用户名: 密码: 验证码:
低磁场下合金元素Zn对Gd_5Si_2Ge_2相变行为和磁热效应影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Gd5Si2Ge2合金具有无毒性、相变温度接近室温和其巨磁热效应,是近年来倍受关注的磁制冷工质材料。但是,它的巨磁热效应必须在高成本的超导高磁场(5 T -12 T)下获得,低磁场(1.0 T-1.7 T)下无法激发合金产生巨磁热效应,导致其应用成本增高。同时Gd5Si2Ge2合金的相变温度与室温相比较低,制冷过程中磁滞后现象严重,这些问题阻碍了该合金未来的商业化应用。因此,在较低磁场下,如何提高Gd5Si2Ge2合金的相变温度和磁热效应,并降低其磁滞后成为目前研究的热点。
     本文系统研究了添加Zn元素同时或单独替代Si和Ge以及热处理对其合金在△H=1.5 T磁场下的相变温度、相变性质、相变过程中的磁滞后、磁热效应和磁制冷能力的影响,阐述了添加适量Zn元素可以提高Gd5Si2Ge2合金磁相变温度和磁热性能的机理和规律,为Gd5Si2Ge2合金在低磁场下获得巨磁热效应提供了有效的方法和依据。研究结果表明:
     1.添加微量Zn元素可以促进合金中Gd5Si2Ge2型单斜相形成,抑制Gd5Si4型正交相产生;降低相变时需要的能量,提高一级相变的驱动力,降低发生一级相变时的临界诱发磁场,使合金在△H=1.5 T磁场下产生巨磁热效应。在Gd5Si2-xGe2Znx和Gd5Si2-zGe2-zZn2z合金系中,当x或者2z由0变化到0.001时,其最大等温磁熵变分别由5.03 J/ kg·K提高到20.70 J/kg·K和25.30 J/kg·K;相变温度分别由276 K提高到284 K和280 K;磁制冷能力分别由55.30 J/kg提高到96.14 J/kg和101.00 J/kg磁热性能高于目前文献中报道的Gd5Si2Ge2及GdSiGeGa铸锭合金在高磁场(5 T)变化下的性能(|ΔSM|=20.5 J/kg·K ,Tc=276 K)[4] ,合金的综合磁热性能优秀。
     2.添加微量Zn元素后,使得通过传导电子才能相互作用的Gd原子之间4 f-4 f电子之间作用力增强,自旋波能量增加,合金中Gd原子的磁矩提高;减小了室温Gd5Si2Ge2单斜相晶胞体积,增强了磁性Gd原子之间的相互作用能,宽化了制冷区,提高了合金一级磁相变温度和制冷能力。在Gd5Si2Ge2-yZny合金系中,当y由0变化到0.011时,合金的相变温度由276 K提高到288 K;磁制冷能力由55.30 J/kg提高到169 J/kg,合金的综合磁热性能优良。
     3.用微量Zn元素对Gd5Si2Ge2化合物进行合金化处理后,降低了合金的磁各向异性能,使合金在一级相变过程中磁畴壁或磁矩运动的阻力减小,一级相变的临界诱发磁场降低,减小了合金在相变过程中磁滞后现象,有利于提高合金的综合磁热性能。
     无论Zn元素单独或同时替代Si和Ge,都会使得合金在1.5 T磁场下的相变温度、最大等温磁熵变、磁滞后和制冷能力得到改善,只是不同的替代方式对各项性能提高的幅度有所不同。
     4.通过研究热处理温度对GdSiGeZn合金磁热效应的影响,发现添加微量Zn元素后可以有效降低合金的最佳热处理温度,阻止Gd5Si2Ge2单斜相在773 K温度下的共析反应,增加β相在此温度下的稳定性,降低Gd5Si4正交相含量,改善β相的磁内禀性能和对温度变化和磁场变化的敏感性,增加一级相变的驱动力。在Gd5Si2Ge2-yZny合金中,当y=0.011时,773 K温度下的热处理有助于提高合金的相变温度、等温磁熵变和磁制冷能力,降低一级相变过程中的磁滞后。当热处理温度高于1413K时,由于快速冷却导致合金组织缺陷增加和相变驱动力减小,合金的相变温度、等温磁熵变和磁制冷能力趋于减小,磁滞后现象严重。
     本研究工作开发了拥有自主知识产权的GdSiGeZn合金,使Gd5Si2Ge2合金在1.5 T低磁场下,磁热效应提高了4-5倍,相变温度提高了4~6 K,改变了磁制冷技术需要依赖高磁场的应用理念,在价格低廉NdFeB磁体能够达到的磁场强度下,使Gd5Si2Ge2合金的应用成为可能。
Non-toxic Gd5Si2Ge2 alloys with magnetic phase temperature close to room temperature and giant magnetocaloric effect(GMCE) are the promising candidates for refrigerant materials in recent years. However, their GMCE can only be obtained in high-cost superconducting magnetic fields(5-10 T), which brings out high costs in practical application. On the other hand, the low magnetic phase transformation temperature and magnetic hysteresis also impede the large-scale application of these alloys. Therefore, the improvement of magnetic phase transformation temperature and magnetocaloric effect and the reduction of magnetic hysteresis become currently hot topics of Gd5Si2Ge2 alloy to be investigated
     In this thesis, a systematic study was conducted on the magnetic phase transformation temperature, phase transformation property, magnetic hysteresis in phase transformation process, magnetocaloric effect and magnetic refrigeration capacity under a low magnetic field ranging from 0-1.5 T for the cast and heat-treated alloys with Zn substitution for Si and Ge simultaneously or individually. The mechanisms and roles of the enhancement of phase transformation temperature and magnetocaloric effect after adding Zn into Gd5Si2Ge2 alloys were also studied. The achievements of those studies provide an effective method and basic knowledge for obtaining the GMCE under low magnetic field. The main conclusions are as follows:
     1) The addition of trace amount of Zn element has a great impact on the phase formation in the solidification process of the alloy, benefiting the formation of Gd5Si2Ge2-type monoclinic structure and inhibiting the formation of Gd5Si4-type orthorhombic structure;The driving force for the first phase transformation is enhanced and the intensity of external magnetic field needed is reduced, and therefore, the GMCE is generated at a low magnetic field ranging from 0 to 1.5 T. For Gd5Si2-xGe2Znx and Gd5Si2-zGe2-zZn2z alloys, when x or 2z changed from 0 to 0.001, the maximum isothermal magnetic entropy change, magnetic phase transformation temperature, and magnetic refrigerant capacity are increased from 5.03 J/kg?K, 276 K, and 55.30 J/kg to 20.70 J/kg?K and 25.30 J/kg?K, 280 K and 284 K, and 96.14 J/kg and 101.00 J/kg, respectively, for a low magnetic field ranging from 0 to 1.5 T. These magnetocaloric properties are better than that of Gd5Si2Ge2 and GdSiGeGa cast alloys reported in literatures and the comprehensive properties are the best among the other Gd5Si2Ge2 alloys.
     2) The addition of trace Zn element enhances the interaction force between the 4f-4f electrons of Gd atoms, in which the interaction only happened through conduction electrons, and increases the spin-wave energy of Gd atoms, it in turn increases the magnetic moment of Gd atoms; the cell volume of monoclinic Gd5Si2Ge2 phase is reduced without destroying the crystal structure and the interaction energy between the Gd atoms is increased due to the similarity of the covalent radius of Zn, Si and Ge atoms, and therefore the magnetic phase transformation temperature is increased and the peak of ??SM? is widen. For Gd5Si2Ge2-yZny alloys, when y changed from 0 to 0.011, the magnetic phase transformation temperature and magnetic refrigerant capacity are increased from 276 K and 55.30 J/kg to 288 K and 196 J/kg, respectively, for a low magnetic field ranging from 0 to 1.5 T. These alloys show good comprehensive magnetocaloric properties.
     3) The magnetic anisotropy energy is reduced by adding appropriate amount of Zn element to Gd5Si2Ge2 alloy so that the movement resistance of the magnetic domain wall or the magnetic moment is reduced in the first phase transformation process. It makes the magnetic hystersis to reduce and the magnetic refrigerant capacity to enhance by decreasing the critical induced magnetic field.
     Whether Zn substitutes Si and Ge individually or simultaneously, the magnetic phase transformation temperature, the maximum isothermal magnetic entropy change, and the magnetic hystersis and cooling capacity of the alloys are improved for a low magnetic field ranging from 0 to 1.5 T, while the Zn substitution mode has an influence on the increment of respective characters.
     4) Heat treatment temperature significantly influences the magnetocaloric effect of GdSiGeZn alloys. When adding trace Zn to GdSiGe alloy, the heat treatment temperature may be effectively reduced and eutectoid reaction of Gd5Si2Ge2-type monoclinic structure (β-phase) at 773 K is prevented and therefore the stability ofβ-phase is increased; the Gd5Si4-type orthorhombic phase is inhibited and its volume fraction is decreased; the intrinsic performance ofβ-phase and its sensibility to the variation of temperature and magnetic field are improved, which lead to the enhancement of driving force for the first phase transformation. For Gd5Si2Ge2-yZny alloys with y of 0.011, heat treatment at 773 K is beneficial to increasing the magnetic phase transformation temperature, isothermal magnetic entropy change and magnetic refrigerant capacity, and lowering the magnetic hystersis in first phase transformation. When the heat treatment temperature is higher than 1413 K, the magnetic phase transformation temperature, isothermal magnetic entropy change and magnetic refrigerant capacity of the alloys decrease and the magnetic hystersis becomes worse due to the increase of structure defects and decrease of the driving force in the first phase transformation after fast cooling of the alloys.
     The alloys of GdSiGeZn with our own intellectual property rights are developed, of which the magnetic effect is enhanced about 4~5 times and the magnetic phase transformation temperature is increased about 4 K~6 K for a low magnetic field ranging from 0 to 1.5 T. The research results change, in some extent, the application philosophy that magnetic refrigeration technology should be relied on high applied magnetic field. It makes possible that magnetic refrigeration technology could be applied in lower magnetic field obtained by the cheap NdFeB magnets.
引文
[1]K.A.Gschneidner,V.K.Pecharsky,A.0.Pecharskaya,et al. Reeent development in magnetic refrigeration [J].Rare Earth 98. 2005:315:69~76
    [2]近日聪信著,葛世慧译.铁磁性物理[M].兰州:兰州大学出版社,2002: 97~110
    [3]涂铭旌,陈远富.室温磁制冷材料的研究进展.机械工程材[J].2001,25(4):1~3
    [4] BF Yu, Q Gao, B Zhang, XZ Meng, Z Chen. Review on research of room temperature magnetic refrigeration [J].Int J Refrig. 2003, 26(9): 622~636
    [5] V.K .Pecharsky, K.A .Gschneidner. Magnetocaloric effect and magnetic refrigeration[J].Journal of Magnetism and Magnetic Materials. 1999, 200: 44~56
    [6] E .Warburg. Magnetische Untersuchungen. Uber einige Wirkungen der Coercitivkraft [J]. Ann Phys. 1881, 13: 141~164
    [7] P. Langevin. Magnetisme at theorie des electrons [J]. Ann Chim Phys.1905, 5:70~127
    [8] P.Weiss, A.Piccard. A new thermomagnetic phenomenon [J]. Compt Rend. 1918, 166: 325~354
    [9] P. Debye. Einige Bemerkunge Zur Magnetisierung bei tiefer temperature [J].Ann phys. 1926,81:1154~1160
    [10] W.F. Giauque. A thermodynamic treatment of certain magnetic effects [J]. Am. Chem. Soc.1927,49: 1864~1870
    [11] W.F. Giauque, D.P .MacDougall. Attainment of temperature below 1°absolute by demagnetization of Gd2(SO4)3·8H2O [J]. Phys Rev.1933, 43: 768~771
    [12] P.J. Hakonen, S .Yin, O.V. Lounasmaa. Nuclear magnetism in silver at Positive and Negative Absolute Temperatures in the Low Nanolelvin Range [J]. Phys Rev Lett, 1990 (64):2707~2713
    [13] G.V. Brown. Magnetic heat pumping near room temperature [J].Journal of Applied Physics. 1976, 47(8): 3673~3680
    [14] C.B. Zimm, A Jastrab, A. Sternberg et al. Description and performance of a near-roomtemperature magnetic refrigerator [J]. Adv Cryog Eng. 1988, 43: 1759~1766
    [15]钟喜春,曾德长.室温磁致冷工质的选用原则及制备技术[J].材料科学与工程, 2002,20(3):441-444
    [16]常士楠,袁修干.近室温磁制冷工质选择的热力学准则[J].北京航空航天大学学报, 1997,23(5):639-642
    [17]吴卫,冯再,郭立君.关于室温磁制冷材料的评价[J].中国稀土学报, 2005 (23): 48~52
    [18]付浩. Gd5(SixGe1-x)4合金的组织结构与磁热性能研究[D].成都.四川大学. 2005.
    [19] K.A.Gschneidner. magnetocaloric materials [J]. Annual Review of Material Science. 2000; 30: 387~429
    [20]鲍雨梅,张康达.磁致冷技术[M].北京:化学工业出版社, 2004: 1~10
    [21]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社, 1993:169~173
    [22]陈伟等.室温磁制冷最新进展[J].功能材料. 1998,29(3):236~239 [23 ZB Guo, YW Du, et al. Large magnetic entropy change in perovskite-type manganese oxides [J]. Phys Rev Lett. 1997, 78 (6):1142~1144
    [24]都有为等.高温磁致冷工质的新进展[J].物理. 1997,26(7):385~343
    [25] H Huang, ZB Guo, et al. Large magnetic entropy change in La0.67-xGdxCa0.33MnO3 [J]. Magnetic Mater. 1997,(173): 302~304
    [26] B F. Yu, Q Gao, et al. Review on research of room temperature magnetic Refrigeration [J].International Journal of Refrigeration . 2003,26: 622~636
    [27] O. Tegus, E. Brück, et al. Transition-mental-based magnetic refrigerants for room temperature applications [J]. Nature. 2002,415: 150~152
    [28] O.Tegusa, G.X. Linb, et al. A model description of the first-order phase transformation in MnFeP1-xAsx[J].Journal of Magnetism and Magnetic Materials. 2005: 658~660
    [29] E. Bruck, O. Tegusa, et al. Magnetic refrigeration towards room-temperature applications [J]. Physica B. 2003,(327): 431~437
    [30] O .Tegusa, E. Brück, et al. Tuning of the magneto-caloric effects in MnFeP1-xAsx by substitution of elements [J].Journal of Magnetism and Magnetic Materials. 2004: 2389–2390
    [31] F. X .Hu, F. X .Shen, et al. Magnetic entropy change in Ni1.5Mn22.7Ga25.8 [J]. Appl Phys Lett. 2000,76(23): 3460~3462
    [32] F .X .Hu, J R .Sun, G .H .Wu, et al. Magnetic entropy change in Ni50.1Mn20.7Ga29.6 single crystal [J]. Appl Phys. 2001;90: 5216~5220
    [33] F. X .Hu, B. G. Shen. Great Magnetic Entropy Change in Heusler Alloys Ni2Mn2Ga and NaZn13-Type Compounds La( Fe ,Co ,M)13, M = Si , Al [J]. Journal of the Graduate School of the Chinese Academy of Sciences. 2002;19(2);6~10
    [34] F.X. Hu, B .G .Shen, et al. Magnetic Entropy Change in La(Fe0.98Co0.02)11.7Al1.3 [J]. Phys Condense Matter. 2000; 12: 691~681
    [35] F .X. Hu, B. G .Shen, J .R Sun, et al. Large Magnetic Entropy Change in La (Fe,Co) 11.7Al1.3 [J]. Phys Rev. 2001; 64: 9~12.
    [36] F .X .Hu, B .G. Shen, J .R. Sun, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 [J].Appl Phys Lett.2001; 78 3675~3692.
    [37] F. X .Hu, B. G. Shen, J .R .Sun, et al. Very Large Magnetic Entropy Change near Room Temperature in LaFe11.2Co0.7Si1.1 [J]. Appl Phys Lett. 2002;80: 826~830
    [38]腾云,李碚.磁致冷材料的发展与研究概况[J].功能材料. 1994;(25):111~116
    [39]龙毅等.室温范围内大磁热效应的Gd - Tb材料的研究[J].科学通报. 1993; 38 (21) : 1944~1946
    [40] V. K. Pecharsky, K.A. Gschneidner. Tunable magnetic regenerator alloys with a giant magnetocaloric effet for magnetic refrigeration from 20 K to 290 K [J]. Appl Phys Lett. 1997; 70(24):3299~3301
    [41]邵元智等. Gd二元系金属间化合物的磁热熵效应[J].中山大学学报(自然科学版). 1994; 33(1): 103~105
    [42]杨斌,杨俊逸,朱根松.室温磁制冷材料研究现状及发展前景[J].稀土. 2004; 25(4): 57~62
    [43]王宝珠,温鸣.稀土过渡族磁制冷功能材料的研究[J]、金属功能材料. 2000; 7(4): 242~281
    [44]刘学东等. GdDyFe和GdTbFe合金的磁热效应的研究[J].稀土. 2002;(5): 602~621
    [45] V.K. Pecharsky, A.O. Pecharsky, K.A. Gschneidner. Uncovering the structure property relationships in R5(SiXGe1-x)4 intermetallic phases [J]. Joumal of Alloys and Compounds. 2001;13: 362~368
    [46] V.K. Pecharsky, K.A. Gschneidner. R5(SixGe1-x)4:An extremum material [J]. Advanced Materials. 2001;13: 683~686
    [47] A.O. Pecharsky, K.A. Gschneidner , V.K. Pecharsky. The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 [J].Joumal of Applied Physucs. 2003;93:4722~4728 [48.] A.O. Pecharsky, K.A. Gschneidner, V.K. Pecharsky, C.E. Schindler. The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4-Gd5Ge4 system [J].Journal of Alloys and Compounds. 2002;338:126~135
    [49] W. Choe, A.O. Pecharsky, M. Worle. G.J .Miller.“Nanoscale zippers”in Gd5(SixGe1-x)4:Syrnmetry and cherical influences on the nanoscale zipping action [J]. Inorganic Chemistry. 2003; 42: 8223~8229
    [50] W. Choe, G.J. Miller, J. Meyers, S .Chumbley, A.O .Pecharsky. Nanoscale zippers in the crystalline solid Strucrural variations in the giant magnetocaloric material Gd5Si1.5Ge2.5 [J] Chemistry of Materials. 2003;15:1413~1419
    [51] Y.I .Spichkin, V.K. Pecharsky, K.A. Gschneidner. Preparation, crystal structure, magnetic and magnetothermal properties of (GdxR5-x)Si4, where R=Pr and Tb alloys [J].Journal of Applied Physics. 2001; 89:1738~1745
    [52] V.K .Pecharsky, K.A. Gschneider . Phase relationships and crystallography in the pseudobinary system Gd5Si4-Gd5Ge4 [J].Journal of alloy and compounds. 1997; 260: 98~106
    [53] A.O. Pecharsky, K.A. Gschneider Jr, et al. The room temperature metastable/stable phase relationship in the pseudo-binary Gd5Si4-Gd5Ge4 system [J]. Journal of alloy and compounds. 2002; 338: 126~135
    [54] V.K. Pecharsky, G.D. Samolyuk, et al. The effect of varying the crystal structure on the magnetism, electronic structure and thermodynamics in the Gd5(SixGe1-x)4 system near x=0.5 [J]. Journal of Solid State Chemistry. 2003,171:57~68
    [55] V.K. Pecharsky, K.A. Gschneidner . Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) [J].Mang Mang Mater. 1997;(167):179~184.
    [56] V.K. Pecharsky, K.A. Gschneidner. Giant magnetocaloric effect in Gd5(Si2Ge2) [J]. Phys Rev Lett. 1997,78:4494~4497.
    [57] A.O .Pecharsky, K.A. Gschneidner, V.K. Pecharsky. The giant magnetocaloric effect between 190 and 300 K in the Gd5(SixGe1-x)4 alloys for 1.4≤x≤2.2 [J]. Journal of Magnetism and Magnetic Materials. 2003, 267:60~68
    [58]W. Wu, A.O. Tsokol, K.A. Gschneidner Jr., J.A. Sampaio. Influence of oxygen on the giant magnetocaloric effect of Gd5Si1.95Ge2.05 [J]. Journal of Alloy and Compounds, 2005,403:118-123
    [59]付浩,陈云贵等. H原子对Gd5Sil.72Ge2.28合金低场磁性能和磁熵变的影响[D].成都:四川大学. 2004, 36:4
    [60]张岸,侯雪玲,张鹏等. Effect of addition of B on the magnetocaloric effect of Gd5.1Si2Ge2 Alloy [J]. Rare Metal Materials and Engineering (稀有金属材料与工程). 2008 37(9):1597~1600
    [61]张铁邦,付浩,陈云贵,涂铭旌,唐永柏. Sn合金化对Gd5Si2Ge2磁致冷材料结构和性能的影响. [J]Rare Metal Materials and Engineering (稀有金属材料与工程) [J]. 2005, 34(10): 1528~1532
    [62] R.D. Shull, V. Provenzano, A.J. Shapiro, A. Fu. The effects of small metal additions (Co,Cu,Ga,Mn,Al,Bi,Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy [J].Journal of Applied Physics. 2006; 99: 08K908
    [63] Y.H. Zhuang, J.Q. Li, W.D. Huang, etc. Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound [J]. Journal of Alloy and Compounds, 2006,421:49-53
    [64] H .Wada, Y. Tanabe. The Giant magnetocaloric effect of MnAs1-xSbx [J]. Applied Physics letters. 2001; 79: 3302~3304
    [65]近日聪信著,葛世慧译.铁磁性物理[M].兰州:兰州大学出版社,2002: 51~52
    [66]周寿增等.超强永磁体-稀土铁系永磁体[M].北京:冶金工业出版社,1998:26~27
    [67] J. Ruvalds, F. S. Liu. Solid State Comm. 1981, 39: 497
    [68]李强,周邦新.快淬Nd-Fe-B粉末的TEM样品制备[J]. Rare Metal Materials and Engineering(稀有金属材料与工程). 2000,29(4): 283-284
    [69] O .Tegus, E .Brück, K.HJ Buschow, FR De Boer. Transition-metal-based magnetic refrigerants for room-temperature applications [J]. Nature. 2002, 4l5:l50~160
    [70]滕保华,唐定镶,涂铭旌等.稀土合金Gd5(SixGe1-x)4(0.24    [71] Morellon L, Algarabel P A, Ibarra M R, etc. Magnetic-field-induced structural phase transformation in Gd5(Si1.8Ge2.2) [J]. Phys. Rev. B, 1998,58:R14721
    [72]近日聪信著,葛世慧译.铁磁性物理[M].兰州:兰州大学出版社,2002: 52~53
    [73]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2003:146~181
    [74]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2003:285~286
    [75] H.R. Kirchmayr, C.A. Poldy, K.A. Gschneidner, et al. Handbook on the Physics and Chemistry of Rare Earth. Vol.2.[M]. North-Holland: The Netherlands, 1979: 64.
    [76] A. F.Devonshire. The first order phase transformation in ferro-electric Material. [J]. Phil. Mag. 1951, 42: 1065~1070
    [77]冯端.金属物理学[M].北京:科学出版社,1998: 50~70
    [78]周寿增等.超强永磁体-稀土铁系永磁体[M].北京:冶金工业出版社,1998:129~135
    [79] S.H. Suhl. Phys. Rev., 1995, 97: 555~580
    [80]刘喜斌,沈保根. Mn5Ge2.7 M 0.3(M=Ga,Al,Sn)化合物的磁性和磁熵变[J].物理学报. 2005,54(12): 5884~5889
    [81] F.Z. Preisach. Phys, 1965 (94): 277
    [82] N Saito, H Fujiwara, and Y Sugita. A new type of magnetic domain structure in negative magnetostriction Ni-Fe films [J]. Phys. Soc. Japan. 1964, 19: 421, 1116
    [83]韩刚,于广华,柳忠元.具有垂直各向异性的Co/Pt多层膜中各Co层之间铁磁性耦合[J].北京科技大学学报. 2006, 28(10): 946~950
    [84] A.M. Tishin, Y.I. Spichkin. The Magnetocaloric Effect and its Applications. Institute of Physics Publishing [J]. Bristol and Philadelphia.2003, 475
    [85] A.M. Tishin. Handbook of Magnetic Materials [J]. 1999, 12:395~524
    [86] J.F. Herbst, J.J. Croat. Magnetization of RFe3 Intermetallic compounds:Molecular field theory analysis [J]. Appl Phys. 1982, 53: 4023~4050
    [87]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社, 2003: 56~58
    [88] J. S. Meryers, S.Chumbley, F.Laabs, A.O,Pecharsky. TEM analysis of Gd5(SixGe1-x)4 where x=1/2 [J] Acta Materialia, 2003,51:61-70
    [89]周寿增等.超强永磁体-稀土铁系永磁体[M].北京:冶金工业出版社,1998: 51~53
    [90]钟文定.铁磁性(中册)[M].北京:科学出版社,1987: 356~369
    [91] J Szade, G Skorek, A Winiarski.Winiarski. Surface structure of Gd5(Si,Ge)4 crystals [J]. Journal of Crystal Growth. 1999,205:289~293
    [92] J.S. Meyers, L.S. Chumbley, F. Laabs, A.O. Pecharsky. Determination of phases in as prepared Gd5(SixGe1-x)4, where x≈1/2 [J]. Scripta Materialia, 2002,47:509~514
    [93]付浩,陈云贵,张铁邦,涂铭旌. Gd5Si2Ge2相的线状缺陷[J].中国稀土学报, 2005,23(4):014-314
    [94]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2003年: 354~376
    [95] Osamu Kimura. Masafumi and Sakakura [J] .J Am Ceram Soc. 1995,78(10): 2857~2860
    [96]周济,梁彬,张洪国等.低温烧结Li铁氧体及其频率特性[J].高技术通讯,1998, 4: 39~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700