用户名: 密码: 验证码:
稠油油水混输规律及工艺设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对绥中36-1油田油水混输海底管道设计与运行参数之间存在的严重差异,本文认为:油水两相混输管道的设计中关于油水乳状液粘度计算公式、油水相态对输送压降影响的应用研究相对较少。迄今为止,人们仍未能清晰地认识油、水两相流动的本质和规律,因而也未产生油水乳状液粘度计算经典公式及油、水两相流压降计算数学模型。绥中36-1油水混输送海底管道设计与运行参数之间存在的严重差异,其原因即在于此。
     本文从理论分析入手,研究了前人在油水混输理论上取得的成果,着重研究了油水混输两相流流型、压降规律;并在理论分析的基础上,进行了大量的实验研究:从稠油流变性到破乳的实验;从降粘的时效性实验到高速剪切对降粘效果的影响实验:从热力学理论分析到双层保温管道的总传热系数分析,直至影响总传热系数的各种因素分析,完成了大量研究工作,取得了卓有成效的研究成果:
     1)提出了研究稠油油、水输送管道中油水分布规律模拟实验方法;
     2)发现了绥中36-1油田长距离稠油油、水输送管道油水分布规律;
     3)根据稠油油、水输送管道油水分布规律量化应用破乳剂降粘效果;
     4)提出在海底管中管保温结构(双层保温管)中空气夹层对总传热系数的影响,给出50mm厚聚氨酯泡沫塑料管中管保温结构海底管道总传热系数新的取值范围;
     5)提出了稠油油、水输送管道压降计算改进公式。
     本文提供的研究思路和研究方法,为稠油油水混输管道的设计研究提供了科学依据,取得的研究成果不仅对经济开发海底稠油资源有着十分重要的实际意义,而且具有重要的理论意义。
To be directed against the marked differences between design parameters and operation parameters of the subsea pipeline of O&W mix transportation in the SZ36-1 oil field, this dissertation consider that in the area of the pipeline design which is O&W mix transportation in the internal of the oil field, the applied researches into the pressure drop calculation formula for the viscosity of the O&W emulsion and the effect of phase state of O&W on pressure drop in course of transportation are relative short .So far, people still have not been cognizant of the essence and rule of O&W two-phase flow; so we could not deduce the classic calculation formula for the viscosity of the O&W emulsion and the mathematical model of the O&W two-phase flow pressure drop .the cause of the differences between the subsea pipeline design parameter of oil O&W two-phase transportation in the SZ36-1 oil field and operation parameter is that.
     To begin with the theory, this dissertation researched the fruits of O&W mix transportation theory by the predecessors, especially, rule of the O&W two-phase flow pattern and pressure drop. The author worked again and again experimental study, which was based on theoretical analysis: from the flow property of heavy oil to experiment on demulsified chemical; from the time effect of reducing viscosity to experiment of the effect of high speed shearing; from analysis of thermodynamics theory to the overall heat transfer coefficient of pipe-in-pipe insulated pipeline, till various elements which is affect the overall heat transfer coefficient. After that, we have acquired excellent outcome:
     1) Put forward simulated experiment method that researches the O&W distributed rule of the O&W transportation pipeline of heavy oil.
     2) Find the distributed rule of O&W which is delivered by the long distance O&W transportation pipeline of heavy oil in SZ36-1 oil field;
     3) Quantification the effect of application of demulsified chemical for reducing viscosity, which is based on the distributed rule of O&W in the O&W two phase transportation pipeline of heavy oil;
     4) Put forward that the overall heat transfer coefficient will be affected by air layer thickness of the subsea pipe-in-pipe insulated pipeline, and new recommendation range of the overall heat transfer coefficient which is 50mm thickness polyurethane foam.
     5) Put forward improved calculation formula of the pressure drop of the O&W two phase transportation pipeline of heavy oil;
     Researches thinking and method proposed by this dissertation provided scientific basis for design and research of O&W two phase transportation pipeline of heavy oil .The outcome has not only important practical value but also academic meaning.
引文
[1]冯叔初.油气集输[M].石油大学出版社,1988.
    [2]路胜译.多相流技术发展综述[J].国外油气储运,1993,11(3).
    [3]宫敬,于达等.海底油气混输管道发展现状调查[M].2000年3月
    [4]陈杰.油-水两相管流流动规律的研究[石油大学博士论文].2001年4月.
    [5]Trallero J L,Sarica C,Brill J P.A study of oil-water flow patterns in horizontal pipes,SPE Ann Tech Conf & Exhi,Denver,Colorado,U.S.A,Oct 6-9,SPE36609,1996,363-375.
    [6]M.N(a|¨)dler and D.Mewes,Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes[J].International Journal of Multiphase Flow Volume 23,Issue 1,February 1997,P55-68.
    [7]Arne Valle,"Pressure drop,flow pattern and slip for two phase crude oil/water flow:Experiments and model predictions",International Symposium on Academy of Liquid-Liquid Two Phase Flow and Transport Phenomena,1997.
    [8]P.Angeli,G.F.Hewitt,Flow structure in horizontal oil-water flow[J].International Journal of Multiphase Flow 26(2000),p1117-1140.
    [9]Melissa J.Mckibben,Randall G.Gillies and Clifton A.Shook.Predicting Pressure Gradients in Heavy Oil-Water Pipelines[J].Canadian Journal of Chemical Engineering,Volume 78,August 2000.
    [10]蒋世全.油井多相流的应用研究进展及软件VFLOW的解剖研究(博士后工作报告).大连理工大学,1996,12.
    [11]苗承武等.油气集输设计技术手册[M].石油工业出版社,1994,12.
    [12]龚宁编译.海上气液混输管道的段塞流问题[J].国外油气储运,1993,11(6).
    [13]吴铁军,郭烈锦,刘文红,张西民等.水平圆管内油水两相流动特性实验研究[M].中国工程热物理学会第十届年会论文集:多相流分册.2001,88-95.
    [14]Arne Valle,Pressure drop,flow pattern and slip for two phase crude oil/water flow:Experiments and model predictions.International Symposium on Academy of Liquid-Liquid Two Phase Flow and Transport Phenomena,1997.
    [15]严大凡,张劲军,杨筱蘅.原油/水分散体系管流特性及在降阻中的应用[M].石油高等教育40周年科学研究论文集,1993.
    [16]S.Arirachakarn 1983.水平管中油-水两相流动的实验研究[M],张劲军《两相流译文集》.
    [17]Malinowsky,M.S.,"An Experimental Study of Oil-Water and Air-Oil-Water Flowing Mixtures in Horizontal Pipes "[M.S.Thesis],University of Tulsa,1975.
    [18]绥中36-1油田开发工程完工报告.2000.07.
    [19]SY/T0415-96.埋地钢质管道硬质聚氨酯泡沫塑料防腐保温层技术标准,石油工业出版社,1997.11.
    [20]PIPEFLOW TECHNICAL MANUAL Version 5.1.
    [21]陈舸,安家荣等.海底双重保温管道传热特性研究[J].油气储运,2000,15(5).
    [22]陈达彬.稠油掺水输送文献综述,石油大学,1988年.
    [23]陈家琅等译.用于稠油管输的油水乳状液[J].(SPE18218)国外油气储运Vol.11,No.3,Jun.1993.
    [24]陈家琅等译.水平管中油-水流动现象的分析[J].(SPE18836)国外油气储运Vol.9,No.4,Dec.1991.
    [25]严大凡.输油管道设计与管理[M].北京,石油工业出版社,1986.
    [26]陈家琅.石油气液两相管流[M].北京,石油工业出版社,1989.
    [27]侯国新.AP型三段破乳剂的脱水降粘性能研究[J].油气田地面工程,1996,15(3).
    [28]江延明等.W/O乳状液的流变性研究[J].油气储运,2000,19(1):10-12.
    [29]赵建兴.降粘剂对原油乳状液转相的影响[J].油田化学,1991,8(2):169-171.
    [30]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984:412-427.
    [31]马文辉等.稠油乳化降粘剂的研究与开发[J].精细化工,1999,16(增刊):47-49.
    [32]蔡继勇等.垂直上升管内油水乳状液流动特性的研究[J].化学反应工程与工艺,1998.1.
    [33]黄福堂.原油在水中乳状液的特性[J].国外油田工程,1997,13(11):28-34.
    [34]江延明,李传宪.W/O乳状液的流变性研究[J].油气储运,2000,19(1).
    [35]周诗岽等.基于人工神经网络的含水原油视粘度计算[J].油气储运,2004,23(3):15-18.
    [36]蔡继勇等.水平管内油水乳状液流动特性研究[J].化学工程,1999.3.
    [37]刘新福编译.世界稠油开采现状及发展趋势[J].石油勘探开发情报,1996,(4):43-53.
    [38]张帆.原油含水对管道运行的影响[J].油气储运,1998,17(8):4-6.
    [39]李锦听.原油加剂改性的影响因素[J].油气储运,1999,18(9):32-35.
    [40]舒勇.桩西高粘原油破乳剂的研制[J].油气田地面工程,2003,22(1).
    [41]赵建兴.对原油乳状液粘度变化规律的认识[J].油田地面工程,1985,4.
    [42]魏兆胜等.油水混合物流变特性的研究[J].大庆石油学院学报,1993,2.
    [43]黄炳华.油气水混相输管路压降计算[J].油气储运,1996,15(5).
    [44]陈杰等.水平管内油水两相流流型的实验研究[J].油气储运,2000,19(12).
    [45]吴浩江等.水平管内油-气-水三相流流型的实验研究[J].油气储运,1999,18(7).
    [46]陈宣政.垂直上升管内油气水三相流流动特性的研究[博士学位论文].西安交通大学,1992.
    [47]王跃社.垂直及倾斜上升管内油气水三相弹性流流动特性的研究[博士学位论文].西安交通大学,1998.
    [48]喻西崇,冯叔初.多相管流中沿程摩阻系数分析[J].油气地面工程,2001,20(2).
    [49]王弥康.管内两相流沿程摩阻压降与单相摩阻系数[J].石油大学学报,1997,21(5).
    [50]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986.
    [51]章龙江.水平管中油气水三相流动实验研究[J].油气储运,1998,17(1).
    [52]李华.多相流输送中柱塞流的运动规律模型[J].油气储运,1997,16(2).
    [53]吴浩江,吴浩扬,周芳德..分形理论在油气水多相流流型识别中的应用[J].西安交通大学学报,1999,33(9).
    [54]曹学文.两相混输管道技术探讨[J].管道技术与设备,1995(3).
    [55]蒋明.液体管道非稳定流动摩阻计算[J].油气储运,2000,19(4).
    [56]郭揆常.多相流技术在海洋油气管道输送中的应用[J].油气储运,1998,17(4).
    [57]郭毅.世界两相混输管线使用现状及其发展趋势[J].中国海上油气(工程),1992,4(6).
    [58]陈家琅.石油气液多相管流研究展望[J].油气地面工程,1989,8(5).
    [59]G.W.戈威尔K.阿济兹基著,权忠舆译.复杂混合物在管道中的流动[M].石油工业出版社,1986,3.
    [60]T.Taitel.:Advances in Two-Phase Flow Modeling,SPE 27959.
    [61]M.A.Adewvmi et al.:Two-Phase Pressare Drop In Horizontal Pipelines[J].Journal of pipelines,5(1985):P1-14.
    [62]Gilles Ferschneider et al.:How to calculate two-phase flow of gas and oil pipeline---Research programs have been developed to design two-phase lines accurately[J].PIPELINE INDUSTRY,Augest 1985,P33-39.
    [63]S.Neogi & A.Lee & W.P.Jepson.:A Model For Multiphase(Gas-water-oil) stratified Flow in Horizontal pipelines,SPE 28799,1994.
    [64]A-H Lee et al.:Study of Flow Regime Transitions of Oil-Water-Gas Mixtures in Horitontal pipelines,the Third(1993) International offshore and polar engineering conference,Singapore,6-11 Jane,1993,P159-164.
    [65]S.Song et al.:Flow Regime Behavior in the Vicinity of the wellhead Flowline Junctions in subsea completions,the Third(1993)international offshore and polar engineering conference,Singapore,6-11 Jane,1993,P151-158.
    [66]A.E,Martinez,INTEVEP S.A.,and S,Arirachakaran,O.Shoham,and J,P.Briil,U.of Tulsa,Prediction of DiSfivsim Viscosity of Oil/Water Mixture Flow in Horizontal Pipes SPE 18221.
    [67]D.M.Grist,E.L.Neustad'krmd K.P.Whlttdngkm,The Interfacial Shear Viscosity of Crude Oil/water Systems SPE 7819.
    [68]C.A.Glandt,SPE,Shell Development Co.,and W.G.Chapman,Rice U.,Effect of Water Dissolution on Oil Viscosity,SPE Reservoir Engineering,February 1995.
    [69]Shen Chen,Yuan Lijie Shengli Oilfield Administration,P.R.C.,Study on Technology of Mixing Active Water in Shanjiasi Heavy Oil to Reduce Viscosity,SPE 30258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700