效钾含量最高,从CEC来看,保肥能力也最强;分区3的pH最高,土壤有机质、全氮、速效磷、速效钾含量均处于最低水平;CEC也最小,说明保肥能力相对较低。分区2速效磷含量最高,其余指标基本处于中间水平。
     (8)本文以曲劳-斯坦福方程(Truog-Stanford)为基础进行烤烟推荐施肥。通过两年的大田试验初步确定了建立肥料推荐方程所需参数,包括烤烟单位产量需肥量、土壤养分校正系数、肥料利用率等,并建立了土壤碱解氮、速效磷和速效钾的土壤测定值和校正系数间的函数关系。结果表明,土壤养分测定值与校正系数之间以幂函数曲线相关最佳,经检验均达到极显著水平。在该种曲线拟合条件下,校正系数随土壤测定含量的增加而下降,符合实际情况。在初步建立的烤烟推荐施肥方程的基础上,确定了各分区推荐施肥量,为实现烟田土壤分区施肥奠定了基础。
     本研究主要创新点:
     (1)通过两年的田间试验,初步构建了研究区域烤烟推荐施肥模型,为烤烟精准施肥提供了理论基础;
     (2)利用GPS、GIS和地统计学地手段,分析了小尺度烟田土壤养分的空间变异规律。在此基础上建立了基于主成分分析和模糊聚类相结合的划分烟田土壤管理分区的方法,为实现烟田土壤的差异化管理奠定了基础。
Soils are highly variable spatially due to the combined effects of physical, chemical, and biological processes that operate with different intensities and at different scales. Consequently, uniform management of fields often results in over-application of inputs in areas with high nutrient levels and under-application in areas with low nutrient levels. Therefore, understanding of the spatial variability of soil properties is essential in determining local fertilizer needs of tobacco. Based on classical statistics, spatial variability of soil nutrients in a tobacco-planted field was studied and spatial distribution maps of soil nutrients was generated by the combined usage of GIS and geostatistics.
     The most popular approach to manage spatial variability within fields is the use of management zones (MZs), which are field subdivisions that have relatively homogeneous attributes in landscape and soil condition, and can be used to direct variable rate fertilizer application. To achieve these objectives, soil samples (0~20cm) were taken 81 points on an approximately 100-m grid in March 2007 using global positioning system to define sample locations. Soil chemical properties and texture were analyzed and their spatial variability was assessed by geostatistical techniques.
     Considering that most of soil properties are often related, principal component analysis (PCA) was used to summarize soil propertied into a few meaningful components (PC), which were further used to delineate management zones by fuzzy cluster algorithms. In addition, six field experiments were conducted to establish models for nitrogen, phosphorus and potassium fertilizer recommendation in Jia County, Pingdingshan, during 2007and 2008. This provides a basis of information for site-specific fertilizer management in tobacco-planted field. The main conclusions were as follows:
     (1) Coefficients of variation ranged from approximately 3.4% for pH to almost 48% for available Zn. Soil OM, TN, AN, AK, CEC and texture had medium CV (11.5%~23.4%). Soil AP and available microelement had higher CV, indicating the heterogeneity of soil properties. Thus, differentiated management may be necessary to achieve maximum economic and environmental benefits. Distributions of all the variables, except Fe, were only slightly skewed (skewness < 1), and their medians were close to their means. The Kolmogorov-Smirnov test revealed that all variables were normally distributed (P > 0.05) and did not require transformation. By log-transformation, soil available Fe showed normal distribution, thereby providing a basis for further structural analysis.
     (2) The results of semivariogram analyses are shown that coefficients of determination (R2) for all variables, except soil AN and available ZN, were greater than 0.87, indicating good fits. Soil pH, OM, TN, AP, AK,sand, clay and microelements were modeled best with spherical models, whereas CEC and silt with Gaussian and exponential models. Soil AN showed only pure-nugget effect fitted by linear model at sampling interval of 100-m, i.e., nearly horizontal linear semivariogram, indicating spatial independence. This suggested that a higher sampling density might be recommended for AN in this region. Ranges of spatial dependence varied from 274m (TN) to 1066m (CEC).
     (3) The ratio of nugget variance to sill variance can be used to classify spatial dependence of soil properties. A ratio<25% indicated strong spatial dependence, between 25% and75% indicated moderate spatial dependence, and >75% indicated weak spatial dependence. Soil properties with strong and moderate spatial dependence will be more readily managed and an accurate site-specific fertilization scheme for precision farming more easily developed. In this study, the geostatistical analysis suggested that most soil properties showed moderate to strong spatial dependence. Soil pH, TN, Fe, Cu, Zn, sand and clay were strongly spatially dependent with nugget/sill ratios between 16% and 24%, respectively. Soil OM, AP, AK and CEC were moderately spatially dependent with nugget/sill ratios ranging from 30% to 50%. Soil AN showed no spatial dependence. Soil AP and AK had significant correlation with intrinsic properties, for example, pH, OM, and clay, indicating the low extrinsic component of variability and could be used as the basis for differentiated fertilizer application in this region.
     (4) PCA and fuzzy cluster algorithm were then performed to delineate MZs. The first two PCs with eigenvalues greater than 1 were considered for clustering analysis, which was performed in MZA procedure using fuzzy c-means cluster algorithm. Performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimum cluster number. Results showed that the optimum number of MZs for this study area was three and analysis of variance indicated the heterogeneity of soil fertility among different MZs, which also showed the combined usage of PCA and fuzzy cluster algorithm is an effective method to characterize spatial variability of soil properties within MZs. The defined MZs provide a basis of information for site-specific fertilizer management in the tobacco-planted field.
     (5) By determining the parameters correlative with Truog-Stanford equation building, the models for nitrogen, phosphorus and potassium fertilizers recommendation were established based on two years field experiments. Using the three equations, the fertilizer application for three management zones were recommended respectively.
     The innovation points for this study are as follows:
     (1) Using GIS and geostatistical techniques, spatial variability was assessed and contour maps generated for soil nutrients in a tobacco field. Establishing a procedure to delineate management zones with the combined usage of PCA and fuzzy cluster algorithm, this provides a basis for defining management zones for tobacco field.
     (2) Determining correlative model parameters and initially establishing fertilizers recommendation equations of nitrogen, phosphorus and potassium for flue-cured tobacco in this region.
引文
1. Matheron G. Principles of Geostatistics [J]. Econ Geol, 1963, 58:1246-1266.
    2.侯景儒,郭光裕.矿床统计预测及地质统计学的应用与展望[J]. 1993.北京:冶金工业出版社.
    3. Hillel D. Research in soil physics: a review[J].Soil Sci, 1991, (5):30-34.
    4.肖斌,赵鹏大,侯景儒.现代地质统计学的新进展[J].世界地质, 1999, 18(03):81-88.
    5. Compbell J B. Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units [J]. Soil Sci. Am. J. 1978, 42:460 464.
    6. Robertson G P. Geostatistics in ecology: Interpolating with known variance [J]. Ecology. 1987, 68(3): 744-748.
    7. Rossi R E, Mulla D J, kaure A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence [J]. Ecological Monographs. 1992, 62(2):277-314.
    8. Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties. IV. Sampling strategy [J]. Journal of Soil Science. 1981, 32:643-659.
    9. Mebratney A B. Soil Spatial Variability [J]. Wageningen, Pudoc, 1985:3-8.
    10. Burgess T M. and R Webster. Optimal interpolation and isarithmic mapping of soil properties. I. The semivariogram and punctual kriging [J]. Soil Sci, 1980, 31:315-331; 333-341.
    11. Webster R. and Burgess T M. Optimal interpolation and isarithmic mapping of soil properties. III. Changing drift and universal Kriging [J].Soil Sci, 1980, 31:505-524.
    12. Burrough P A. Soil variability: a late 20th century view [J].Soils and Fertilizers. 1993, 56(5):529-562.
    13. Goovaerts P. Geostatistics in soil science: state-of-the-art and perspectives [J]. Geoderma, 1999, 89: 1-45.
    14.秦耀东.土壤空间变异研究中的半方差问题[J].农业工程学报, 1998, 12:42-47.
    15.李海鹰,姜小三,潘剑君等.土壤阳离子交换量分布规律的研究—以江苏省溧水县为例[J].土壤, 2007, 39 (3): 443-447.
    16.齐峰,王学军.环境空间分析中常用采样方法及其对空间结构表达的影响[J].环境科学学报, 2000, 20(2): 207-212.
    17.李子忠,龚元石.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报, 2000, 5(5): 59-66.
    18.王珂,沈掌泉, John S. Bailey.精准农业田间土壤空间变异与采样方式研究[J].农业工程学报, 2001, 17(2): 334 36.
    19.朱益玲.紫色土土壤养分空间变异性研究[J].西南农业大学学报, 2002.24(3):207-210
    20.秦耀东.土壤空间变异研究中的定量分析[J].地球科学进展, 1992, 7(1):44-49.
    21.王政权.地统计学及在生态学中的应用[M].北京:科学出版社, 1999.
    22.周慧珍,龚子同.土壤空间变异性研究[J].土壤学报, 1996, 33(3):232-240.
    23.杨玉玲,文启凯,田长彦.土壤空间变异研究现状及展望[J].干旱地区农业研究, 2001,18(2):50-55.
    24.沈思源.土壤空间变异研究中地统计学的应用及其展望[J].土壤学进展, 1989, 17(3): 11-25.
    25.李哈滨,王政权,王庆成. Theory and methodology of spatial heterogeneity quantification [J].应用生态学报, 1992, 9(6):651-657
    26. Webster R. Quantitative spatial analysis of soil in field [J]. Advance in Soil Science. 1985, 3:1- 70
    27. Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physicochemical soil properties [J]. Biol Fertil Soils. 1998, 27:315-334.
    28. Trangmar B B, Yost R S and Uehara G. Application of geostatistics to spatial studies of soil properties [J]. Advance in Agronomy. Academic Press. 1985, 38: 45-94.
    29. Rossi R E, Mulla D J, Journel A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence [J]. Ecological Monographs. 1992, 62:277-314.
    30.阮本清,许凤冉,蒋任飞.基于球状模型参数的地下水水位空间变异特性及其演化规律分析[J].水利学报, 2008, 39(5):573-579
    31. Mallants D, Mohanty B P, Jacques D, et al. Spatial variability of hydraulic properties in a multi-layered soil profile [J]. Soil Science. 1996, 161(3): 167-181.
    32.姜丽娜,符建荣,范浩定.水网平原稻田土壤养分空间变异特性研究[J].中国水稻科学, 2005, 19(2): 153-159
    33. Moustafa M M and Yomota A. Use of a covariance variogram to investigate influence of subsurface drainage on spatial variability of soil-water properties [J]. Agricultural Water Management, 1998, 37(1):1-19.
    34.王学锋,章衡.土壤有机质的空间变异性[J].土壤, 1995. 27(2): 85-89
    35.梁中龙,袁中友,林兴通等.城郊耕层土壤养分的空间变异特征[J].土壤通报, 2006, 37(3):417-421.
    36. Verhoeff R L, Powers W L, Shea P J, et al. Horizontal soil sampling to assess the vertical movement of agrichemicals [J]. Journal Soil and Water Conservation, 1997, 52(2):126-131.
    37.赵良菊,肖洪浪,郭天文等.甘肃省灌漠土土壤养分空间变异特征[J].干旱地区农业研究, 2005, 23(1):70-74.
    38.赵军,张久明,孟凯等.地统计学及GIS在黑土区域土壤养分空间异质性分析中的应用—以海伦市为例[J].水土保持通报, 2004, 24(6): 53-57.
    39.曹慧,杨浩,孙波等.太湖流域丘陵地区土壤养分的空间变异[J].土壤, 2002, (4): 201-205.
    40.赵军,刘焕军,隋跃宇等.农田黑土有机质和速效氮磷不同尺度空间异质性分析[J].水土保持学报, 2006, 20(1):41-44.
    41.郭熙,郭晓敏,谭雪明等.农田养分空间变异研究—以江西省泰和县苏溪镇为例[J].江西农业大学学报, 2004, 26(1): 73 - 77.
    42.陈防,刘冬碧,熊桂云等.中亚热带两种水稻土土壤养分空间变异的对比研究[J].土壤学报, 2006, 43(4):688-692.
    43. Wang Xin-Zhong, Liu Guo-Shun, Hu Hong-Chao, et al. Determination of management zones for atobacco field based on soil fertility [J]. Computers and Electronics in Agriculture.2009, 65(2):168-175.
    44.李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展, 2000, 15(3):260-265.
    45.王秀,苗孝可,孟志军等.插值方法对GIS土壤养分插值结果的影响[J].土壤通报, 2005, 36(6):826-830.
    46.肖玉,谢高地,安凯.土壤速效磷含量空间插值方法比较研究[J].中国生态农业学报, 2003, 11(1):56-58.
    47. Vieira S R, Hatfield J L, Nielsen D R, et al. Geostatistical theory and application to variability of some agronomical properties [J]. Hilgardia. 1983, 51:1-75.
    48.苏伟.聂宜民.胡晓洁等.农田土壤微量元素的空间变异及Kriging估值[J].华中农业大学学报, 2004, 23(2):222-226.
    49.石小华,杨联安,张蕾.土壤速效钾养分含量空间插值方法比较研究[J].水土保持学报, 2006, 20(2):68-72.
    50.陈光,贺立源,詹向雯.耕地养分空间插值技术与合理采样密度的比较研究[J].土壤通报, 2008, 39(5): 1007-1011.
    51.刘小飞,张寄阳,刘祖贵等.喷灌大田土壤水分不同空间插值方法对比分析[J].灌溉排水学报, 2008, 27(4):116-118.
    52.齐峰,王学军.环境空间分析中常用采样方法及其对空间结构表达的影响[J].环境科学学报, 2000, 20(2):207-212.
    53. Sharmasarkar, Cassel F, Sharmasarkar, S. Micro-spatial variability of soil Following Nitrogen Fertilization and Drip Irrigation [J]. Water, Air and soil Pollution. 1999, 116 (3/4): 605-619.
    54. Smith J L, Halvorson J J, Papendick R I. Using multiplevariable indicator kriging for evaluating soil quality [J]. Soil Sci. Soc.Am. J. 1993, 57: 743-749.
    55.张玉铭,毛任钊,胡春胜等.华北太行山前平原农田土壤养分的空间变异性研究[J].应用生态学报, 2004, 15(11): 249-205.
    56. Issaks E. H. and R. M. Srivastava. 1989. An introduction to applied geostatistics [M]. Oxford University Press. New York. USA.
    57.徐吉炎, Webster R.土壤调查数据地域统计的最佳估计研究-彰武县表层土壤全氮量的半方差图和块状Kriging估值[J].土壤学报, 1983, 20(4):419-430
    58.胡克林,李保国,林启美等.农田土壤养分的空间变异性特征[J].农业工程学报, 1999, 15(3):33-38
    59.徐尚平,陶澎,曹军.内蒙土壤pH、粘粒和有机质含量的空间结构特征[J].土壤通报, 2001, 32(4);145-149;
    60. Halvorson J J, Smith J L, Bolton H, et al. Evaluating shrub-associated spatial patterns of soil properties in a shrub-steppe ecosystem using multiple variable geostatistics [J].Soil Sci. Soc. Am. J. 1995, 59:1476- 1487.
    61.徐英,陈亚新,王俊生等.农田土壤水分和盐分空间分布的指示克立格分析评价[J].水科学进展,2006, 17(4):477-482.
    62.刘刚,邝继双,刘文菊.地理信息系统在生成田间肥力分布图上的应用[J].河北农业大学学报. 1999, 22(3):79-82.
    63.邵惠芳,尚松浩.非平稳区域化变量克立格插值方法的比较[J].水利水电科技进展, 2006, 26(4):21-23.
    64.郭旭东,傅伯杰,陈利顶等.河北省遵化平原土壤养分时空变异特征—变异函数和Kriging插值分析[J].地理学报, 2000, 55(5): 555-564
    65.胡克林,李保国,陈德立等.农田土壤水分和盐分的空间变异性及其协同克立格估值[J].水科学进展, 2001, 12(4):460-466.
    66.姚荣江,杨劲松.电磁感应仪用于土壤盐分空间分布的协同克立格估值研究[J].中国生态农业学报, 2008, 16( 1): 41- 46
    67. Milne G. Normal erosion as a factor in normal soil development [J]. Nature. 1936, 138: 548
    68.雷志栋,杨诗秀,谢森传.土壤水动力学[M].清华大学出版社, 1988.pp321-340
    69.华孟,王坚.土壤物理学[M].北京农业大学出版社.1992:214-243.
    70.毕如田,李华.不同地形部位耕地微量元素空间变异性研究[J].土壤, 2005, 37(3):290-294.
    71.刘杏梅,张蔚文.中尺度上水稻田质量与精确农业[J].浙江大学学报(农业与生命科学版), 2005, 31(6):745-749.
    72.张建. GPS定位对贵州喀斯特山区县级尺度土壤养分变异与空间格局研究—以务川县为例[J].西南农业学报, 2006, 19(3):414-417.
    73.钟晓兰,周生路,李江涛等.长江三角洲地区土壤重金属污染的空间变异特征—以江苏省太仓市为例[J].土壤学报, 2007, 44 (1):33-40.
    74.程先富,史学正,于东升等.江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J].应用与环境生物学报, 2004, 10(1):64-67
    75. Fisher R A.Statistical Method for Research Workers [M]. Oliver and Boyd, Edinburg, London. 1925.
    76. Fisher R A. Statistical Method for Scientific Inference [M]. Oliver and Boyd, Edinburg, London. 1956.
    77.梁春祥和姚贤良.华中丘陵红壤物理性质空间变异性的研究[J].土壤学报, 1993, 30(1):6978.
    78.雷志栋,杨诗秀,许志荣等.土壤特性空间变异性研究[J].水利学报, 1985, (9):10-21.
    79. Compbell J B. Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units [J]. Soil Sci. Am. J. 1978, 42:460-464.
    80. Vauclin M, Vieria SR, Vachuad G et al. The use of co-kriging with limited field soil observation [J]. Soil Sci Soc Am J, 1983, 47: 175-184.
    81. Knighton R E and James D W, Soil test phosphorus as a regionalized variable in leveled land [J]. Soil Sci. Soc. Am. J. 1985, 49: 675-679.
    82.谢永华,黄冠华.土壤水张力时空变异结构的初步研究[J].水科学进展, 1999, 10(2):113-116;
    83. Chauvet P. Processing data with a spatial support: Geostatistics and its methods [M]. Published by ASUW Publishing. University of Washington. 1993.
    84. Newnan S, Reddy K R, Debusk W F, et a1. Spatial distribution of soil nutrient8 in a Northern Everglades marsh: water eonsetaration area [J]. Soi1 Sci Soc Am J, 1997, 61(4): 1275-1283.
    85. Di H J, Trangrnar B B, Kemp R A. Use of Geostatistics in Designing Sampling Strategies for Soil Survey [J]. Soil Sci.Soc.Am.J, 1989, 53, 1163-1167.
    86. Mohanty B P, Kanwar R S and Horton R. A robust-resistant approach to interpret spatial behavior of saturated hydraulic conductivity of a glacial till under soil no-tillage system [J]. Water Resour. Res. 1991, 27: 2979-2992.
    87.陈志雄.封丘地区土壤水分平衡研究I.田间土壤湿度的空间变异[J].土壤学报, 1989,26(4): 309-315.
    88. Mohanty BP and Kanwar RS. Spatial variability of residual nitrate-nitrogen under two tillage systems in central Iowa: A composite three-dimensional resistant and exploratory approach [J]. Water Resour. Res. 1994, 30: 237-251;
    89.王永东,冯娜娜,李廷轩等.不同尺度下低山茶园土壤阳离子交换量空间变异性研究[J].中国农业科学, 2007, 40(9):1980-1988.
    90.连纲,郭旭东,傅伯杰等.黄土高原县域土壤养分空间变异特征及预测-以陕西省横山县为例[J].土壤学报, 2008, 45(4):577-584.
    91. Liu G S, Wang X Z, Zhang Z Y, et al. Spatial variability of soil properties in a tobacco field of central China [J]. Soil Science. 2008, 173(9):659-667.
    92.陈伟强,刘国顺,华一新等.平顶山市土壤速效养分空间变异分析[J].河南农业大学学报, 2007, 41(5):559-564.
    93.张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报, 2003, 19(2):39-44.
    94.冯娜娜,李延轩,张锡洲等.不同尺度下低山茶园土壤有机质含量的空间变异[J].生态学报, 2006, 26(2):349-356.
    95.张伟,陈洪松,王克林等.桂西北喀斯特洼地土壤有机碳和速效磷的空间变异[J].生态学报, 2007, 27(12): 5168-5175.
    96. Berndtsson R, Bahri A, Jinno K. Spatial dependence of geochemical elements in a semiarid agricultural field: II .Geostatistical properties [J]. Soil Sci, 1993, 57: 1323-1329.
    97. Wambeke A V and Dudal R. Macrovariability of soils of the tropics [A]. In: Diversity of soils in the tropics [C]. ASA Spec. Publ. 34. ASA and SSSA, Madison, WI. 1978, 13-28.
    98. Stolt M H, Baker J C, Simpson T W. Soil-landscape relationships in Virginia Soil variability and parent material uniformity[J]. Soil Sci, 1993, 57: 414-421
    99. Wild A. The eotassium status of soils in the savanna zone of Nigeria [J]. Expl. Agric. 1971, 7: 257- 270.
    100. Tening A S and Omueti J I. Potassium status of some selected soils under different land-use systems in the subhumid Zone of Nigeria [J]. Commun. Soil Sci. Plant Anal. 1995, 26(5&6):657- 672.
    101. Sposito G, Lund L J and Chang A C. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases [J]. Soil Sci. Soc. Am. J.1982, 46: 260-264
    102. Riha S J, James B R, Senesac G P, et al. Spatial variability of soil pH and organic matter in the forest plantations [J]. Soil Sci. Soc. Am. J. 1986, 50: 1347-1352.
    103. McBratney A B, Whelan B M. The potential for site-specific management of cotton farming systems [C]. Discussion Paper No.l. Co-operative Research Center for Sustainable Cotton Production, Australia. 1995.
    104. Wollenhaupt N C, Wolkowski R P and Clayton M K, Mapping soil test phosphorus and potassium for variable-rate fertilizer application [J]. J. Prod. Agric. 1994, 7:441-448.
    105. Miller PM, Singer MJ and Nielsen DR. Spatial variability of wheat yield and soil properties on complex hills [J]. Soil Sci. Soc. Am. J. 1988, 52: 1133-1141.
    106. Mulla D J. Mapping and managing spatial paterns in soil fertility and crop yield [A]. In: Robert PC, Rust RH and Larson WE, eds. Soil specific crop management [C]. ASA.CSSA. SSSA. Madison. WI. 1993, l5-26.
    107. Franzen D W, Hofman V L, Halvorson A D et al. Sampling for site-specific farming: Topography and nutrient considerations [J]. Better Crop. 1996, 80(3): 14-18.
    108. Phillips D H, Ammons J T, Lee S Y, et al. Deep weathering of calcareous sedimentary rock and the redistribution of iron and manganese in soil and coprolite [J]. Soil Science. 1998, 163:71-73.
    109. Bhatti A U, Mulla D J and Frasier B E. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images [J]. Remote Sens. Environ. 1991, 37: 181-191.
    110. Warrick A W and Nielsen D R. Spatial variability of soil physical properties in the field [A]. In: Hillel D (Ed.), Applications of soil physics [C], Academic Press, London. 1980, 319-344.
    111. Bouma J and Finke PA. Origin and nature of soil resource variability [A]. In: Robert PC, Rust RH and Larson WE, (Eds), Soil Specific Crop Management [C], Madison, Wisconsin, ASA. CSSA. SSSA. 1993, 3-14.
    112. Cattle S R, Koppi A J and McBratney A B. The effect of cultivation on the properties of a rhodoxeralf from the wheat/sheep belt of New South Wales [J]. Geoderma. 1994, 63:215-225
    113. Borges R and Mallarino AP. Field-scale variability of phosphorus and potassium uptake by no-till corn and soybean [J]. Soil Sci. Soc. Am. J. 1997, 61:846-853
    114. Itaru O, Masanori O, and Takusei H. Spatial and temporal variations in the chemical weathering of Basaltic Pyroclstic materials [J]. Soil Sci. Soc.Am. J., 1995, 59: 887-894.
    115. Oliver M.A. Geostatistics and its application to soil science [J]. Soil Use Manage. 1987, 3(1):8-20.
    116. Greenholtz D E, Jim Yeh T C, Nash M S B, et a1. Geostatistical analysis of soil hydrologic properties in a field plot [J]. J. Contam. Hydrol, 1988, 3: 227-250.
    117. Oliver M.A., Frogbrook Z. A rational strategy for determining the number of cores for bulked sampling of soil [A]. Staford. J.V (Ed.). Precision Agriculture'97 [C]. 1997.
    118. Tsegaye T, Hill R L. Intensive tillage affects on spatial variability of soil physical properties [J].Soil Sci, 1998, 163(2): 143-154.
    119. Husson O, Verburg P H, Phung M T. Spatial variability of acid sulphate soils in the Plain of Reeds[J].Mekong delta, Vietnam. Geoderma. 2000, 97, 1-19.
    120. Triantafilis J.; Huckel A. I.; Odeh I. O. A. Comparison of statistical prediction methods for estimating field-scale clay content using different combinations of ancillary variables [J]. Soil Sci. 2001, 166(6):415-427.
    121. Kravchenko A N, Bollero G A, Omonode R A, et al. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity [J]. Soil Science Society of America journal. 2002, 66(1):235-243.
    122. Iqbal J, Thomasson J A, Jenkins J N, et al. Spatial variability analysis of soil physical properties of alluvial soils [J]. Soil Sci. Soc. Am. J. 2005, 69:1338–1350.
    123. Mzuku M, Khosla R, Reich R, et al. Spatial variability of measured soil properties across site-specific management zones [J]. Soil Sci. Soc. Am. J. 2005, 69:1572-1579.
    124. Duffera M, White J G, Weisz R. Spatial variability of Southeastern U.S. Coastal Plain soil physical properties: Implications for site-specific management [J]. Geoderma, 2007, 137:327-339.
    125.吕军,俞劲炎.水稻土物理性质空间变异性研究[J].土壤学报, 1990, 27(1):8-15.
    126.史海滨,陈亚新.土壤水分空间变异的套合结构模型及区域信息估值[J].水利学报, 1994, 7:70-77.
    127.张玉龙,代国英,刘鸣达等.沈阳地区棕壤含水量空间变异规律的研究[J].沈阳农业大学学报, 1997, 28(3):200-204.
    128.王建红,傅庆林,吴玉卫.土壤空间变异理论在海涂土壤研究中的初步应用[J].浙江农业学报, 1998, 10(5):230-234
    129.龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报, 1998, 35(1):9-l5.
    130.李毅,门旗,罗英.土壤水分空间变异性对灌溉决策的影响研究[J].干早地区农业研究, 2000, 18(2):80-85.
    131.熊亚兰.丘陵区土壤水分特性的空间变异及其水库贮量[D].重庆:西南农业大学, 2004.
    132.潘成忠,上官周平.黄土半干旱区坡地土壤水分、养分及生产力空间变异[J].应用生态学报, 2004, 15(11): 2061-2066.
    133.冯娜娜,李延轩,张锡洲等.不同尺度下低山茶园土壤颗粒组成空间变异性特征[J].水土保持学报, 2006, 20(3):123-128.
    134. Bergstrom D W, Monreal C M, Millette J A, et a1. Spatial dependence of soil enzyme activities along fl slope [J]. Soil Science Society of America Journal, 1998, 62: 1302-1308.
    135. Yost R S, Uehara G, Fox R L. Geostatistical analysis of soil chemical properties of large land areas, I: Semivariograms [J]. Soil Sci Soc Am J, 1982, 46: 1028-1037.
    136. McBtamey A B and Webster R. How many observations are needed for regional estimation of soil properties [J].Soil Sci, 1983, 135:177-183.
    137.郭作金,乔立新,余国泰.津京唐地区土壤类型和水系分异对微量元素含量分布的影响[J].环境科学进展, 1993, 1 (6): 41-46.
    138. Gupta R. K. Modeling Spatial Variability Of Soil Chemical Parameters For Site-Specific FarmingUsing Stochastic Methods [J]. Water, Air, and Soil Pollution.1999, 1 10:17-34.
    139. Robertson G P, Huston M A, Evans F C, et a1. Spatial variability in a successional plant community: patterns of nitrogen availability [J]. Ecology, 1988, 69: 1517-1524.
    140. Webster, Oliver M A. Optimal interpolation and isarithmic mapping of soil properties: VI. Disjunctive kriging and mapping the conditional probability [J]. Soil Sci, 1989, 40: 497-512.
    141.王学军,陈静生.黄河、长江、珠江三角洲土壤中微量元素形态分配及其地理分布趋势[J].北京大学学报, 1993, 29 (6): 729-735.
    142. Chung C K, Shek Chong, Varsa E C. Sampling strategies for fertility on a stoy silt loam [J]. Soil communication of soil science and plant analysis, 1995, 26(5&6):741-763.
    143.张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究-地统计学方法[J].地理学报, 1997, 52 (2): 184-192.
    144.马黎春,盛建东,蒋平安等.卡拉玛依地区土壤速效微量养分的空间变异特征[J].干旱区地理, 2004, 27(2):202-206.
    145.王学军,邓宝山,张泽浦.北京东郊污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报, 1997, 17 (4): 412-416.
    146. Bolland, et.a1. spatial variation of soil test Phosphorus and potassium, oxalate-extractable iron and aluminum, Phosphorus-retention index and organic carbon content in soils of western Australia[J].Communications Soil Science and plant Analysis 1998. 29(3/4): 381-392.
    147.白由路,李保国,胡克林.黄淮海平原土壤盐分及其组成的空间变异特征研究[J].土壤肥料, 1999(3):22-25.
    148.李菊梅,李生秀.几种营养元素在土壤中的空间变异.干旱地区农业研究[J], 1998, 16(2):58-64.
    149. Souza L de, Queiroz J E, et al. Spatial variability of soil salinity in an alluvial soil of the semiarid region of Paruba state. Pevista Brasileira. [J].Engenharia Agricola.e. Ambiental, 2000, 4(1):35-44.
    150. Brain A Needelman. Environmental management of soil phosphorus [J]. Soil Sci.Soc.Am., 2001, 65: 1516-1522.
    151. Gaston L.A.. Spatial Variability of soil properties and weed population in the Mississippi delta [J]. Soil Science Society of America Journal. 2001, 65:470-479.
    152. Yanai J., Sawamoto T, Oe T, et al. Spatial variability of nitrous oxide emissions and their soil-related determining factors in an agricultural field [J]. J. Environ. Qual. 2003, 32:1965-1977.
    153.郭跃冬,何岩.扎龙湿地水体N, P营养物质空间异质性研究[J].环境科学研究, 2005, 18( 2): 51-56.
    154. Bekele A. and Hudnall W. H. Spatial variability of soil chemical properties of a prairie-forest transition in Louisiana [J]. Plant and Soil. 2006, 280:7-21.
    155. Zhang X Y, Sui Y Y, Zhang X D. et al. Spatial Variability of Nutrient Properties in Black Soil of Northeast China [J]. Pedosphere. 2007, 1 (1): 19-29.
    156.赵建华,盖艾鸿,陈芳等.基于GIS和地统计学的区域土壤有机质空间变异性研究[J].甘肃农业大学学报, 2008, 43(4):103-106.
    157.陈海生,魏跃伟,刘国顺等.基于GIS的平顶山烟区土壤肥力适宜性研究[J].河南农业大学学报, 2008, 42(5):545-549.
    158.王子芳,高明,魏朝富等.植烟土壤养分的空间变异特征及适宜性评价-以重庆市彭水县为例[J].西南大学学报(自然科学版), 2008, 30(1):98-103.
    159. Chen. J, Hopmans J W and Fogg G E. Samping design for soil moisture measurements in large field rials [J].Soil Science. 1995, 159(3):155-161.
    160. Pierce F J and Sasler E J. (Eds.) The State of Specific Management for Agriculture [M]. ASA Miscellaneous Publication. American Society of American, Msdison, 1997.
    161. White J G, Welch R M and Norvell W A. Soil Zn map of the USA using geostatistics and geographic information systems[J].Soil Sci. Soc. Am. J .1997, 61:185-194.
    162. Cambardella C A, Yost R S, Wade M K, et al. Field– scale variability of soil p roperties in central Iowa soils[J]. Soil Sci. Soc. Am. J, 1994, 58: 1501 - 1511.
    163. Megraw T. Fertility variability in the Minnesota river valley watershed in 1993, as determined from grid testing result on 52000 acres in commercial fields [J]. Site -Specific Management for Agricultural Systems. ASA - CSSA - SSSA, 1995: 167 - 174.
    164. Cahn M D, Hummel JW and Brouer B H. Spatial analysis of soil fertility for site-specific crop management [J]. Soil Sci. Am. J .1994, 58:1240-1248.
    165. Solie J B, Raun W R and Stone M L. Sub-meter spatial variability of selected soil and bermudagrass production variables[J].Soil Sci. Soc. Am. J. 1999, 63:1724-1733.
    166. Geypens M. Spatial Variability of Agricultural Soil Fertility Parameters in a Gleyic Podzol of Belgium [J]. Precision Agriculture, 1999, 1:319-326.
    167. Wu J, Norvell W A, Hopkins D G, et al. Spatial Variability of Grain Cadmium and Soil Characteristics in a Durum Wheat Field. Soil Science Society of America Journal [J]. 2002, 66:268-275.
    168.王学锋.土壤特性时空变异性研究方法的评述与展望[J].土壤学进展, 1993, 21(4):42-49.
    169.王其兵,李凌浩,刘先华等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报, 1998, 22(5):409-414.
    170.黄绍文,金继运,杨俐苹等.县级区域粮田土壤养分的空间变异性[J].土壤通报, 2002, 33(3):188-193.
    171.张庆利,潘贤章,王洪杰等.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报, 2003, 34(6): 493 - 497.
    172.刘杏梅,徐建民,章明奎等.太湖流域土壤养分空间变异特征分析-以浙江省平湖市为例[J].浙江大学学报(农业与生命科学版), 2003, 29 (1): 76 - 82.
    173.王宏庭,金继运,王斌等.土壤速效养分空间变异研究[J].植物营养与肥料学报, 2004, 10(4): 349-354.
    174.许文强,罗格平,陈曦等.天山北坡绿洲土壤有机碳和养分时空变异特征[J].地理研究, 2006, 25(6): 1013-1021.
    175.杨玉玲,田长彦,盛建东等.灌淤土壤可溶性盐分空间变异性与棉花生长关系研究[J].干旱区地理, 2002, 25(4): 329-335.
    176.赵彦峰,史学正,于东升等.小尺度土壤养分的空间变异及其影响因素探讨-以江苏省无锡市典型城乡交错区为例[J].土壤通报, 2006, 37(2):214-219.
    177.秦鱼生,涂仕华,冯文强等.成都平原水旱轮作种植下土壤养分特性空间变异研究[J].土壤学报, 2008, 45(2):355-359.
    178.彭志良,赵泽英,李中元等.喀斯特山区村级尺度下农田土壤养分的空间变异特性[J].贵州农业科学, 2008, 36(5): 81-84.
    179.史利江,郑丽波,柳云龙.农田土壤养分空间变异特征研究[J].河南农业大学学报, 2008, 42(1):51-56.
    180.陈义强.氮磷钾肥对烤烟内在品质的影响及其施肥模型[D].博士论文.郑州.2008.
    181. Fagrouda M, Van Meirvenne M. Accounting for soil spatial autocorrelation in the design of experimental trials [J]. Soil Sci. Soc.Am. J., 2002, 66: 1134-1142.
    182.姜勇,梁文举,张玉革.田块尺度下土壤磷素的空间变异性[J].应用生态学报, 2005, 16(11): 2086-2091.
    183.许红卫,高克异,王珂等.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报, 2006, 12(1): 37-43.
    184.李子忠,龚元石.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报, 2000, 5(5): 59-66.
    185.李世清,高亚军,李生秀.土壤养分的空间变异性及确定样本容量的研究[J].土壤与环境, 2000, 9(1):56-59.
    186.薛正平,杨星卫,段项锁等.土壤养分空间变异及合理取样数研究[J].农业工程学报, 2002, 18(4):6-9.
    187.王晋民,王俊鹏,胡月明等.栗钙土农田土壤养分空间变异特性及采样方法研究[J].干旱地区农业研究, 2006, 24(5): 59-63.
    188.于东升和史学正. GIS中土壤信息系统的研究进展[J].土壤学进展, 1993, 21 (6):26-31.
    189. Gary L M.. Corn yield response variability and potential profitability of site-specific nitrogen management [J]. Better Crop. 1996, 80(3): 6-9.
    190.郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异特征研究[J].应用生态学报, 2000, l 1(4): 557-563.
    191.王军,傅伯杰,邱杨等.黄土高原小流域土壤养分的空间异质性[J].生态学报, 2002, 22(8): 1173-1177.
    192.许尚平,陶澎,徐福留等.内蒙土壤微量元素含量的空间结构特征[J].地理学报, 2000, 55(3): 337-345.
    193.雷咏雯,危常州,李俊华等.不同尺度下土壤养分空间变异特征的研究[J].土壤, 2004, 36 ( 4): 376-381.
    194.程先富,史学正,于东升等.丘陵山区林地土壤养分状况研究—以江西省兴国县为例[J].水土保持学报, 2003, 17(2): 28-30.
    195. Fixen P E. Research needs for site-specific nutrient management to benefit agriculture [J]. Better Crops with Plant Food, 1998, 82(1): 20-23.
    196. Goedeken M and Johnson G. Expectations of precision phosphate management [J]. Better Crops with Plant Food, 1998, 82(1): 28-31.
    197.张书慧,马成林,于春玲.应用于精确农业变量施肥地理信息系统的开发研究[J].农业工程学报, 2002, (2):153-156.
    198. Brannon G R, Hajek B F. Update and recorrelation of soil surveys using GIS and statistic analysis [J]. Soil science society of America Journal. 2001, 64(2): 679-680.
    199.柳云龙,姜丽娜.基于GIS的农田养分管理与推荐施肥系统设计与开发[J].农业网络信息, 2007, 8: 23-26.
    200.赵其国.我国现代农业发展中的若干问题[J].土壤学报, 1997, 34 (1 ): 1-9.
    201.金继运.“精确农业”及其在我国的应用前景[J].植物营养与肥料学报, 1998, 4(1):1-7.
    202. Dave H. Fine-tuning sugar beet fertility management in the Red River Valley [J]. Better Crop. 1994, 78(4): 26-27
    203. McGraw T. Soil Level Variability in Southern Minnesota [J]. Better Crop. 1994, 78(4):24-25.
    204. Chien YJ, Lee DY, Guo HY, et al. Geostatistics analysis of soil properties of mid-west Taiwan soils [J]. Soil Sci. 1997, 162: 291-298.
    205. Rogowski A S. Quantifying soil variability for GIS application. 1. Estimates of position [J]. International Journal of Geographical Information Systems. 1995, 9: 81-94.
    206. Searcy S W, A US view on the precision farming revolution [A]. In: Brighton Crop Protection Conference: Pests and Diseases [C], Vol. 3: Proceedings, Brighton, UK. Farnham: British Crop Protection Council. 1996, 1l13-1120.
    207. Houghton A M and Knight B E A. Precision farming: farmer and commercial opportunities across Europe [A]. In: Brighton Crop Protection Conference: Pests and Diseases [C], Vol. 3: Proceedings, Brighton, UK. Farnham: British Crop Protection Council. 1996, 1121-1126.
    208. Reetz HF. Site-specific nutrient management systems for the 1990s [J]. Better crops with plant food. 1994, 78(4): 14-19.
    209.石元春.土壤学的数字化和信息化革命[J].土壤学报, 2000, 37 (3): 289-295.
    210.姜勇,张玉革,梁文举等.沈阳市苏家屯区耕层土壤养分空间变异性研究[J].应用生态学报, 2003, 14(10):1673-1676.
    211.叶协锋,李亚娟,刘国顺等. GIS支持下的植烟土壤肥力适宜性评价—以河南省许昌市为例[J].农机化研究, 2007, (2):47-49.
    212.黄绍文,金继运,左余宝等.农田土壤养分平衡状况及其评价的试点研究[J].土壤肥料, 2000, (6):14-19.
    213.陈彦,吕新.基于GIS和地统计学的土壤养分空间变异特征研究会—以新疆农七师125团为例[J].中国农学通报, 2005, 21(7): 389-391.
    214.危常州,侯振安,朱和明,等.基于GIS的棉田精准施肥和土壤养分管理系统的研究[J].中国农业科学, 2002, 35(6):678-685.
    215.刘付程,史学正,王洪杰等.苏南典型地区土壤锌的空间分布特征及其与土壤颗粒组成的关系[J].土壤, 2003, 35 (4): 330-333.
    216.高祥照,胡克林等.土壤养分与作物产量的空间变异特征与精确施肥[J].中国农业科学, 2002, (6): 660-666.
    217.刘建利,李志宏,陈江华等. GIS应用于植烟土壤肥力分区及施肥区划的研究[J].中国烟草学报, 2004, 10(3):19-24.
    218.路鹏,彭佩钦,宋变兰等.洞庭湖平原区土壤全磷含量地统计学和GIS分析[J].中国农业科学, 2005, 38(6): 1204-1212.
    219.方琳娜,赵庚星,李秀娟等,基于GIS的土壤养分时空动态变化分析—以山东省茌平县为例[J].山东农业大学学报(自然科学版), 2006, 37 (1): 57-64.
    220.王新忠,王熙,庄卫东等.精准农业变量施肥GIS系统研究[J].黑龙江八一农垦大学学报, 2006, 18(3): 49-51.
    221.陈伟强,刘国顺,华一新等.基于GIS的河南省典型烟区土壤养分时空变异分析[J].河南农业科学, 2007, 11:70-75.
    222.朱红春,张蕾,刘海英等。基于GIS的猕猴桃土壤养分评价与施肥建议模型研究[J].农业工程学报, 2007, 23(6):194-198.
    223.苑小勇,黄元仿,高如泰等.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报, 2008, 24(2):70-76.
    224.廖桂堂,李廷轩,王永东等.基于组件式GIS的低山茶园施肥信息系统设计及实现[J].茶叶科学, 2008, 28 (6): 391-400.
    225.陈海生,吴玲洪,刘国顺等.基于地统计和GIS的河南省烟草大田生长期降水量和蒸发量空间变异性分析[J].农业系统科学与综合研究. 2008, 24(4): 470-475.
    226. Reyniers M, Maertens K, Vrindts E, et al. Yield variability related to landscape properties of a loamy soil in central Belgium [J]. Soil Till. Res, 2006, 88, 262-273.
    227. Fridgen J J, Kitchen N R, Sudduth K A, et al. Management zone analyst (MZA): software for subfield management zone delineation [J]. Agron J, 2004, 96: 100- 108.
    228. Sudduth K A, Drummond S T, Birrell S J, et al. Analysis of spatial factors influencing crop yield [A]. In: Robert, P.C., Rust, R.H., Larson, W.E. (Eds.), Precision Agriculture [C]. Proc. Int. Conf., 3rd, Minneapolis, MN. 23–26 June 1996. ASA, CSSA, and SSSA, Madison, WI, pp. 129-140.
    229. Brett W. Moving to PA management in the grains industry [A]. Proceedings of the 1st Australian Conference on Geospatial Information in Agriculture [C].NSW Agriculture, 2001: 406- 416.
    230.梁红霞.基于高光谱遥感技术的变量施肥算法及机理研究[D].安徽农业大学硕士论文, 2005: 3-6.
    231. Kravchenko A N, Bullock, D G. Correlation of corn and soybean grain yield with topography and soil properties [J]. Agron J, 2000, 92: 75- 83.
    232. Fleming K L, Westfall D G, Wiens L E, et al. Evaluating farmer developed management zone maps for precision farming [A]. In Robert, P C, et al. (ed.) Proceedings of 4th International Conference onPrecision Agriculture[C]. ASA, CSSA, and SSSA, Madison, W I., U SA. 1999, 335- 343.
    233. Ostergaard H G S. Agronomic consequences of variable N fertilization [A]. In: Stafford J V. ed. Precision Agriculture’97 [C]. Oxford, UK, 1999. 145-153.
    234. Schepers J S, Schlemmer M R, Fergunson R B. Site-specific considerations for managing phosphorus [J]. J Environ Qual, 2000, 29: 125- 130.
    235. Long D S, Carlson G R and De Gloria S D. Quality of field management maps [A]. In Robert P C, et al. (Ed.). Site-specific management for agricultural system s. Proc Int Conf [C]. 2nd, Minneapolis, A SA, CSSA, and SSSA, Madison, W I. 1994. 251- 271
    236. Schepers A R, Shanahan J F, Liebig M K, et al. Appropriateness of management zones for characterizing spatial variability of soil properties an d irrigated corn yields across years [J]. Agronomy Journal, 2004, 96: 195-203.
    237. Franzen D W, Kitchen N R. Developing management zones to target nitrogen applications [Z]. SSMG-5, In Site-Specific management guidelines. Potash & Phosphate Institute. 1999. Available online at http://www. ppi-far.org/ssmg.
    238. Wright D L, Rasmussen V P, Baker D J. Using remote sensing to manage wheat grain protein. NASA SSC Report, 2003, ARC-USU-001-02. Affiliated Research Center Final Reports 2002. [CD-ROM]. Earth Science Applications Directorate, National Aeronautics and Space Administration, John C. Stennis Space Center, Mississippi.
    239. Koch B, Khosla R, Frasier W M, et al. Economic feasibility of variable rate nitrogen application utilizing site-specific management zones [J]. Agronomy Journal, 2004, 96:1572-1580.
    240. Batte M T. Factors influencing the profitability of precision farming systems [J]. Journal of Soil and Water Conservation, 2000, 55:12-18.
    241. Khosla R, Fleming K, Delagado J A, et al. Use of site-specific management zones to improve nitrogen management for precision agriculture [J]. Journal of Soil and Water Conservation, 2002, 57 (6):513-518.
    242. Stafford J, Werner A. Eds. Evaluation of Site-specific Management Zones: Grain Yield and Nitrogen Use Efficiency [M]. Precision Agriculture. Wageningen, the Netherlands: Wageningen Academic Publish, 2003. 297-302.
    243.黄绍文,金继运,杨俐苹等.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报, 2003, 40(1):79-87.
    244.黄绍文,金继运,杨俐苹等.乡(镇)级区域粮田土壤养分空间变异与分区管理技术研究[J].资源科学, 2002, 24(2):76-82.
    245.白由路,金继运,杨俐苹等.基于GIS的土壤养分分区管理模式研究[J].中国农业科学, 2001, 34(1): 46-50.
    246.张书惠,马成林,吴才聪等.地理信息系统在精确农业变量施肥中的应用[J].农业工程学报, 2003, 34 (3):92-95.
    247.李艳,史舟,王人潮.基于GIS的土壤盐分时空变异及分区管理研究-以浙江省上虞市海涂围垦区为例[J].水土保持学报, 2005, 19(3): 121-129.
    248.高义民,同延安,胡正义等.黄土区村级农田土壤养分空间变异特征研究[J].土壤通报, 2006, 37(1): 1-6.
    249.薛绪掌,陈立平,孙治贵等.基于土壤肥力与目标产量的冬小麦变量施氮及其效果[J].农业工程学报, 2004, 20 (3):59-62.
    250.李翔,潘瑜春,赵春江等.基于空间连续性聚类算法的精准农业管理分区研究[J].农业工程学报, 2005, 21 (8): 78-82.
    251.李立平,张佳宝,邢维芹等.手持式植物冠层光谱测定仪在黄淮海平原地区冬小麦氮肥精准管理中应用的初步研究[J].麦类作物学报, 2006, 26(4): 85-92.
    252.李玉影,韩晓日,刘双全等.农田土壤养分变异与大豆分区施肥技术研究[J].中国土壤与肥料, 2007, 4: 27-29.
    253.李翔,潘瑜春,马景宇,等.基于多种土壤养分的精准管理分区方法研究[J].土壤学报, 2007, 44(1): 14-20.
    254.宋晓宇,王纪华,刘良云等.基于Quickbird遥感影像的农田管理分区划分研究[J].中国农业科学, 2007, 40(9): 1996-2006.
    255.李艳,史舟,吴次芳等.基于多源数据的盐碱地精确农作管理分区研究[J].农业工程学报, 2007, 23(8):84-89.
    256.陈彦,吕新.基于FCM的绿洲农田养分管理分区研究[J].中国农业科学, 2008, 4 1(7): 2016-2024.
    257.孙克刚,李丙奇,杨稚娟等.农田土壤养分精准管理与郑麦366目标产量推荐施肥标准[J].河南农业科学, 2008, (3):58-61.
    258.南京农业大学.土壤农化分析[M].北京:农业出版社, 1986.
    259.中国土壤学会.土壤农业化学分析方法[M].北京:中国科技出版社, 1999, 45-46, 146-196.
    260. SPSS Inc. SPSS Base 10.0 for Windows User’s Guide [M]. SPSS Inc., Chicago, IL. 1999.
    261. Webster R, Oliver M A. Statistical methods in Soil and land resources survey [M]. Oxford University Press. 1990.
    262.唐启义,冯明光. DPS数据处理系统-实验设计、统计分析及数据挖掘[M].北京:科学出版社, 2007.82-173.
    263. Robertson, G.P. GS+ Geostatistics for Environmental Science User Manual [M]. Gamma Design Software. Version 3.1. Plainwell, MI. 1998.
    264. Juang K W, Lee D Y, and Ellsworth T R. Using rank-order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site [J]. Journal of Environmental Quality, 2001, 30: 894-903.
    265. Gregory L. B. and Curtis J. R. A spatially explicit Investigation of phosphorus sorption and related soil properties in two riparian wetlands [J]. Journal of Environmental Quality, 2004, 33:785-794.
    266.孙波,赵其国,闾国年.低丘红壤肥力的时空变异[J].土壤学报, 2002, 39(2):190-198
    267. Fridgen J J, Kitchen N R, Sudduth K A, Drummond S T, Wiebold W J, Fraisse C W. Management Zone Analyst (MZA): software for subfield management zone delineation [J]. Agronomy Journal,2004, 96:100-108.
    268.朱小鸽.多重主成分分析及在地质构造信息提取中的应用[J].遥感学报, 2000, 4(4): 299-303.
    269. Jolliffe, I.T. Principal Component Analysis [M]. Springer-Verlag, New York. 1986.
    270. Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. Plenum press, New York. 1981.
    271. Jaynes D B, Kaspar T C, Colvin T S, James D E. Cluster analysis of spatiotemporal corn field patterns in an Iowa field [J]. Agronomy Journal, 2003, 95: 574-586.
    272. Odeh I O A, McBratney A B, Chittleborough D J. Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships [J]. Soil Science Society of America Journal, 1992, 56: 505-516.
    273. Boydell B, McBratney A B. Identifying potential within-field management zones from cotton-yield estimates [J]. Precision Agriculture, 2002, 3: 9-23.
    274. Lark R M, Stafford J V. Classification as a first step in the interpretation of temporal and spatial variation of crop yield [J]. Annals of Applied Biology, 1997, 130: 111-121.
    275.黄绍文.土壤养分空间变异与分区管理技术研究[D].博士论文.中国农业科学院. 2001.
    276. Tsegaye T, Hill R L. Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurements [J]. Soil Sci. 1998, 163(2):155-165.
    277.孙波,赵其国,闾国年等.低丘红壤肥力的时空变异[J].土壤学报, 2002 ( 2 ): 190-198.
    278. López-Granados, F., M. Jurado-Expósito, S. Atenciano, A. García-Ferrer, M. S. Orden, and L. García-Torres. Spatial variability of agricultural soil parameters in southern Spain [J]. Plant Soil. 2002, 246:97-105.
    279. Karaman, M. R., S. Ersahin, and A. Durak. Spatial variability of available phosphorus and site specific P fertilizer recommendations in a wheat field [A]. In: Horst, W. J. et al. (Eds.), Plant nutrition-Food security and sustainability of agro-ecosystems [C]. Kluwer Academic Publishers. Netherlands, 2001. pp. 876-877.
    280.全国土壤普查办公室.中国土壤普查技术[M].北京:农业出版社, 1990.
    281.黄昌勇.土壤学[M].北京:中国农业出版社2000: 164-165.
    282.刘世个,蒲玉琳,张世熔等.西藏土壤阳离子交换量的空间变化和影响因素[J].水土保持学报, 2004, 18 (5):1-5.
    283.安战士,徐明岗.陕西三种土壤的有机质和粘粒对土壤阳离子交换量的贡献[J].土壤, 1988, 20 (6): 310-313
    284.胡国松,郑伟,王震东等.烤烟营养原理[M].北京:科学出版社, 2000: 198-209.
    285.周毓华.微肥施用对烟叶产质量的影响研究[J].中国烟草科学, 2000(4): 29-31.
    286. Bregt A K, Stoorvogel J J, Bounma J and Stein A. Mapping ordinal data in soil survey: a Costa Rican example [J]. Soil Science Society of America Journal. 1992, 56: 525-531.
    287. Zhang R, Rahman S, Vance G F and Munn L C. Geostatistical analyses of trace elements in soils and plants [J]. Soil Science. 1995, 159: 383-390.
    288. Kravchenko A N. Influence of spatial structure on accuracy of interpolation methods [J]. Soil Sci.Soc. Am. J. 2003, 67:1564-1571.
    289. Li Y, Shi Z, Li F. et al. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land [J]. Comput. Electron. Agric. 2007, 56:174–186.
    290. Jung, W K, Kitchen N R, Sudduth K A, et al. Spatial characteristics of claypan soil properties in an agricultural field [J]. Soil Sci. Soc. Am. J. 2006, 70: 1387–1397.
    291. Han, X Z, Song C Y, Wang S Y, et al. Impact of long-term fertilization on phosphorus status in black soil [J]. Pedosphere. 2005, 15:319-326.
    292. Nkedi-Kizza P, Gaston L A and Selim H M. Extrinsic spatial variability of selected macronutrients in a sandy soil [J]. Geoderma. 1994, 63:95-106.
    293. Jackson RB and Caldwell MM, 1993. Geostatistical patterns of soil heterogeneity around individual perennial plants [J]. J. of Ecology, 81:683-692.
    294.黄绍文,金继运,杨俐苹等.粮田土壤养分的空间格局及其与土壤颗粒组成之间的关系[J].中国农业科学, 2002, 35(3): 297-302
    295.赵之重.青海省土壤阳离子交换量与有机质和机械组成关系的研究[J].青海农林科技. 2004, (4):3-6.
    296.姚军.乡(镇)级农田土壤肥力变化与推荐施肥分区[M].北京农业科学. 2000, 18 (5):25-29.
    297.杨艳丽.江苏北部土壤属性空间变异及其影响因素研究[D].硕士论文.福州.2008.
    298. Doerge T A. Management zone concepts. SSMG-2. In: Site specific management guidelines. Potash and Phosphate Institute, 1999. Available at http://ppi-far.org/ssmg.
    299.金耀青,张中原.配方施肥方法及其应用[M].沈阳:辽宁科学技术出版社, 1993, 52-60.
    300. CastrignanòA, Maiorana M, Fornaro F. Using regionalised variables to assess field-scale spatiotemporal variability of soil impedance for different tillage management [J]. Biosystems Engineering, 2003, 85(3):381-392.
    301.徐英,陈亚新,史海滨等.土壤水盐空间变异尺度效应的研究[J].农业工程学报, 2004, 20(2): 1-5.
    302.刘钦普,林振山,周勤.华北黄泛平原潮土土壤养分与土壤粒级的关系研究[J].土壤肥料, 2006, (2): 26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700