用户名: 密码: 验证码:
固液混合火箭发动机工作过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液混合火箭发动机具有安全性高、可靠性高、研制和生产费用低、可实现推力调节和多次启动、推进剂及其燃烧产物毒性低、燃烧产物对环境污染小等众多优点,使得它们在商用卫星发射以及载人航天领域,尤其是在先进轨姿控推进系统和快速机动发射运载器推进系统方面具有很强的竞争力和诱人的应用前景。然而,由于固液混合火箭发动机内部工作过程十分复杂,通过国内外众多科学家与工程师们多年的不懈探索,目前已取得了一些研究成果,但这些成果尚不足以帮助人们清晰理解固液混合火箭发动机的工作过程,有必要就此问题继续开展深入细致的研究。
     本文采用理论分析、数值模拟和试验等手段,研究了推进剂组合、发动机几何构型以及工作状态对固液混合火箭发动机性能的影响规律,探索了提高发动机性能的途径,并为固液混合火箭发动机设计提供了理论依据和指导。
     采用热力计算方法和固液混合火箭发动机理论性能计算软件,研究了推进剂组合、液固比、燃烧室压力等参数对发动机性能的影响规律。推导了固液混合火箭发动机一维内弹道方程,并分析了在发动机工作过程中燃面后退速率、固体燃料气化产物流量、液固比、压强、温度和比冲等参数随时间变化规律。
     针对固液混合火箭发动机中固体燃料中氧化剂含量少、燃面后退速率低以及固体燃料中固体含量少、工艺性能和力学性能差的特点,系统地进行了推进剂配方试验研究。采用提高粘合剂网络的交联密度和填料的补强技术,提高了HTPB基固体燃料的强度。研究各类添加剂对固体燃料燃面后退速率的影响规律,提高了HTPB基固体燃料的燃面后退速率。研制出力学性能优良(抗拉强度≥1.8MPa,延伸率≥50%)、燃面后退速率较高(≥0.3mm/s)、不同金属含量的系列HTPB基固体燃料。
     采用基于流-固耦合的方法,在充分考虑固液混合火箭发动机工作过程中诸多复杂物理过程的基础上,建立了一个可适用于发动机不同工作状态下燃面后退速率预示的计算模型,并开发了一个可适用于固液混合火箭发动机燃烧室内两相湍流燃烧流动数值模拟的计算程序。对发动机燃烧室内两相湍流燃烧流动过程进行了数值模拟分析,得到了燃烧室内的流场结构,系统研究了固液混合火箭发动机推进剂组合、发动机几何构型以及工作状态对发动机性能的影响规律,为合理设计发动机结构指明了方向。
     设计了直径80mm的GOX、90%H_2O_2/HTPB固液混合火箭发动机燃烧实验器,开展了发动机多次点火技术以及发动机燃烧性能试验研究。设计了采用煤油作为燃料的点火器,能够可靠、可控地实现GOX/HTPB固液混合火箭发动机燃烧实验器的启动、关机和再点火。通过终止发动机燃烧试验和系统辩识的方法,研究了GOX/HTPB固液混合火箭发动机燃面后退速率的影响规律。采用烃类燃料在催化分解的90%H_2O_2中能燃烧的点火器,进行了90%H_2O_2/HTPB固液混合火箭发动机试验初步研究。
Hybrid rocket motors keep the features of low cost, high reliability, and no hazards. In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. But in hybrid rocket motors, the combustion efficiency and regression rate are very slow. Although the aforementioned work has provided considerable information to the understanding of flow and hybrid combustion process in hybrid rocket motors, many fundamental issues regarding the detailed mixing and combustion process, especially the performance of regression rate, still need to be addressed.
     Of particular importance in the design of hybrid rocket motors is the fuel surface regression rate and the manner in which it varies with operation conditions. In view of this, a research program involving both experimental and numerical approaches is initiated. This thesis is aimed at providing the complete details of the hybrid combustion processes and flowfields in hybrid rocket motors and seeking ways to improve the combustion efficiency in order to provide theoretical basis and direction for the design of hybrid rocket motors. The results attained are as follows.
     Based on the thermodynamic calculation and theoretical performance analysis, effects of fuel, oxidizer/fuel ratio, combustor pressure on the performance of hybrid rocket motor and temperature of combustor are analyzed. A ballistics model has been developed for the purpose of investigating the influence of fuel grain design on overall performance of hybrid rocket motors. The model, based on steady, one-dimensional compressible flow, includes the capability to handle arbitray wagon-wheel fuel section designs. Results of the ballistics calculations are presented for liquid oxygen as fuel.
     Aimed at hybrid propellant having low strength and poor combustion performance, development of HTPB propellant is presented. In order to determine the effects of solid-fuel additives on the combustion behavior of HTPB and GOX, many different types of powders are added to the solid fuel. Kinds of intensifiers with active groups are added to enhance curing network of HTPB binder system. The propellant is endowed with excellent performances of different metal content, tensile strength up to 1.8MPa, regression rate>0.3mm/s.
     Based on the fluid-solid coupling technique and some comprehensive physical processes during working of hybrid rocket motor, a numerical model is developed to predict the regression rate for the solid fuel surface of hybrid rocket motor under different working conditions. The muti-dimensional Favre-averaged compressible turbulent N-S equations are used as the governing equations of the reacting flow, the improved k-εtwo-equation turbulence model is used to simulate the turbulent flow, and Eddy-Dissipation Model is used to simulate the gas combustion. Accuracy of the calculated model is verified by comparison of calculation results with experiment data. The simulation results of model motor show that combustion, flow and regression rate of solid fuel surface of hybrid rocket motor are of inhomogeneity. Information gained from CFD modeling provides future engine designers valuable information regarding the design of hybrid rocket motors combustion chambers.
     The paper also makes a whole design of experimental hybrid rocket motor system, and discusses the result of motor firing. Technical project and experiment results of multiple start and shutoff of GOX/HTPB hybrid rocket motors are presented. The performance data of hybrid rocket motors are measured. Various kinds of factors, which affect hybrid rocket motors performance, are preliminarily analyzed. The experiments show that multiple-start and shutoff can be realized and its number of times and time intervals can be regulated at ramdom. An innovative igniter based on catalytic decomposition of H_2O_2 is designed and manufcatured. A H_2O_2/HTPB hybrid rocket motor using this igniter was tested. The experiment results demonstrated that this new igniter can successful start the H_2O_2/HTPB hybrid rocket motors.
引文
[1]Mark Grubelich and John Rowland.A hybrid rocket engine design for simple low cost sounding rocket use[C].AIAA 93-2265,1993.
    [2]方丁酉等编著.固体火箭发动机内弹道学[M].长沙:国防科学技术大学出版社,1997.
    [3]胡建新.固液混合发动机燃烧与燃速特性研究[D],长沙:国防科技大学硕士学位论文,2001.
    [4]单建胜等.固液火箭发动机的研制及其应用[J].固体火箭技术,1997,20(3):5-10.
    [5]2000年美国固液混合火箭技术进展[J].固体火箭技术动态,Vol.206,2001.
    [6]Dijkstra,F.,and Korting,P.,Uttrasonic Regression Rate Measurement in Solid Fuel Ramjets[C].AIAA Paper 90-1963,1990.
    [7]P.N.Estey and K.JFlittie.The next generation launch service for small satellites[C].AIAA 92-1844,1992.
    [8]P.A.LaSarge,S.I.Ford and R.A.Frederick.Conceptual design of a hybrid rocket powered upper stage(HRPUS) demonstrator[C].AIAA 96-2841,1996.
    [9]T.A.Boardman,T.M.Abel,S.E.Claflin and C.W.Shaeffer.Design and test planning for a 250-klbf-thrust hybrid rocket motor under the Hybrid Propulsion Demonstration Program[C].AIAA 97-3332,1997.
    [10]J.S.McFarlane,R.J.Kniffen and J.Lichatowich.Design and testing of AMROC's 250,000 pound thrust hybrid motor[C].AIAA 93-2551,1993.
    [11]M.J Lewis and T.Rice.Design of a university launch vehicle system[C].AIAA 92-2663,1992.
    [12]Arif Karabeyoglu,Todd Falconer,Brian Cantwell and Jose Stevens.Design Of An Orbital Hybrid Rocket Vehicle Launched From Canberra Air Platform[C].AIAA 2005-4096,2005.
    [13]R.Jay Kniffen.Development status of the 200,000 LBF thrust hybrid rocket booster[C].AIAA 92-1657,1992.
    [14]Matthias Grosse.Development work on a small experimental hybrid rocket[C].AIAA 97-2802,1997.
    [15]Dr.Franklin B.Mead.Early developments in hybrid propulsion technology at the Air Force Rocket Propulsion Laboratory[C].AIAA 95-2946,1995.
    [16]Nathan William Hardin Smith.Facility design and testing of micro-hybrid rocket engines[C].AIAA 2001-0005,2001.
    [17]James E.Lyne,Viatcheslav I.Naoumov,Josh Scholes,Meghan Dodge,Ben Elton,Paul Wozniak,David Austin and Cliff Combs.First Steps In The Development And Testing Of Nontoxic, Bioderived Fuels For Hybrid Rocket Motors[C]. AIAA 2005-0741,2005.
    [18]K.J.Flittie and B.McKinney. Hybrid booster strap-ons for the next generation launch system[C]. AIAA 93-2269,1993.
    [19]M.C.Lydon. Hybrid rocket development as a hands-on teaching tool for undergraduate engineering education[C]. AIAA 95-0464,1995.
    [20]Dr.Robert S. Wolf and Capt.Gary N.Henry. Hybrid rocket education at the U.S. Air Force Academy[C]. AIAA 92-3300,1992.
    [21] Paul N.Estey and George R.Whittinghill. Hybrid rocket motor propellant selection alternatives[C]. AIAA 92-3592,1992.
    [22]M.C.Lydon. Hybrid sounding rocket development and flight test at the United States Air Force Academy[C]. AIAA 95-2943, 1995.
    [23]Paul Estey. Hybrid Technology Option Project - A cooperative effort for tomorrow's space transportation[C]. AIAA 94-4503,1994.
    [24] Kirk Flittie, Steve Jones and Chuck Shaeffer. HyFlyer - A hybrid propulsion suborbital launch vehicle[C]. AIAA 94-3149, 1994.
    [25]C.L.Merkle and S.Venkateswaran,Fundamental Phenomna on Fuel Decomposition and Boundary -Layer Combustion Processes With Application to HRM[R]. N1996-0050012,1996.
    [26]Altman.D., Hybrid Rocket Development History[C]. AIAA Paper 91-2515, 1991.
    [27] Lorenzo Casalino and Dario Pastrone. Optimal Design and Control of Hybrid Rockets for Access to Space[C]. AIAA 2005-3547,2005.
    [28] Lorenzo Casalino and Dario Pastrone. Optimal design of hybrid rockets for small satellites[C]. AIAA 2002-3579,2002.
    [29] T. Rice and D.L. Akin. Parametric testing for determination of hybrid rocket engine development[C]. AIAA 94-3017, 1994.
    [30]Kazulhide MIZOBATA, Shimon NARITA, Jun NAKAYA, Hiroshi YOSHIDA, Takakage ARAI and KASAHARA. Reusable launch vehicle concepts based on hybrid rockets[C]. AIAA 2001-1792, 2001.
    [31]J. Scott McFarlane, Marshall P. Saville and Stephen C. Nunez, P.E.. Testing a 10,000 lb(f) thrust hybrid motor with a foil bearing LOx turbopump[C]. AIAA 95-2941,1995.
    [32]R.B. Shanks and M.K. Hudson. The design and control of a labscale hybrid rocket facility for spectroscopy studies[C]. AIAA 94-3016, 1994.
    [33]Paul N. Estey and Brian G.R. Hughes. The opportunity for hybrid rocket motors in commercial space[C]. AIAA 92-3431, 1992.
    [34]K.W. Schulze and S.A. Meyer. The rapid and low cost development of a hybrid rocket motor[C]. AIAA 93-2610, 1993._________________________________
    [35]S.D. Anderson and, B. Jurewicz and F.J. Redd. Unity IV - A multi-university hybrid rocket development[C]. AIAA 93-2270, 1993.
    [36]K. Anderson, G. Gebert, G. Moore and F. Redd. Unity IV - The design and testing of a hybrid rocket[C]. AIAA 94-3020, 1994.
    [37] Mr. David N. States BSME. Unity IV hybrid rocket motor, nozzle, fuel and ignition systems[C]. AIAA 2001-3533, 2001.
    [38]W. Travis Horton, P.J. Mueller and Frank J. Redd. UTAH-X - Utah's Third Advanced Hybrid Experiment design of hybrid powered sounding rocket[C]. AIAA 96-2695,1996.
    [39]J.R.Caravella Jr, S.D.Heister and E.J.Wernimont. Characterization of fuel regression in a radial flow hybrid rocket[C]. AIAA 96-309,1996.
    [40] M. J. Chiaverini, Nadir Serin, D. K. Johnson, Yeu-Cherng Lu, K.K.Kuo, and A.Risha, Regression Rate Behavior of Hybrid Rocket Solid Fuels[J], Journal of Propulsion and Power, 2000,16(1): 17-26.
    [41]Philmon George, S.Krishnan , P.M.Varkey, M.Ravindran and Lalitha Ramachandran, Fuel Regression Rate in Hydroxyl-Terminated-Polybutadiene Gaseous-Oxygen Hybrid Rocket Motors[J], Journal of Propulsion and Power,2001,17(1):110~116.
    [42]Philmon George and S.Krishnan. Fuel regression rate enhancement studies in HTPB GOX hybrid rocket motors[C]. AIAA 98-3188,1998.
    [43]C.Carmicino and A.Russo Sorge. Influence of a Conical Axial Injector on Hybrid Rockets Performance[C]. AIAA 2005-3911, 2005.
    [44] Joseph Majdalani and Anand B. Vyas. Rotational Axisymmetric Mean Flow for the Vortex Injection Hybrid Rocket Engine[C]. AIAA 2004-3475,2004.
    [45] S. McCormick, R. Frederick, Jr. and J.B. Hendricks. Performance of a unique hybrid rocket motor injector[C]. AIAA 96-2997,1996.
    [46] William J. Knuth, Daniel J. Gramer, Martin J. Chiaverini and J. Arthur Sauer. Preliminary CFD analysis of the vortex hybrid rocket chamber and nozzle flow field[C]. AIAA 98-3351,1998.
    [47] William H. Knuth, Martin J. Chiaverini, Daniel J. Gramer and J. Arthur Sauer. Solid-fuel regression rate and combustion behavior of vortex hybrid rocket engines[C]. AIAA 99-2318,1999.
    [48] Justin M. Pucci. The effects of swirl injector design on hybrid flame-holding combustion instability[C]. AIAA 2002-3578, 2002.
    [49] Changjin Lee, Yang Na and Gunho Lee. The Enhancement of Regression Rate of Hybrid Rocket Fuel by Helical Grain Configuration and Swirl Flow[C]. AIAA 2005-3906, 2005.
    [50]Kyung-Hoon Shin, Changjin Lee and Seon Young Chang. The Enhancement of Regression Rate of Hybrid Rocket Fuel by Various Methods[C], AIAA 2005-0359,2005.
    [51]张德雄,姚润森.低温固体推进技术基础和研究现状[J].固体火箭技术,2002,25(3):8-11.
    [52]Christopher P.St.Clair,Eric E.Rice,William H.Knuth and Daniel J.Gramer.Advanced cryogenic solid hybrid rocket engine developments Concept and test results[C].AIAA-98-3508,1998.
    [53]Harry Adirim,Roger E.Lo and Norbert Pilz.Cryogenic Solid Propulsion Technology Development Status[C].AIAA 2005-4093,2005.
    [54]D.Gibbon,M.Paul and P.Jolley.Energetic green propulsion for small spacecraft[C].AIAA 2001-3247,2001.
    [55]William.H.Knuth,Daniel J.Gramer,and J.Arthur Sauer,Development and Testing of a Vortex-Dreven,High-Regression Rate Hybrid Rocket Engine[C].AIAA 98-3507,1998
    [56]C.W.Larson,K.L.Pfeil,M.E.DeRose and P.G.Carrick.High pressure combustion of cryogenic solid fuels for hybrid rockets[C].AIAA 96-2594,1996.
    [57]Patrick G.Carrick and C.William Larson.Lab scale test and evaluation of cryogenic solid hybrid rocket fuels[C].AIAA 95-2948,1995.
    [58]Authony McCormick,Eric Hultgren,Martin Lichtman,Jadon Smith,Ryan Sneed and Shaun Azimi.Design,Optimization,and Launch of a 3 Diameter N2O Aluminized Paraffin Rocket[C].AIAA 2005-4095.
    [59]R.M.Jenkins,Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket[R],N1997-0026201,1997.
    [60]Lewin,J.Dennis,B.Conley and D.Suzuki.Experimental determination of performance parameters for a polybutadiene oxygen hybrid rocket[C].AIAA 92-3590,1992.
    [61]Nobuo TSUJIKADO and Masatoshi KOSHIMAE.Hydrogen Peroxide Polyethylene Solid Fuel Hybrid Rocket Engine[C].AIAA 2005-4091.
    [62]Nobuo TSUJIKADO.An application of commercial grade hydrogen peroxide for hybrid liquid rocket engine[C].AIAA 2002-3573,2002.
    [63]Nobuo TSUJIKADO,Masatoshi KOSHIMAE,Rikiya ISHIKAWA,Kazuki KITAHARA and Atsushi ISHIHARA.An experimental study of hybrid liquid rocket engine applied rocket grade hydrogen peroxide[C].AIAA 2004-3825,2004.
    [64]E.J.Wernimont and S.D.Heister.Characterization of fuel regression in hybrid rockets utilizing hydrogen peroxide oxidizer[C].AIAA 95-3084,1995.
    [65]A.S.Prince,R.L.Carpenter and T.A.Boardman.Design and testing of an upper stage hybrid propulsion system using hydrogen peroxide oxidizer[C].AIAA 2000-3542,2000.
    [66]Gary K,Lund,Wm.David Starrett and Kent C.Jensen.Development and lab-scale testing of a gas generator hybrid fuel in support of the Hydrogen Peroxide Hybrid Upper Stage Program[C].AIAA 2001-3244,2001.
    [67]Pete Markopoulos and Terry Abel.Development and testing of a peroxide hybrid upper stage propulsion system[C].AIAA 2001-3243,2001.
    [68]E,J.Wernimout and S.D.Heister.Experimental study of chamber pressure effects in hydrogen peroxide oxidized hybrid rockets[C].AIAA 97-2801,1997.
    [69]M.C.Ventura and S.D.Heister.Hydrogen peroxide as an alternate oxidizer for a hybrid rocket booster[C].AIAA 93-2411,1993.
    [70]Eric J.Wernimont and Scott E.Meyer.Hydrogen peroxide hybrid rocket engine performance investigation[C].AIAA 94-3147,1994.
    [71]E.J.Wernimont and S.D.Heister.Progress in hydrogen peroxide oxidized hybrid rocket experiments[C].AIAA 96-2696,1996.
    [72]杨威,张海涛,毛励文,戴祖明.固液混合发动机多次点火启动试验[J].推进技术,2004,25(4):360-362.
    [73]杜新,汪亮,葛李虎,张宝庆,张研.H_2O_2-PE固液混合火箭发动机试验研究[J].固体火箭技术,2003,26(2):61-64.
    [74]杜新,汪亮.H2O2-PE固液混合火箭发动机低频不稳定燃烧研究[J].固体火箭技术,2004,27(1):24-27.
    [75]杜新,汪亮,高峰.H_2O_2固液混合发动机燃烧流动计算分析[J].固体火箭技术,2002,25(4):27-30.
    [76]杜新.85%H_2O_2-PE固液火箭发动机工作过程研究[D],西安:西北工业大学博士学位论文,2003.
    [77]李宇飞,何国强,刘佩进.固液混合发动机的新宠——石蜡基燃料[J].火箭推进,2005,31(4):36-40.
    [78]田辉,蔡国飙,王慧玉,张振鹏.固液混合火箭发动机燃烧的边界层计算[J].推进技术,2002,23(5):380-382.
    [79]田辉,蔡国飙,王慧玉,张振鹏.固液混合火箭发动机燃烧室和喷管流动数值模拟[J].宇航学报,2006,27(2):281-285.
    [80]田辉.固液混合火箭发动机工作过程数值仿真[D],北京:北京航空航天大学博士学位论文,2005.
    [81]万科,李路明,韦迪等.N_2O混合火箭发动机的催化点火研究[J].推进技术,2007,28(1):1-3.
    [82]L.D.Strand,M.D.Jones and R.L.Ray.Characterization of hybrid rocket internal heat flux and HTPB fuel pyrolysis[C].AIAA 94-2876,1994.
    [83]A.M.HELMY. Chronicle review of the hybrid rocket combustion[C]. AIAA 94-2881,1994.
    [84]K.M.Akyuzlu, A.Antoniou and M.W.Martin. Determination of regression rate in an ablating hybrid rocket solid fuel using a physics based comprehensive mathematical model[C]. AIAA 2002-3577, 2002.
    [85] Martin J. Chiaverini, George C. Hating, Yeu-Cheng Lu, Kenneth K.Kuo, Nadir Serin and David K.Johnson. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors[C]. AIAA 95-2686, 1995.
    [86]L.D.Strand and R.L.Ray. Hybrid rocket combustion study[C]. AIAA 93-2412, 1993.
    [87] L.Strand, R.Ray and F.Anderson. Hybrid rocket fuel combustion and regression rate study[C]. AIAA 92-3302,1992.
    [88] William.H.Knuth, Martin J. Chiaverini, J.Arthur Sauer, and Daniel J. Gramer, Solid—Fuel Regression Rate Behavior of Vortex Rocket Engines[J], Journal of Propulsion and Power, 2002,18(3):527~541.
    [89] Martin J. Chiaverini, George C. Harting, Yeu-Cherng Lu, Kenneth K. Kuo and Arie Peretz. Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions[C]. AIAA, 1997.
    [90] Martin J. Chiaverini, Kenneth K.Kuo, Arie Perez and George C. Harting. Regression rate and heat transfer correlations for HTPB GOX combustion in a hybrid rocket motor[C]. AIAA, 1998.
    [91]Alon Gany. Scale effects in hybrid motors under similarity conditions [C]. AIAA 96-2846,1996.
    [92] Martin J. Chiaverini, Nadir Serin, David K. Johnson, Yeu-Cherng Lu, Kenneth K. Kuo and Grant A. Risha. Thermal pyrolysis and combustion of HTPB-based solid fuels for hybrid rocket motor applications[C]. AIAA 96-2845, 1996.
    [93] Constance Meadors, J.E. Elsasser, A.B.Wright and M.K.Hudson. Design of an optical port in the combustion chamber of a labscale hybrid rocket motor[C]. AIAA 2000-3888, 2000.
    [94]Adela Ben-Yakar and Alon Gany. Hybrid engine design and analysis [C]. AIAA 93-2548, 1993.
    [95] G. Colasurdo, D. Pastrone and L. Casalino. Optimal propellant control in hybrid rocket engines[C]. AIAA 95-2393,1995.
    [96]D.J. Vonderwell, I.F. Murray and S.D. Heister. Optimization of hybrid rocket booster fuel grain design[C]. AIAA 94-3144,1994.
    [97]A.M.Wright, P.C.Wynne, S.Rooke, M.K.Hudson and M.Strong. A hybrid rocket regression rate study of amino guanidinium azo-tetrazolate[C]. AIAA 98-3187,1998.
    [98]A.M.Wright, P.C.Wynne, S.Rooke and M.K.Hudson. A hybrid rocket regression rate study of guanidinium azo-tetrazolate[C]. AIAA 98-3186, 1998.
    [99]YUASA Saburo, SHIMADA Osamu, IMAMURA Tohru, TAMURA Takashi and YAMAMOTO Kengo. A technique for improving the performance of hybrid rocket engines[C]. AIAA 99-2322,1999.
    [100] A.M.Wright, L.Dunn, B.Alford and J.Patton. A thrust and impulse study of Guanidinium Azo-Tetrazolate as an additive for hybrid rocket fuel[C]. AIAA 99-2538,1999.
    [101] Grant A.Risha and Abdullah Ulas, Eric Boyer. Combustion of HTPB-based solid fuels containing nano-sized energetic powder in a hybrid rocket motor[C]. AIAA 2001-3535,2001.
    [102] M.Arif Karabeyoglu, Brian J. Cantwell and Greg Zilliac. Development Of Scalable Space-Time Averaged Regression Rate Expressions For Hybrid Rockets[C]. AIAA 2005-3544, 2005.
    [103] W.Teague, A.Wright, D.Balkanli and L.Hybl. Effect of energetic fuel additives on the temperature of hybrid rocket combustion[C]. AIAA 99-2138, 1999.
    [104] David L.Dean. Effects of fuel formulation on regression performance in hybrid motors[C]. AIAA 96-0648,1996.
    [105] M.Arif Karabeyoglu, Brian J. Cantwell and Jose Stevens. Evaluation of Homologous Series of Normal-Alkanes as Hybrid Rocket Fuels[C]. AIAA 2005-3908,2005.
    [106] Ronald W.Humble. Fuel performance enhancements for hybrid rockets[C]. AIAA 2000-3437,2000.
    
    [107] David L.Dean. High performance hybrid fuels[C]. AIAA 95-3080, 1995.
    [108] Jianwen Yi, Brian S.Wygle, Ronald W.Bates, Michael D.Jones and Kumar Ramohalli. Hybrid combustion with metallized fuels[C]. AIAA 93-2410, 1993.
    [109] H.H.Weyland. Hybrid rocket motor fuel studies[C]. AIAA, 1997.
    [110] M.K. Hudson and S.Rooke. Hydrocarbon hybrid rocket fuel regression rate studies[C]. AIAA 96-2595,1996.
    [111] A.M.HELMY. Investigation of hybrid rocket fuel ingredients[C]. AIAA 94-3174,1994.
    [112] Grant A. Risha, Eric Boyer, Robert B. Wehrman, and Kenneth K. Kuo. Performance comparison of HTPB-based solid fuels containing nano-sized energetic powder in a cylindrical hybrid rocket motor[C]. AIAA 2002-3576, 2002.
    [113] Brian Evans, Nicholas A. Favorito and Kenneth K. Kuo. Study of Solid Fuel Burning-Rate Enhancement Behavior in an X-ray Translucent Hybrid Rocket Motor[C]. AIAA 2005-3909,2005.
    [114] Wright, P. Foley, D. Tilahun, M. Reason, C. Bryant, J. Patton and M.K. Hudson. The effect of high concentration guanidinium azo-tetrazolate on thrust and specific impulse of a hybrid rocket[C]. AIAA 2000-3885, 2000.
    [115] Kohsei Miyata and Robert A.Frederick,Jr. Ammonium nitrate-based solid fuel gas generator for gas hybrid rockets[C]. AIAA 96-3254, 1996.
    [116] T.Kuwahara, M.Mitsuno and H.Odajima. Combustion characteristics of gas hybrid rockets[C]. AIAA 94-2880,1994.
    [117] T.Kuwahara, M.Mitsuno and H.Odajima. Combustion characteristics of gas-hybrid rockets (II) [C]. AIAA 95-3083.
    [118] J.O. Burrell and S.C. Nunez, P.E. Liquid to gaseous oxygen converter for hybrid motor application[C]. AIAA 96-2996,1996.
    [119] Brian Evans, Nicholas A.Favorito, Eric Boyer, Grant A. Risha, Robert B.Wehrman and Kenneth K.Kuo. Characterization of nano-sized energetic particle enhancement of solid-fuel burning rates in an X-ray transparent hybrid rocket engine[C]. AIAA 2004-3821, 2004.
    [120] Robert A. Frederick, Jr and Marlow D. Moser. Regression Rate Study of Mixed Hybrid Propellants[C]. AIAA 2005-3545, 2005.
    [121] George Story and Steve Jones. Distribution of liquid oxygen in the head end of a multi-port hybrid motor [C]. AIAA, 1997.
    [122] Joseph Majdalani and Anand B.Vyas Inviscid Models of the Classic Hybrid Rocket[C]. AIAA 2004-3474,2004.
    [123] C.L. Lin and H.H. Chiu. Numerical analysis of spray combustion in hybrid rocket[C]. AIAA 95-2687,1995.
    [124] Hoo-Joong Kim and Yong-Mo Kim. Numerical modeling for combustion processes of hybrid rocket engine[C]. AIAA 2001-4504, 2001.
    [125] G.C. Cheng, R.C. Farmer, H.S. Jones and J.S. McFarlane. Numerical simulation of the internal ballistics of a hybrid rocket motor[C]. AIAA 94-0554, 1994.
    [126] J.Scott McFarlane and Stephen C.Nunez. Thrust hybrid motor testing at Stennis Space Center, a hybrid motor testbed[C]. AIAA 96-2694,1996.
    [127] P.Liang, R.J.Ungewitter and S.E.Claflin. CFD analysis of the 24-inch JIRAD hybrid rocket motor[C]. AIAA 95-2692,1995.
    [128] Robert W.Sproles, J.Doug Wilson and M.Keith Hudson. Coherence of Multiple Signals in a Labscale Hybrid Rocket Motor[C]. AIAA 2005-3904, 2005.
    [129] Yutaka YANO. Combustion characteristics of a small-scale, tactical hybrid rocket propulsion system[C]. AIAA 2001-3538, 2001.
    [130] T.A.Boardman and R.L.Carpenter. Development and testing of 11- and 24-inch hybrid motors under the joint government industry IR&D program[C]. AIAA 93-2552,1993.
    [131] M.A Karabeyoglu, B.J.Cantwell and D.Altman. Development and testing of paraffin-based hybrid rocket fuels[C]. AIAA 2001-4503,2001.
    [132] J.C.Leahy and J.W.Jackson.Jr. Improvements in the measurement of hybrid rocket fuel regression rate using ultrasonic transducers[C]. AIAA, 1997.
    [133] Joseph D.Sims and Hugh W.Coleman. Improving hybrid motor thrust measurements at test stand 500[C]. AIAA 99-2325,1999.
    [134] K.L. Maxwell, A.P. Chouinad, and M.K. Hudson. Investigation of metallic molecular bands in hybrid rocket plumes[C]. AIAA 99-2137, 1999.
    [135] M. Desrochers, G.W. Olsen and M.K. Hudson. Investigation of pressure, plume flicker, and thrust in a labscale hybrid rocket[C]. AIAA, 1997.
    [136] T.A. Boardman, R.L. Carpenter, S.E. Claflin, B.E. Goldberg and C.W. Shaeffer. JIRAD subscale hybrid rocket testing results[C]. AIAA 93-4280,1993.
    [137] B. Greiner and R.A. Frederick, Jr. Labscale hybrid uncertainty analysis~∧hybrid rocket engines[C]. AIAA 95-3085,1995.
    [138] S.L. Hollman and R.A. Fredderick, Jr. Labscale testing techniques for hybrid rockets[C]. AIAA 93-2409,1993.
    [139] P.N. Estey, J.S. McFarlane, R.J. Kniffen, J. Lichatowich. Large hybrid rocket testing results[C]. AIAA 93-4279, 1993.
    [140] A.P. Chouinard, A.J. Adams, A.M. Wright and M.K. Hudson. Multi-wavelength opacity study of a hybrid rocket plume. II[C]. AIAA 98-3992,1998.
    [141] M.K. Hudson, A.P. Chouinard, A. Adams, C.B. Luchini and J.D. Willis. Multi-wavelength opacity study of a hybrid rocket plume[C]. AIAA 96-2833, 1996.
    [142] R.W. Dunn, A.M. Wright, C. Bryant and H. Mack. Noninvasiveion detection in rocket plumes for health monitoring[C]. AIAA 2000-3884,2000.
    [143] Edmond W. Wilson, Jr., James E. Mackey, Brett D. Keller, Elaine J. Goertzen, Sheryl A. Clements and Charles. D. Rivenbark. OH Emission Spectra of Hybrid Rocket Motors Using PMMA[C]. AIAA 2005-3905,2005.
    [144] Nadir Serin, Martin J. Chiaverini, George C. Harting and Kenneth K. Kuo. Pressure correction of ultrasonic regression rate measurements of a hybrid slab motor[C]. AIAA 99-2319,1999.
    [145] A.B. Wright, A. Tomany, A.M. Wright and M.K. Hudson. Pressure measurement in the post-combustion section of a hybrid rocket motor[C]. AIAA 99-2536,1999.
    [146] R. Shanks, S. Rooke and M.K. Hudson. Quantitation study of metals in the hybrid rocket plume[C]. AIAA 95-2791,1995.
    [147] Russo Sorge, A. Esposito, G. Quaranta and G. Torella. Regression rate measurements in a hybrid rocket[C]. AIAA 2000-3438, 2000.
    [148] R.M Jenkins, W.D.Cruit and A.W.Smith. Cold-flow study of hybrid rocket motor flow dynamics[C]. AIAA 96-2843,1996.
    [149] B. Greiner and R.A. Frederick, Jr. Results of Labscale Hybrid Rocket Motor investigation[C]. AIAA 92-3301,1992.
    [150] B. Goleberg and J. Cook[C]. AIAA 93-2554. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center[C]. AIAA 93-2554, 1993.
    [151] F. Liccardo, A. Russo Sorge and G. Torella. Software for the data acquisition system of a hybrid rocket test bed[C]. AIAA 2000-3895,2000.
    [152] K. L. Maxwell and M.K. Hudson. Spectral study of metallic molecular bands in hybrid rocket plumes[C]. AIAA 2000-3887,2000.
    [153] M.K. Hudson, R.B. Shanks, D.H. Snider and D.M. Lindquist. Spectroscopic survey of hybrid rocket plume emissions[C]. AIAA 94-3015, 1994.
    [154] Constance Meadors and A.B. Wright. The design and construction of a gas extraction probe for a hybrid rocket gas extraction system[C]. AIAA 99-2535, 1999.
    [155] M. Letson, P.Peralta and R. Bunker. The performance characterization of a small hybrid motor for solid rocket motor material testing[C]. AIAA 96-2597, 1996.
    [156] M.W. Teague, T.A. Jennings, and A.M. Wright. UV spectroscopic monitoring of rocket motor combustion efficiency [C]. AIAA 2002-3868,2002.
    [157] M.W. Teague, J.R. Welborn and T.M. Feilix. UV-Vis absorption as a diagnostic for NO in rocket plumes[C]. AIAA 96-2836,1996.
    [158] Jonathan E. Jones and Robert A. Frederick Jr. Visualization of recirculation zones in hybrid rocket motors[C]. AIAA 96-2842, 1996.
    [159] D. Robertson and P. Mueller. Variable-flow hybrid rocket oxidizer injector[C]. AIAA 2001-3532, 2001.
    [160] S.Mei Yee and C.W.Shaeffer. Fuel regression characteristics in two hybrid motor configurations[C]. AIAA 97-3110, 1997.
    [161] Martin J.Chiaverini, Kenneth K.Kuo, Arie Peretz and George C.Harting. Heat flux and internal ballistic characterization of a hybrid rocket motor analog[C]. AIAA 97-3550, 1997.
    [162] M. Arif Karabeyoglu, Greg Zilliac, Brian J. Cantwell, Shane De Zilwa and Paul Castelluci. Scale-up tests of high regression rate liquefying hybrid rocket fuels[C]. AIAA 2003-1162, 2003.
    
    [163] S. Venkateswaran and C. L. Merkle. Size scale-up in hybrid rocket motors[C].AIAA 96-0647,1996.
    [164]T.A.Boardman and R.L.Carpenter.A comparative study of the effects of liquid- versus gaseous-oxygen injection on combustion stability in 11-inch-diameter hybrid motors[C].AIAA 97-3350,1997
    [165]R.M.Jenkins and J.R.Cook.A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors[C].AIAA 95-2690,1995.
    [166]T.A.Boardman,D.H.Brinton and R.L.Carpenter.An experimental investigation of pressure oscillations and their suppression in subscale hybrid rocket motors[C].AIAA 95-2689,1995.
    [167]M.F.Desrochers,G.W.Olsen,C.Luchini and M.K.Hudson.Correlation of pressure,plume flicker,and acoustics in labscale hybrid rockets[C].AIAA 96-2834,1996.
    [168]B.Greiner and R.A.Frederick,Jr.Hybrid rocket instability[C].AIAA 93-2553,1993.
    [169]Changjin Lee.The application of ZN analysis to the transient combustion of hybrid rocket[C].AIAA 2002-0783,2002.
    [170]M.Arif Karabeyoglu and D.Altman.Transient behavior in hybrid rockets[C].AIAA 97-2937,1997.
    [171]M.A.Karabeyoglu,D.Altman and D.Bershader.Transient combustion in hybrid rockets[C].AIAA 95-2691,1995.
    [172]B.Greiner and R.A.Frederick,Experimental Investigation of Labscale Hybrid Instability[C].AIAA Paper 94-2878,1994
    [173]董师颜,张兆良编著.固体火箭发动机原理[M].北京:北京理工大学出版社,1995.
    [174]方丁酉,吴德珉.火箭发动机热力计算软件研制报告[R].1993.
    [175]田德余,刘剑洪.化学推进剂计算能量学[M].郑州:河南科技出版社,1999.
    [176]方丁酉编著,两相流动力学[M].长沙:国防科技大学出版社,1988.
    [177]欧阳水吾,谢中强编著.高温非平衡空气绕流[M].北京:国防工业出版社,2001.
    [178]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究[D].长沙:国防科技大学博士学位论文,2004.
    [179]刘君.超音速完全气体和H_2/O_2燃烧非平衡气体的复杂喷流流场数值模拟[D].绵阳:中国空气动力研究与发展中心博士学位论文,1993.
    [180]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [181]范宝春.两相系统的燃烧、爆炸和爆轰[M].北京:国防工业出版社,1998.
    [182]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    [183]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000,12(2):208-217
    [184]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科技大学博士学位论文,2006.
    [185]G.Carrier,F.Fendell,D.Brent,C.Kimbrough,and S.Loucks.Simple modeling of particle trajectories in solid rocket motors[J].Journal of Propulsion and Power,1991,7(2):185-195.
    [186]S.S.Jayant,J.D.Frederik,and H.J.Gibeling.Calculation of particle trajectories in solid rocket motors with arbitrary acceleration[J].Journal of Propulsion and Power,1992,8(5):961-967.
    [187]N.Cesco,G.Lavergne,J.L.Estivalezes.Simulation of two phase flow in solid rocket motors[C].AIAA 96-2640,1996.
    [188]庄逢辰编著,液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.
    [189]向红军.固体火箭发动机熔渣沉积数值模拟与实验研究[D].北京:北京航空航天大学博士学位论文,2000.
    [190]是勋纲.湍流[M].天津:天津大学出版社,1991.
    [191]张兆顺.湍流[M].北京:国防工业出版社,2002.
    [192]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社,1993.
    [193]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992.
    [194]L.D.Kral.Recent experience with different turbulence models applied to the calculation of flow over aircraft components[J].Progress in Aerospace Sciences,1998,34(2):481-541.
    [195]张红杰.高超声速复杂流动中湍流模式应用的评估[J].空气动力学学报,2001,19(2):210-216.
    [196]马智博.固体火箭冲压发动机补燃室流场数值计算方法研究[D].北京:北京航空航天大学博士学位论文,1998.
    [197]徐春光.复杂喷流流场数值模拟及应用研究[D].长沙:国防科技大学,2002.
    [198]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [199]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [200]R.A.Stowe,A.D.Champlain,and A.E.H.J.Mayer.Modelling combustor performance ofa ducted rocket[C].AIAA 2000-3728,2000.
    [201]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D]. 长沙:国防科技大学博士学位论文,2001.
    [202]Ristori and E.Dufor.Numerical simulation of ducted rocket motor[C].AIAA 2001-3193,2001.
    [203]马庆芳,方荣声,项立成.实用热物理性质手册[M].北京:中国农业机械出版社,1986.
    [204]田章福.低浓度过氧化氢/酒精燃气发生器喷雾燃烧过程研究[D].长沙:国防科技大学博士学位论文,2007.
    [205]Antonis Antoniou and Kazim M.Akyuzlu.A Physics Based Comprehensive Mathematical Model to Predict Motor Performance in Hybrid Rocket Propulsion Systems[C].AIAA 2005-3541,2005.
    [206]K.M.Akyuzlu,R.Kagoo and A.Antoniou.A physics based mathematical model to predict the regression rate in an ablating hybrid rocket solid fuel[C].AIAA 2001-3242,2001.
    [207]J.P.Arves and H.Stephen Jones.A standardized technique for evaluating hybrid rocket motor performance[C].AIAA 97-3111,1997.
    [208]Darren A.Kearney and Wesley W.Geiman.Accounting for Planned Fuel Expulsion by Hybrid Rockets[C].AIAA 2005-3546,2005.
    [209]F.Dijkstra.An engineering model to assess hybrid propulsion based rocket systems[C].AIAA 95-2394,1995.
    [210]P.L.Schoonover,W.A.Crossley and S.D.Heister.Application of Genetic Algorithms to the optimization of hybrid rockets[C].AIAA 98-2077,1998.
    [211]Dr.Robert J.Cavalleri.Hybrid Rocket Propulsion Performance Prediction[C].AIAA 2005-3548,2005.
    [212]P.Peralta,R.Bunker and A.Prince.The design,operation and characterization of a small hybrid motor for solid rocket motor materials evaluation[C].AIAA 96-2697,1996.
    [213]P.Neilson,G.Gebert,F.Redd and D.Geer.Unity Ⅳ-A multi-university effort to design,test,and fly a hybrid rocket[C].AIAA 95-2942,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700