用户名: 密码: 验证码:
中空多孔炭纤维轻质吸波材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料在军用及民用领域有着广泛的应用,已经成为各国军事装备隐身和民用防电磁辐射领域研究的热点。随着科学技术的发展,对吸波材料的要求越来越高,其中,制备轻质雷达波吸收剂及其吸波材料已成为隐身技术发展的一个重要方向。本文基于此背景开展了轻质纤维吸收剂及其吸波材料的研究工作。
     论文从吸波材料组成入手,分析了吸波材料轻质化的方法,对轻质吸收剂的形状和材料体系进行选择,首次选取聚丙烯腈(PAN)基中空多孔炭纤维(HPCFs)作为主体吸收剂来进行轻质吸波材料的研制。
     以中空多孔PAN原丝为原料,研究了预氧化和炭化工艺条件对HPCFs微观形貌的影响。结果表明,在研究范围内,预氧化和炭化温度及时间对原纤维及预氧化纤维微观形貌影响较小,升温速率对纤维微观形貌影响较大,升温速率高,纤维向内发生变形,导致HPCFs微孔之间过渡层断裂,形成“空洞”,减少微孔数目。
     研究了预氧化和炭化工艺对HPCFs元素组成的影响。预氧化温度及时间增加,引入的氧含量增加,预氧化程度提高,在相同条件下炭化所得到HPCFs的碳含量随预氧化温度和时间的增加而降低,氮含量则提高。HPCFs中碳含量随炭化温度的升高而增加,氮含量降低,与预氧化过程一致,烧成纤维中还含有一定量的氧。
     系统研究了预氧化和炭化工艺条件对HPCFs体电导率和HPCFs/石蜡复合材料介电常数的影响。预氧化温度、时间及升温速率对HPCFs体电导率和HPCFs/石蜡复合材料介电常数有较大影响,预氧化温度升高、时间延长、升温速率提高均可降低纤维的体电导率,并使HPCFs/石蜡复合材料介电常数的实部与虚部降低,尤其是可以使介电常数的虚部显著降低。炭化温度是调节HPCFs体电导率的主要手段,在550-950℃温度区间炭化,可以实现HPCFs体电导率在10~(-3)-10~3Ω~(-1)·m~(-1)之间变化。炭化时间使HPCFs体电导率微升,炭化升温速率对其影响较小。HPCFs/石蜡复合材料的介电常数实部与虚部随炭化温度升高而增加,尤其是介电常数的虚部显著增加。调节预氧化和炭化条件可制备出体电导率和介电常数可调的HPCFs。
     HPCFs预氧化和炭化过程表明,预氧化温度、时间及升温速率是调节HPCFs元素含量及介电性能的重要手段。炭化温度是调节的主要手段,炭化时间与升温速率效果次之。
     HPCFs组成、结构及介电性能的关系表明:纤维体电导率的变化导致以纤维为主体的吸波材料介电常数的变化,纤维体电导率的变化由碳含量与微孔结构共同引起,但碳含量的变化起主要作用,微孔作用较小。
     在所研究的范围内,预氧化温度对预氧化纤维的表观密度影响较大,炭化温度在550℃到950℃变化时,HPCFs表观密度在0.55-0.79g/cm~3之间变化,预氧化和炭化温度在一定范围内可微调HPCFs的表观密度。
     对以HPCFs为主体的吸波材料成型工艺进行探索,采用模压法制备了p≤1g/cm~3的轻质HPCFs吸波材料。考察了HPCFs体积分数、长径比和吸波材料厚度对HPCFs吸波材料介电常数和反射率的影响。HPCFs吸波材料的ε′和ε″,髓HPCFs体积分数和长径比的增加而增大,当增加到一定值时,增加趋势减弱。提高HPCFs体积分数和长径比、增加吸波材料厚度,HPCFs吸波材料反射率峰位向低频移动,低频吸波性能改善。
     将HPCFs与实心炭纤维作雷达波吸收剂时的吸波性能进行了对比。在相同的条件下所得HPCFs中的碳含量低于相应实心炭纤维中的碳含量,单根纤维的体电导率数值相差一个数量级左右。以850℃和950℃时炭化的实心纤维作吸收剂的吸波材料低于-10dB的反射率带宽均为OGHz,以850℃和950℃时炭化的中空多孔纤维作吸收剂的吸波材料低于-10dB的反射率带宽分别为3.05GHz和2.62GHz,较之于实心纤维吸波性能得到了提高。
     从多层吸波材料结构设计角度出发,对以HPCFs为主体吸收剂的吸波材料宽频化进行探索。利用阻抗匹配原理和分层设计,对不同炭化温度下制备的纤维吸收剂进行分层设计,结果表明三层优化设计后的吸波材料在2-18GHz频率范围内,d=3mm时,最低反射率为-15.33dB,对应的频率为7.60GHz,其反射率≤-5dB的带宽为12.36GHz。与单层HPCFs雷达吸波材料相比,反射率≤-5dB的带宽增加,反射率峰值较单层吸波材料的更低。
     以HPCFs为主要吸收剂,分别添加以炭黑、炭纤维为吸收剂的匹配层,制备了双层轻质吸波材料,并考察了其吸波性能。结果表明,以HPCFs为吸收剂的吸波材料在3.04mm时,最低反射率为-9.25dB,低于-8dB反射率带宽为2.15GHz,添加炭黑和炭纤维匹配层后低于-8dB反射率带宽分别为10.60GHz和10.26GHz。
     考察了频率选择表面(FSS)对HPCFs吸波材料吸波性能的影响。添加FSS可以改善和提高HPCFs吸波材料的吸波性能,FSS的位置、尺寸大小对吸波性能影响较大,调节FSS的位置、尺寸大小可以制备在厚度为3.0mm,密度为1.0g/cm~3时,反射率低于-10dB的带宽为11.18GHz的HPCFs吸波材料。
     上述研究表明,HPCFs可作为一种轻质的雷达波吸收剂来使用,结合材料的结构设计可制备出轻质、宽频的吸波材料。
Radar absorbing materials(RAMs) have been widely used in stealth technology and electromagnetic compatibility technology, and that is why they are a researching hotspot all over the world. With the development of science and technology, lightweight RAMs have become one of the most important aspects of stealth technology. This dissertation will present thorough investigation on fibrous absorbers and their composites to meet the imminent demanding of lightweight RAMs.
     The methods for lightening RAMs were discussed according to their compositions and structures. Based on the analysis of the shapes and compositions of absorbers, polyacrylonitrile(PAN)-based hollow-porous carbon fibers(HPCFs) were firstly chosen as the main absorbers in RAMs.
     The influence of preoxidation and carbonization process on the appearance and micropores of HPCFs were investigated. The results show that the temperature and time have little influence on the appearance and micropores of HPCFs. It is found that the heating rate influences the appearance and micropores of HPCFs greatly. The intergradation layers of dual-layer were ruptured and the micropores reduced when the heating rate is too high.
     The changes of HPCFs compositions after the preoxidation and carbonization process were studied. The 0 content of hollow-porous cured fibers increased with the increase of curing temperature and curing time. The C content of HPCFs decreased as the curing temperature and curing time increased. The C content of fibers increased with the increase of carbonization temperature and carbonization time while the N content decreased.
     The volume conductivity of HPCFs and the complex permittivity of the resultant HPCFs/paraffin composites affected by the heating treatment were investigated. The preoxidation temperature, time and heating rate have great influence on the volume conductivity and the complex permittivity. The volume conductivity decreases with the increase of preoxidation temperature, time and heating rate. The real and imaginary parts of the complex permittivity (ε' andε") decrease with the increase of preoxidation temperature, time and heating rate. Carbonization temperature is the main factor in adjusting the volume conductivity and complex permittivity of HPCFs. The volume conductivity can be adjusted in range of 10~(-3)-10~3Ω~(-1)·m~(-1) when carbonization temperature changes from 550℃to 950℃. The carbonization time leads to a slight increase in the volume conductivity and complex permittivity while the heating rate has little influence. The volume conductivity of HPCFs and the complex permittivity of the HPCFs/paraffin composites can be adjusted by controlling the heating treatment process.
     The results of the preoxidation process indicate that the preoxidation temperature, time and heating rate can effectively adjust the composition, volume conductivity and complex permittivity of the HPCFs as well as their composites. Carbonization temperature is the main reason for the above change and carbonization time and heating rate are the secondary factors.
     The relationship among composition, structure and dielectric properties of HPCFs indicates that the changes of complex permittivity of HPCF composites depend on their volume conductivity. The C content and micropores both caused the change of the volume conductivity, among which the C content is the first factor.
     The preoxidation temperature has great influence on the apparent density of the cured fibers. The apparent density of HPCFs can be adjusted in range of 0.55-0.79g/cm~3 when carbonization temperature changes from 550°C to 950°C. The apparent density of HPCFs can be adjusted by heating treatment conditions.
     In order to get lightweight RAMs, the HPCF composites were prepared by the mould-pressing technique based on the analysis and experiments. Effect of the volume and the l/a ratio of HPCFs, and the thickness of RAMs on the radar absorbing properties of HPCF composites were studied. Theε' andε" of HPCF composites increase with the increase of the volume fraction and the l/a ratio of HPCFs firstly, then change slowly. The reflectivity apex moves to the lower frequency with the volume fraction and the l/a ratio of HPCFs and the thickness of materials increasing.
     The radar absorbing properties of hollow-porous and solid carbon fibers as radar absorbents were comparatively investigated. The results show that the C content of HPCFs is lower than that of solid fibers obtained at the same condition. The volume conductivity of single solid carbon fiber is nearly 10 times that of the HPCF. The -10dB bandwidths of solid carbon fiber composites carbonized at 850°C and 950°C are both 0GHz, while those of the corresponding HPCF composites are up to 3.05GHz and 2.62GHz, respectively. Results indicate that the radar absorbing properties of the HPCF composites are better than those of solid carbon fiber composites.
     The wideband RAMs based on HPCFs were investigated according to multi-layer structure design. In order to get wideband RAMs, the reflectivity was simulated using RAMCAD software based on resistance matching principles and the multi-layer structure. The optimal reflectivity of three-layered radar absorbing composites of HPCFs and paraffin was -15.33dB at 7.60GHz and the bandwidth under -5dB was about 12.36GHz. The radar absorbing properties of three-layered HPCF composites are better than those of single layer composites.
     Two-layered radar absorbing materials with the carbon black and the short carbon fibers were prepared based on HPCF composites. The obtained materials have the bandwidths of 10.60 GHz and 10.26 GHz under -8dB with the carbon black and the short carbon fibers as the matching layer, provided that the thickness is 3.04mm. The bandwidth under -8dB of HPCF composites has only 2.15GHz and the lowest reflectivity is -9.25dB at the same time.
     A series of HPCF composites embedded with frequency selective surface (FSS) were investigated. The results indicate that the radar absorbing properties of HPCF composites with FSS can be improved. The results also show that both the size of the element and locations of the FSS in the composites are critical for the reflection property of the HPCF composites. The HPCF composites embedded FSS has a bandwidth of 11.18GHz under -10dB in the range of 2-18GHz, provided that the thickness and the density are 3.0mm and 1.0g/cm~3, respectively.
     HPCFs are proved to be light conductive absorbers in view of their hollow structure and radar absorption properties. The results in this dissertation indicate that the lightweight and wideband composites based on HPCFs can be gained with suitable structure design.
引文
[1]乔松楼,乐俊淮,苏雨生.新材料-科技进步的基石[M].北京:中国科学技术出版社.1994.
    [2]科夫涅里斯特著,蔡德录等译.微波吸收材料[M].北京:科学出版社.1985.
    [3](美)E.F.克拉特等著,阮颖铮,陈海等译.雷达散射截面—预估、测量和衰减[M].北京:电子工业出版社.1988.
    [4]吴晓光,车晔秋编译.国外微波吸收材料[M].长沙:国防科技大学出版社.1992.
    [5]Vinoy K J,Jha R M.Radar absorbing materials-from Theory to Design and Characterization[M].Boston,Kluwer Academic Publishers.1996.
    [6]胡传忻主编.隐身涂层技术[M].北京:化学工业出版社.2004.
    [7]邢丽英.隐身材料[M].北京:化学工业出版社.2004.
    [8]伪装隐身技术与材料.内部讲义.国防科学技术大学航天与材料工程学院.2007.
    [9]刘顺华,刘军民,董星龙等编著.电磁波屏蔽及吸波材料[M].北京:化学工业出版社.2007.
    [10]Guan H T,Liu S H,Duan Y P,et al.Cement based electromagnetic shielding and absorbing building materials[J].Cement & Concrete Composites.2006,28:468-474.
    [11]Petrov V M,Gagulin V V.Microwave Absorbing Materials[J].Inorganic Materials.2001,37(2):93-98.
    [12]Olmedo L,Chateaug D,Deleuze C,et al.Microwave characterization and modelization of magnetic granular materials[J].J.Appl.Phys.1993,73(10):3035-3041.
    [13]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社.1998.
    [14]李凤生,杨毅,马振叶,等.纳米功能复合材料及其应用[M].北京:国防工业出版社.2003.
    [15]Luo F,Zhu D M,Zhou W C.A two-layer dielectric absorber covering a wide frequency range[J].Ceramics International.2007,33:197-200.
    [16]Kim P C,Lee D G.Composite sandwich constructions for absorbing the electromagnetic waves[J].Composite Structures.2009,87:161-167.
    [17]Giannakopoulou T,Oikonomou A,Kordas G.Double-layer microwave absorbers based on materials with large magnetic and dielectric losses[J].Journal of Magnetism and Magnetic Materials.2004,271:224-229.
    [18]Yu X L,Zhang X C,He H H,et al.Simulation and Design for Stratified iron fiber absoring materials[J].Materials and Design.2002,23:51-57.
    [19]Tomas H,Thomas R.Electric and magnetic losses modeled by a stable hybrid with explicit-implicit time-stepping for Maxwell's equations[J].Journal of Computational Physics.2008,227:4499-4511.
    [20]施景芳.雷达波吸收剂及其性能评估[J].宇航材料工艺.1993(5):1-4.
    [21]彭智慧,曹茂盛,袁杰,等.雷达吸波材料设计理论与方法研究进展[J].航空材料学报.2003,23(3):58-63.
    [22]Xu Z X,Kong L D,Lin W G,et al.Microwave characteristic simulation research for a kind of novel electromagnetic structure[J].Journal of Systems Engineering and Electronics.2008,19(3):467-472.
    [23]Chambers B.Symmetrical radar absorbing structures[J].EIectronics Letters.1995,31(5):404-405.
    [24]任润桃,郑添水.舰船隐身材料国内外研究应用现状及发展方向[J].功能材料.2006,37(增 刊):1153-1156.
    [25]Yoshiaki S,Yoshiteru K,Masashi I,et al.Synthesis and Magnetic Properties of Ultrafine Iron Particles Prepared by Pyrolysis of Carbonyl Iron[J].Appl.Phys.1992,31:3858-3861.
    [26]Vladimir B B.Advantages of Ferromagnetic Nanoparticle Composites in Micro-wave Absorbers[J].IEEE Transactions on magnetics.2004,40(3):1679-1684.
    [27]Wang Z Z,Bi H,Liu J,et al.Magnetic and microwave absorbing properties of polyaniline/g-Fe_2O_3 nanocomposite[J].Journal of Magnetism and Magnetic Materials.2008,320:2132-2139.
    [28]Li X A,Han X J,Tan Y J,et al.Preparation and microwave absorption properties of Ni-B alloy-coated Fe_3O_4 particles[J].Journal of Alloys and Compounds.2008,464(1-2):352-356.
    [29]Du H,Lee S W,Gong J,et al.,Size effect of nano-copper films on complex optical constant and permittivity in frared region[J].Materials Letters.2004,58(6):1117-1120.
    [30]Wang T G,Gong J,Du H,et al.Study on electromagnetic wave transmission performances of ultra-thin metallic films[J].Acta Metallurgica Sinica.2005,41:814-818.
    [31]Carl R,Chermant J L.Damage mechanics applied to concrete reinforced with amorphous cast iron fibers[J].Cement &Concrete Composites.1999,21:197-204.
    [32]Di Y J,Jiang J J,Du G,et al.Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires[J].Trans.Nonferrous Met.Soc.China.2007,17:1352-1357.
    [33]Xing G L,Seiki Y A.Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma metal reaction[J].Journal of Magnetism and Magnetic Materials.2000,214(3):195-203.
    [34]李灿权,张雪峰,王威娜,等.铁、镍及其合金纳米粒子的制备及电磁性能研究[J].材料工程.2006,2:46-50.
    [35]张雪峰,王登科,李璞,等.壳/核型金属纳米胶囊的制备及性能研究[J].功能材料.2007,38(A08):2997-3000.
    [36]Dong X L,Zhang Z D,Zhao X G,et al.The preparation and characterization of uhrafine Fe-Ni particles[J].J Mater Res.1999,14(2):398-406.
    [37]Dong G J,Wang G X,Zhang M L,et al.Synthesis and characterization of Nanostructured Fe-Ni Alloy whisker[J].Journal of Marine Science and Application.2002,2:83-86.
    [38]Rahul S,Agarwala R C,Agarwala V.Development of radar absorbing nano-crystals by microwave irradiation[J].Materials Letters.2008,62:2233-2236.
    [39]Lee G H,Huh S H,Park J W,et al.Arrays of Ferromagnetic Iron and Cobalt nanocluster Wires[J].J Phys Chem B.2002,106:2123-2126.
    [40]Lee G H,Huh S H,Jeong J W,et al.Processing of ferromagnetic iron nanowire arrays[J].Scripta Materialia.2003,49:1151-1155.
    [41]王维.官建国,王琦.球磨时间对制备Fe-ZnO核壳纳米复合粒子的结构和性能的影响[J].无机材料学报.2005,20(3):599-607.
    [42]赵文俞,张清杰,官建国.Fe/SiO_2核壳复合粒子的制备与表征[J].武汉理工大学学报.2006,28(10):1-3.
    [43]高国华,官建国,何玲燕,等.纳米铁/SiO_2核壳复合粒子的制备与性能表征[J].武汉理工大学学报.2004,26(9):1-3.
    [44]Carum F,Susha A S,Gqersig M,et al.Magnetic Core-shell Particles:Preparation of Magnetite Multilayers Oil Polymer Latex Microspheres[J].Adv Mater.1999,11:950-953.
    [45]Caruso F,Shi X,Caruso RA,et al.Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J].Adv Mater.2001,13:740-744.
    [46]Dai Z F,Meiser F,Mohwald H.Nanoengineering of Iron Oxide and Iron Oxide/Silica Hollow Spheres by Sequential Layering Combined with a Sol-gel Process[J].J Colloid& Interface Sci.2005,288(1):298-300.
    [47]Wu M Z,Zhang Y D,Hui S,et al.Microwave magnetic properties of Co_(50)/(SiO_2)_(50) nanoparticles [J].Appl Phys Letters.2002,80(23):4404-4406.
    [48]孙国亮,郑文伟,程海峰,等.电镀法制备片状磁性吸收剂[J]新技术新工艺.2007,11:90-91.
    [49]孙国亮,郑文伟,程海峰,等.电镀工艺条件变化对片状铁吸收剂吸波性能的影响[J].功能材料.2007,38(A08):2972-2974.
    [50]Pierre K.High frequency electromagnetic radiation absorbent coating comprising a bingder and chips obtained from a laminate of alternating amorphous magnetic films and electrically insulating.USP5169713.1992.
    [51]Charles L B,Charles D H.Electromagnetic-power-absorbing composite comprising a crystalline ferromagnetic layer and a dielectric layer,each having a specific thickness.USP5925455.1999.
    [52]杨长胜.连续磁控溅射镀制备磁性纳米多层膜及其磁性能研究[D].国防科技大学博士学位论文.2006.
    [53]Lee D H,Yoon S Y,Kim J H,et al.Characterization of nano-oxide layer in specular spin valve multilayer[J].Thin Solid Films.2005,475:251-255.
    [54]Snoeck E,Gatel C,Serra R,et al.Experimental evidence of the spin-dependence of electrons reflections in magnetic multilayers[J].Materials Science and Engineering B.2006,126:120-125.
    [55]Wen L S,Huang R F,LiuD C,et al.Microscopic fundamentals of electromagnetic functional metal/dielectric nanocomposite multilayer films[J].Surface & Coatings Technology.2000(130):100-109.
    [56]Du H,Xiao J Q,Zou Y S,et al.Optical properties of ultrathin aluminum films deposited by magnetron sputtering in visible band[J].Optical Materials.2006,28(8-9):944-949.
    [57]刘志敏.纳米金属薄膜电磁响应特性的研究[D].中国科学院金属研究所硕士学位论文.2008.
    [58]姚赞,张秀成,江建军,等.微带微扰法测试纳米磁性膜的宽频带磁参量[J].功能材料.2006,37(s4):1166-1168.
    [59]刘成,张秀成,江建军,等.薄膜磁参量测试中的虚拟仪器技术[J].功能材料.2006,37(s4):1172-1174.
    [60]陈将伟,许卫东,杨焱,等.谐振腔方法测量金属磁性薄膜复磁导率的误差分析及改进方案[J].功能材料.2006,37(s4):968-970.
    [61]朱生宾,李永清,程海峰,等.磁性多层膜微波吸收剂的制备[J].航空材料学报.2005,25(1):36-39.
    [62]Wu M Z,Zhao Z S,He H H,et al.Preparation and microwave characteristics of magnetic iron fibers[J].Journal of Magnetism and Magnetic Materials.2000,217:89-92.
    [63]Yu M X,Li X C,Gong R Z,et al.Magnetic properties of carbonyl iron fibers and their microwave absorbing characterization as the filer in polymer foams[J].Journal of Alloys and Compounds.2008,456:452-455.
    [64]Nie Y,He H H,Zhao Z S,et al.Preparation,surface modification and microwave characterization of magnetic iron fibers[J].Journal of Magnetism and Magnetic Materials.2006,306(1):125-129.
    [65]Li X C,Gong R Z,Nie Y,et al.Electromagnetic properties of Fe_(55)Ni_(45) fiber fabricated by magnetic-field-induced thermal decomposition[J].Materials Chemistry and Physics.2005,94:408-411.
    [66]刘爱祥,茹淼焱,孟凡君等.多晶铁纤维的合成及微波吸收性能的研究[J].无机化学学报.2004,20(3):385-362.
    [67]Chu Z Y,Cheng H F,Zhou Y J,et al.Formation mechanism of connected polycrystalline iron fibres by pyrolysis of iron carbonyl in magnetic field[J].Materials Science and Technology.2006,22(1):72-76.
    [68]涂国荣,周晓华,杜光旭,等.化学气相热解制备纳米铁纤维[J].功能材料.2006,37(s4):1198-1200.
    [69]涂国荣,周晓华,党海军,等.化学气相热解技术制备螺旋状铁纤维[J].稀有金属材料与工程.2005,34(s2):120-123.
    [70]Xie W,Cheng H F,Chu Z Y,et al.Effect of surface modification on microwave absorbing properties of magnetic metal fibers[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.2007,22(2):218-220.
    [71]Cheng H F,Xie W,Chu Z Y,et al.Effect of grinding techniques on microwave characteristics of short iron fibers[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.2007,22(3):400-403.
    [72]Li G,Hu G G,Zhou H D,et al.Attractive microwave-absorbing properties of La_(1-x)Sr_xMnO_3manganite powders[J].Materials Chemistry and Physics.2002,75:101-104.
    [73]Sharma R,Agarwala R C,Agarwala V.Development of electroless(Ni-P)/BaNi_(0.4)Ti_(0.4)Fe_(11.2)O_(19)nanocomposite powder for enhanced microwave absorption[J].Journal of Alloys and Compounds.doi:10.1016/j.jallcom.2007.11.141.
    [74]Ghasemi A,Liu X X,Morisako A.Magnetic and microwave absorption properties of BaFe_(12-x)(Mn_(0.5)Cu_(0.5)Zr)_(x/2)O_(19) synthesized by sol-gel processing[J].Journal of Magnetism and Magnetic Materials.2007,316:e105-e108.
    [75]Peng C H,Hwang C C,Wan J,et al.Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane(TPU)-bonded NiZn-ferrites prepared by combustion synthesis method[J].Materials Science and Engineering B.2005,117:27-36.
    [76]Alexandre R B,Maria L G,Maria C S.Microwave-absorbing properties of Ni_(0.50-x)Zn_(0.50-x)Me_(2x)Fe_2O_4(Me=Cu,Mn,Mg) ferrite-wax composite in X-band frequencies[J].Journal of Magnetism and Magnetic Materials.2008,320:864-870.
    [77]Lima U R,Nasar M C,Nasara R S,et al.Ni-Zn nanoferrite for radar-absorbing material[J].Journal of Magnetism and Magnetic Materials.2008,320:1666-1670.
    [78]Wu K H,Ting T H,Liu C I,et al.Electromagnetic and microwave absorbing properties of Ni_(0.5)Zn_(0.5)Fe_2O_4/bamboo charcoal core-shell nanocomposites[J].Composites Science and Technology.2008,68:132-139.
    [79]Zhang LY,Li Z W.Synthesis and characterization of SrFe_(12)O_(19)/CoFe_2O_4 nanocomposites with core-shell structure[J].Journal of Alloys and Compounds.2008,456:220-223.
    [80]Leland R W,Charles D H,Ronald W S.Electromagnetic radiatio suppression cover.US P4814546.1989.
    [81]罗发.高温吸波材料的制备及性能研究[D].西北工业大学博士学位论文.2001.
    [82]莫美芳,付孙靖.从海湾战争看国外隐身飞机和隐身技术的发展[J].国外航空技术:飞机类.1992,3:33-40.
    [83]王秀春.国外隐身技术的最新进展[J].隐身技术.1993,4:68.
    [84]Suzuki M,Hasegawa Y,Aizawa M.Characterization of silicon carbide-silicon nitride composite ultrafine particles synthesized using a CO_2 laser by silicon 2p magic angle spinning NMR and ESR[J].J.Am.Ceram.Soe.1995,78(1):83-87.
    [85]Colomban P.Sol-gel control of the micro of functional ceramic-ceramic and metal-ceramic composite[J].Materials Research Society.1998,13(4):803-805.
    [86]范真祥,程海峰,张长瑞,等.热防护材料的研究进展[J].材料导报.2005,19(1):13-16.
    [87]Zou T C,Shi C S,Zhao N Q,et al.Microwave absorbing properties of the Archimedean plane spiral antenna array/epoxy resin composites[J].Materials Science and Engineering B.2007,142:51-54.
    [88]Fan H L,Yang W,Chao Z M.Microwave absorbing composite lattice grids[J].Composites Science and Technology.2007,67:3472-3479.
    [89]Liu H T,Cheng H F,Chu Z Y,et al.Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches[J].Materials and Design.2007,28:2166-2171.
    [90]刘海韬.基于容性频率选择表面单层雷达吸波材料设计、制备及其吸波性能研究[D].国防科技大学硕士学位论文.2006.
    [91]李小秋,卢俊,贾宏燕,等.具有双频段的十字形复合单元频率选择表面[J].红外与毫米波学报.2007,26(2):146-148.
    [92]Lee S W,Zarrillo G,Law C L.Simple formulas for transmission through periodic grids or plate[J].IEEE Trans on Antennas Propagation.1982,30(5):904-909.
    [93]Wang Z L.Frequency-selective surface for microwave power transmission[J].IEEE Trans on Microwave Theory and Technique.1999,47(10):2039-2042.
    [94]饶克谨,赵伯琳,高正平.电路模拟吸收材料-原理特性及设计方法[J].电子科技大学学报.1995,24(12):164-170.
    [95]高正平,华宝家,董恩昌.电路模拟多层雷达吸波材料设计[J].宇航材料工艺.1996,26(3):20-23.
    [96]高正平,饶力.电路模拟技术在吸波结构中的应用[J].电子科技大学学报.1998,27(2):136-139.
    [97]蒋诗才,邢丽英,张宝艳.电路模拟结构在结构吸波材料中的应用探索研究[J].材料工程.2003,(7):23-25.
    [98]邢丽英.含电路模拟结构吸波复合材料研究[D].北京航空航天大学博士学位论文.2003.
    [99]Tellakula R A,Sha Y,K.Vinoy J,et al.Carbon nanotubes,fillers,and FSS as potential EM absorbers[J].Smart Structures and Materials:Smart Electronics,MEMS,BioMEMS,and Nanotechnology,SPIE,2003,5055:356-363.
    [100]Ye C F,Li E P.Finite Difference Time Domain simulation for multi-layer microwave absorber with frequency selective surface[J].IEEE Trans on Electromagnetic Compatibility.3rd International Symposium,2002:417-419.
    [101]Sha Y,Jose K A,Neo C P,et al.Experimental investigations of microwave absorber with FSS embedded in carbon fiber composites[J].Microwave and Optical Technology Letters.2002,32(4):245-249.
    [102]Jose K A,Sha Y,Varadan V K,et al.FSS embedded microwave absorber with carbon fiber composite[J].IEEE Trans on Antennas and Propagation Society International Symposium.2002:576-579.
    [103]聂彦,冯则坤,张秀成,等.FSS在吸波材料中应用的实验研究[J].华中科技大学学报:自然科学版.2004,32(5):50-52.
    [104]Tennant A,Chambers B.Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J].Smart Mater Struct.2004,13:122-125.
    [105]Tennant A,Chambers B.A single-Layer tunable microwave absorber using an active FSS[J].IEEE Trans on Microwave and Wireless Components Letters.2004,14(1):46-47.
    [106]Tennant A,Chambers B.Experimental broadband single layer PSS using reactive impedance switching[J].Electronics Letters.2003,39(1):121-122.
    [107]Smith D R,Schultz S.Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J].Physical Review B.2002,65:195104.
    [108]Pendry J B,Holden A J,Stewart W J.Extremely Low Frequency Plasmons in Metallic Mesostructures[J].Physical Review Letters.1996,76:4773-4776.
    [109]Smith D R,Vier D C,Padilla W,et al.Loop-wire medium for investigating plasmons at microwave frequencies[J].Applied Physics Letters.1999,75:1425-1427.
    [110]Pendry J B.Negative Refraction Makes a Perfect Lens[J].Physical Review Letters.2000,85:3966-3969.
    [111]燕保荣,孔令华,胡希伟.超颖材料在隐身方面的应用进展[J].功能材料.2007,38(A08):3093-3096.
    [112]Landy N I,Sajuyigbe S,Mock J J,et al.Perfect Metamaterial Absorber[J].Physical Review Letters.2008,100:207402.
    [113]Ramakrishna S A.Pendry J B.Removal of absorption and increase in resolution in a near-field lens via optical gain[J].Physical Review B.2003,67,201101.
    [114]Fu W Y,Liu S K,Fan W H,et al.Hollow glass microspheres coated with CoFe_2O_4 and its microwave absorption property[J].Journal of Magnetism and Magnetic Materials.2007,316:54-58.
    [115]Shukla S,Seal S,Akesson J,et al.Study of mechanism of electroless copper coating of fly-ash cenosphere particles[J].Applied Surface Science.2001,181:35-50.
    [116]Zeng A X,Xiong W H,Xu J.Electroless Ni-Co-P coating of cenospheres using[Ag(NH_3)_2]~+activator[J].Materials Letters.2005,59:524-528.
    [117]Zeng A X,Xiong W H,Xu J.Electroless Ni-P coating of cenospheres using silver nitrate activator[J].Surface & Coating Technology.2005,1 97:142-147.
    [118]曾爱香.空心微珠复合吸波材料的研究[D].华中科技大学博士学位论文.2004.
    [119]唐耿平,程海峰,赵建峰,等.空心微珠表面改性及其吸波特性[J].材料工程.2005,6:11-12.
    [120]黄云霞,曹全喜,李智敏,等.空心微球表面化学镀Co/Co-Fe薄膜制备及其微波吸收性能[J].稀有金属材料与工程.2007,36(6):1095-1098.
    [121]黄云霞,曹全喜,李智敏,等.空心微球表面化学镀Ni薄膜的工艺研究[J].稀有金属材料与工程.2007,36(S1):950-953.
    [122]Phang S W,Daik Rusli,Abdullah M H.Poly(4,4'-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer[J].Thin Solid Films.2005,477:125-130.
    [123]Olmedo L,Hourquebie P.Jousse F.Microwave Properties of Conductive Polymers[J].Synthetic Metals.1995,69:205-208.
    [124]Hourouebie P,Blondel B,Dhume S.Microwave and optical properties of soluble conducting polymers[J].Synthetic Metals.1997,85:1437-1438.
    [125]Phang S W,Hino T,Abdullah M H,et al.Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials[J].Materials Chemistry and Physics.2007,104:327-335.
    [126]陈志彦,王军,李效东,等.连续含铁碳化硅纤维及其结构吸波材料的研制[J].复合材料学报.2007,24(5):72-76.
    [127]王军.含过渡金属的碳化硅纤维的制备及其电磁性能[D].国防科学技术大学博士学位论文.1997.
    [128]Zhang H T,Zhang J S,Zhang H Y.Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band[J].Composites:Part A.2007,38:602-608.
    [129]Li Y J,Wang R,Qi F M,et al.Preparation,characterization and microwave absorption properties of electroless Ni-Co-P-coated SiC powder[J].Applied Surface Science.2008,254:4708-4715.
    [130]Peng Z H,Peng J C,Peng Y F,et al.Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes[J].Physica E.2008,40:2400-2405.
    [131]Zhao D L,Li X,Shen Z M.Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ag nanowires[J].Materials Science and Engineering B.2008,150:105-110.
    [132]Zhao D L,Li X,Shen Z M.Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes[J].Journal of Alloys and Compounds.doi:10.1016/j.jallcom.2008.03.127.
    [133]Lin H Y,Zhu H,Guo H F,et al.Microwave-absorbing properties of Co-filled carbon anotubes[J].Materials Research Bulletin.2007,43:2697-2702.
    [134]Zhao D L,Li X,Shen Z M.Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes [J].Composites Science and Technology.2008,doi:10.1016/j.compscitech.2007.10.006.
    [135]Lin H Y,Zhu H,Guo H F,et al.Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes[J].Materials Letters.2007,61:3547-3550.
    [136]Fan Z J,Luo G H,Zhang Z F,et al.Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites[J].Materials Science and Engineering B.2006,132:85-89.
    [137]Che R C,Peng L M,Duan X F,et al.Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J].Adv.Mater.2004,16(5):401-405.
    [138]Sreekumar T V,Liu T,Min B G,et al.Polyacrylonitrile single-walled carbon nanotube composite fibers[J].Adv.Mater.2004,16(1):58-61.
    [139]Fan Y Z,Yang H B,Liu X Z,et al.Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite[J].Journal of Alloys and Compounds.2008,461:490-494.
    [140]Kim J B,Lee S K,Kim C G.Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band[J].Composites Science and Technology.2007,doi:10.1016/j.compscitech.2007.10.035.
    [141]Wu K H,Ting T H,Wang G P,et al.Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites[J].Polymer Degradation and Stability,2008,93:483-488.
    [142]Zheng T L,Wang Y H,Zheng K Y,et al.Electromagnetism and Absorptivity of the Modified Micro-coiled Chiral Carbon Fibers[J].Chinese Journal of Aeronautics.2007,20:559-563.
    [143]Zhao D L,Shen Z M.Preparation and microwave absorption properties of carbon nanocoils[J].Materials Letters.2008.62:3704-3706.
    [144]高文,冯志海,黎义,等.涂层改性碳纤维复合材料的微波性能研究[J].宇航材料工艺.2000,5:53-57.
    [145]Zabetakis D,Dinderman M,Schoen P.Metal-coated cellulose fibers for use in composites application to microwave technology[J].Adv Mater.2005,17(6):734-738.
    [146]哈恩华,黄大庆,丁鹤雁.新型轻质雷达吸波材料的应用研究及进展[J].材料工程.2006.3:55-59.
    [147]李享成,龚荣洲,冯则坤,等.具有雷达波吸收功能的纤维类吸波材料研究[J].舰船电子工程.2004,24(电磁兼容性研究专辑):232-236.
    [148]Chung D D L.Electromagnetic interference shielding effectiveness of carbon materials [J].Carbon.2001,39:279-285.
    [149]Zhang S Q,Huang C G,Zhou Z Y,et al.Investigation of the microwave absorbing properties of carbon aerogels[J].Materials Science and Engineering B.2002,90:38-41.
    [150]周春华,袁书强,高娃,等.隐身材料技术研究进展及发展趋势[J].功能材料.2006,37(增刊):875-879.
    [151]付正芳,王庆瑞,王曙中.中空活性碳纤维概述[J].高科技纤维与应用.2003,28(5):32-35.
    [152]石颖,查庆芳,朱星明,等.一种新型的炭材料-中空炭纤维[J].新型炭材料.1995,2:1-8.
    [153]Pan C,Ge L Q,Gu Z Z.Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning[J].Comp.Sci.Tech.2007,67:3271-3277.
    [154]Mikhail E.Kozlov,Ryan C.Capps,William M.Sampson,et al.Spinning Solid and Hollow Polymer Free Carbon Nanotube Fibers[J].Advanced Materials.2005,17(5):614-617.
    [155]Yang M C,Chou M T.Effect of post-drawing on the mechanical and mass transfer properties of polyacrylonitrile hollow fiber membranes[J].J Membrane Sci.1996,116:279-291.
    [156]Yu D G,Chou W L,Yang M C.Effect of bore liquid temperature and dope concentration on mechanical properties and permeation performance of polyacrylonitrile hollow fibers[J].Sep.Purif.Tech.2006,51:1-9.
    [157]Jiang L Y,Chung T S,Rajagopalan R.Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers[J].Carbon.2007,45:166-172.
    [158]Li L,Hu B.Hollow-fibre liquid phase microextraction for separation and preconcentration of vanadium species in natural waters and their determination by electrothermal vaporization-ICP-OES[J].Talanta.2007,72:472-479.
    [159]Tsai H A,Ciou Y S,Hu C C,et al.Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes[J].J Membrane Sci.2005,255:33-47.
    [160]Han G C,Marilyn L M,Asif R,et al.Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers[J].Polymer.2007,48:3781-3789.
    [161]Kokaji K,Oya A,Maruyama K,et al.Carbonization and graphitization behavior of decacyclene[J].Carbon.1997,35(2):253-258.
    [162]Shinn-Shyong T,Pan J H.Oxidative stabilization of petroleum pitch at high pressure and its effects on the microstructure and carbon yield after carbonization/graphitization[J].Mater.Chem.Phys.2002,74:214-221.
    [163]Linda V,Boris L,Inbal D,et al.Processing and characterization of extruded drawn MWNT-PAN composite filaments[J].Comp:A.2007,38:1354-1362.
    [164]Tin P S,Xiao Y C,Chung T S.Polyimide-carbonized membranes for gas separation:structural,composition and morphological control of precursors[J].Separation & Purification Reviews.2006,35:285-318.
    [165]Gerald A Z,Bernd S,Notburga G.et al.A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy[J].Carbon.2006,44:3239-3246.
    [166]Cla'udio de Almeida Filho,Aldo J.G.Zarbin.Hollow porous carbon microspheres obtained by the pyrolysis of TiO_2/poly(furfuryl alcohol) composite precursors[J].Carbon.2006,44:2869-2876.
    [167]孙俊芬.聚丙烯腈基活性中空炭纤维结构和性能的研究[D].东华大学博士学位论文.2004.
    [168]朱群玉.聚丙烯腈基活性中空炭纤维的制备和性能研究[D].东华大学博士学位论文.2005.
    [169]Sun J F,Wu G X,Wang Q R.The effects of carbonization time on the properties and structure of PAN-based activated carbon hollow fiber[J].J Mater Sci,2005,40:663-668.
    [170]付正芳.聚丙烯腈基中空活性炭纤维的制备及储氢性能的研究[D].东华大学硕士学位论文.2005.
    [171]孙俊芬,武利顺,吴光香,等.聚丙烯腈基中空炭膜的研究发展[J].合成技术及应用.2003.18(3):20-23.
    [172]杜启云,程博闻,崔永芳,等.碳中空纤维膜的研究现状及发展趋势[J].天津纺织工学院学报.2000.20(2):79-83.
    [173]程博闻,李树锋,杜启云,等.碳中空纤维膜用聚丙烯腈共聚物的合成[J].合成技术及应用.2003.18(1):1-4.
    [174]Su J C,Lua A C.Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton(?) polyimide[J].J.Membrane Sci.2007,305:263-270.
    [175]Favvas E P,Kapantaidakis G C,Nolan J W.Preparation,characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid(?) 5218 precursor[J].Journal of Materials Processing Technology.2007,186:102-110.
    [176]沈新元,王庆瑞,陈雪英,等.聚丙烯腈中空纤维膜的纺制及其应用[J].合成纤维.1989,6:14-18.
    [177]Yang M C,Yu D G.Influence of oxidation conditions on PAN-based activated hollow carbon fiber[J].Textiet Research Journal.1996,66(2):115-121.
    [178]Yang M C,Yu D G.Influence of activation temperature on the properties of polyaerylonitrile-based activated carbon hollow fiber[J].Journal of Applied Polymer Science.1998,68(8):1331-1336.
    [179]贺福编著.碳纤维及其应用技术[M].北京:化学工业出版社.2004.
    [180]周永江.PAN基吸波纤维和吸波结构的研究[D].国防科技大学硕士学位论文.2002.
    [181]曹义.单层薄层宽频雷达吸波材料研究[D].国防科技大学硕士学位论文,2003.
    [182]赵海发,秦柏,胡德宁,等.单涂层吸波材料匹配设计及偏差研究[J].哈尔滨工业大学学报.1993,25(6):24-29.
    [1]Jiang L Y,Chung T S,Rajagopalan R.Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers[J].Carbon.2007,45:166-172.
    [2]孙俊芬.聚丙烯腈基活性中空炭纤维结构和性能的研究[D].东华大学博士学位论文.2004.
    [3]Yang M C,Chou M T.Effect of post-drawing on the mechanical and mass transfer properties of polyacrylonitrile hollow fiber membranes[J].J Membrane Sci.1996,116:279-291.
    [4]付正芳.聚丙烯腈基活性中空炭纤维的制备及储氢性能的研究[D].东华大学.2005.
    [5]贺福.用拉曼光谱研究碳纤维的结构[J].高科技纤维与应用.2005,30(6):20-25.
    [6]John K L,Judith V J,Sekaran G.Electrical conductivity study of porous carbon composite derived from rice husk[J].Mater Chem Phys.2005,91:471-476.
    [7]Zabetakis D,Dinderman M,Schoen P.Metal-coated cellulose fibers for use in composites application to microwave technology[J].Adv.Mater.2005;17(6):734-738.
    [8]刘培生.多孔材料比表面积和孔隙形貌的测定方法[J].稀有金属材料与工程.2006,35(s2):25-29.
    [9]刘培生著.多孔材料引论[M].北京:清华大学出版社.2004.
    [10]吴明忠.介质材料和磁性材料的射频和微波电磁参数的测量方法研究[D].同济大学博士后论文.2001.
    [11]Seo S I1,Chin W S,Lee D G.Characterization of electromagnetic properties of polymeric composite materials with free space method[J].Composite Structures 66(2004) 533-542
    [12]唐宗熙,张彪.用自由空间法测试介质电磁参数[J].电子学报.2006.34(1):189-192.
    [13]Eva H,Andrew A,Akif K.Dielectric characterization of conducting textiles using free space transmission measurements:Accuracy and methods for improvement[J].Synthetic Metals.2007,157:1054-1063.
    [14]Vanzura E J,Baker-Jarvis J R,Grosvenor J H,et al.Intercomparision of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines[J].IEEE Trans.Microwave Theory Yech..1994,42(11):2063-2070.
    [15]何山.雷达吸波材料性能测试[J].材料工程.2003,6:25-28.
    [1]肖高智,华宝家,杨建生.薄壁型结构吸波材料电结构设计研究[J].宇航材料工艺.1992,3:29-34.
    [2]刑丽英,刘俊能.蜂窝夹层结构吸波材料研究[J].材料工程.1992,6:15-18.
    [3]曹克广.国外微波隐身材料的发展及现状[J].抚顺石油学院学报.1997,17(2):29-32.
    [4]鹿海军,赵亮,高志强,等.轻质结构吸波复合材料的研究进展[J].功能材料.2006,37(s4):1148-1152.
    [5]赵东林,周万城.结构吸波材料及其结构形式设计[J].兵器材料科学与工程.1997,20(6):53-57.
    [6]刘培生著.多孔材料引论[M].北京:清华大学出版社.2004.
    [7]曹辉.结构吸波材料及其应用前景[J].宇航材料工艺.1993,4:34-37.
    [8]华宝家,肖高智,杨建生,等.碳纤维在结构隐身材料中的应用研究[J].宇航材料工艺.1994,3:31-34.
    [9]史俊芳.薄壁型多层结构吸波材料研究[J].宇航材料工艺.1989,4-5:61-65.
    [10]Zabetakis D,Dinderman M,Schoen R Metal-coated cellulose fibers for use in composites application to microwave technology[J].Adv.Mater.2005,17(6):734-738.
    [11]Lou X W,Archer L A,Yang Z C.Hollow Micro-/Nanostructures:Synthesis and Applications[J].Adv.Mater.2008,20:1-33.
    [12]姜勇刚.C形、中空截面碳化硅纤维的制备[D].国防科技大学硕士学位论文.2003.
    [13]杜纪柱,刘顺华.炭包EPS空心导电球吸波机理讨论[J].材料科学与工程学报.2007,25(1):129-131.
    [14]唐耿平,程海峰,赵建峰,等.空心微珠表面改性及其吸波特性[J].材料工程.2005,6:11-12.
    [15]周永江.基于FDTD方法的等效电磁参数研究及吸波涂层优化设计[D].国防科技大学博士学位论文.2006.
    [16]葛副鼎,朱静,陈利民.超微颗粒吸收与散射截面[J].电子学报.1996,24(6):82-86.
    [17]Michielessen E,Michel J,Ranjithan S,et al.Design of lightweight,broad-band microwave absorbers using genetic algorithms[J].IEEE Transaction on microwave theory and techniques.1993,41(6-7):1024-1031.
    [18]温月芳,曹霞,杨永岗,等.PAN预氧化纤维的炭化过程[J].新型炭材料.2008,23(2):121-126.
    [1]Tsai H A,Ciou Y S,Hu C C,et al.Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes[J].Journal of Membrane Science.2005,255:33-47.
    [2]Stephen D,Frank H,Peter M B.Thermal stabilization of polyacrylonitrile fibres[J].Polymer.1999.40:5531-5543.
    [3]Yang M C,Yu D G.Influence of activation temperature on the prope rties of polyaerylonitrile-based activated carbon hollow fiber[J].Journal of Applied Polymer Science.1998,68(8):1331-1336.
    [4]Yang M C,Yu D G.Influence of oxidation conditions on PAN-based activated hollow carbon fiber[J].Textiet Research Journal.1996,66(2):115-121.
    [5]Sun J F,Wu G X,Wang Q R.The effects of carbonization time on the properties and structure of PAN-based activated carbon hollow fiber[J].J Mater.Sci.2005,40:663-668.
    [6]Sun J F,He C J,Zhu S J,et al.Effects of Oxidation Time on the Structure and Properties of Polyacrylonitrile-Based Activated Carbon Hollow Fiber[J].Journal of Applied Polymer Science.2007,106:470-474.
    [7]贺福编著.碳纤维及其应用技术[J].北京:化学工业出版社.2004.
    [8]温月芳,曹霞,杨永岗,等.PAN预氧化纤维的炭化过程[J].新型炭材料.2008,23(2):121-126.
    [9]孙俊芬.聚丙烯腈基活性中空炭纤维结构和性能的研究[D].东华大学博士学位论文.2004.
    [10]朱群玉.聚丙烯腈基活性中空炭纤维的制备和性能研究[D].东华大学博士学位论文.2005.
    [11]刘培生著.多孔材料引论[J].北京:清华大学出版社.2004.
    [12]宋岩,席聪,陈光德,等.Au_2S复合纳米球壳微粒的空腔谐振及参量讨论[J].光学学报.2002,22(11):1392-1395.
    [1]周永江.PAN基吸波纤维和吸波结构的研究[D].国防科技大学硕士学位论文.2002.
    [2]吴明忠,赵振声,何华辉.多品铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J].功能材料.1999,30(1):91-93.
    [3]吴明忠,赵振声,何华辉.长径比对多晶铁纤维吸收剂微波电磁参数的影响[J].磁性材料及器件.1997,28(4):22-25.
    [4]张秀成,何华辉.长径比对铁纤维涂层反射率的影响研究[J].华中科技大学学报.2001,29(2):14-15.
    [5][法]科埃略著,吕景楼,李守义译.电介质物理学(工科用)[M].北京:科学出版社.1984.
    [6]邹田春,赵乃勤,师春生,等.微量碳纤维/树脂复合吸波材料的研究[J].功能材料.2005,36(11):1689-1692.
    [7]邹田春,赵乃勤,师春生.活性碳纤维/树脂复合吸波材料的设计[J].功能材料与器件学报.2007,13(1):54-58.
    [8]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社.1989.
    [9]赵东林.耐高温雷达波吸收剂的制备及其性能研究[D].西北工业大学博士学位论文.1999.
    [10]杜纪柱,刘顺华.炭包EPS空心导电球吸波机理讨论[J].材料科学与工程学报.2007,25(1):129-131.
    [11]吕述平,刘顺华,赵彦波.谐振型吸波材料的理论分析与实验研究[J].材料科学与工程学报.2006,24(1):135-138.
    [12]Shim J,Kim H T.Design of wave absorber for small conducting sphere[J].Electronics Letters.1998,34(19):1833-1834.
    [13]宋岩,席聪,陈光德,等.Au_2S复合纳米球壳微粒的空腔谐振及参量讨论[J].光学学报.2002,22(11):1392-1395.
    [14]刘顺华,刘军民,董星龙,等编著.电磁波屏蔽及吸波材料[M].北京:化学工业出版社.2007.
    [1]Michielessen E,MichelSajer J,Ranjithan S,et al.Design of lightweight,broad-band microwave absorbers using genetic algorithms[J].IEEE Transaction on microwave theory and techniques.1993,41(6-7):1024-1031.
    [2]Jose P,Lawrence S C.Design of broad-band radar-absorbing materials for large angles of incidence[J].IEEE Transactions on electromagnetic compatibility.1993,35(2):223-230.
    [3]Myung J P,Jaeho C,Sung S K.Wide Bandwidth Pyramidal Absorbers of Granular Ferrite and Carbonyl Iron Powders[J].IEEE Transaction on magnetics.2000,36(5):3272-3274.
    [4]John L.Broadband Magnetic Microwave Absorbers:Fundamental Limitations[J].IEEE Transactions on magnetics.1993,29(6):4209-4214.
    [5]尹光俊,廖绍彬.单层吸波材料的设计[J].磁性材料及器件.1991,22(3):8-9.
    [6]梁昌洪,赵向阳,胡小培,等.电磁波斜入射到单层吸波材料上的最佳吸收条件[J].应用科学学报.1992,10(4):283-287.
    [7]刘列,张明雪,胡连成,等.薄、轻、宽吸波涂层的优化设计[J].宇航材料工艺.1996,4:8-11.
    [8]Yu X L,Zhang X C,He H H et al.Simulation and design for stratified iron fiber absorbing materials[J].Materials and Design.2002,23:51-57.
    [9]廖绍彬,尹光俊.吸波材料对电磁波的吸收与反射[J].宇航材料工艺.1992,2:16-20.
    [10]崔晓冬,刘顺华,管洪涛,等.双层吸波材料吸波特性研究[J].材料科学与工程学报.2006,24(5):725-729.
    [11]Luo F,Zhu D M,Zhou W C.A two-layer dielectric absorber covering a wide frequency range[J].Ceramics International.2007,33:197-200.
    [12]马成勇,程海峰,唐耿平,等.三层雷达吸波涂层的吸波性能研究[J].材料工程.2008,1:11-13.
    [13]Cao M S,Zhu J,Yuan J,et al.Computation design and performance prediction towars a multi-layer microwave absorber[J].Materials and Design.2002,23:557-564.
    [14]Yuan J,Xiao G,Cao M S,et al.A novel method of computation and optimization for multi-layered radar absorbing coating using open source software[J].Materials and Design.2006,27:45-52.
    [15]何燕飞,龚荣洲,李享成,等.多层复合吸波材料的制备及其吸波性能[J].无机材料学报.2006,21(6):1449-1453.
    [16]余燕,苏文华.多层吸波材料的优化设计[J].东北电力学院学报.1999,19(2):96-100.
    [17]曹茂盛,房晓勇.多涂层吸波体的计算机智能化设计[J].燕山大学学报.2001,25(1):9-13.
    [18]唐宏,赵晓鹏,邢丽英,等.多层吸波材料的数值优化设计[J].微波学报.2003,19(3):55-58.
    [19]张海丰.多涂层吸波材料吸波特性的研究[D].哈尔滨工业大学硕士学位论文.2003.
    [20]张海丰,周忠祥,秦柏,等.“广义匹配规律”在多涂层吸波材料设计中的应用[J].哈尔滨工业大学学报.2003,35(9):1140-1143.
    [21]Sha Y,Jose K A,Neo C P,et al.Experimental investigations of microwave absorber with FSS embedded in carbon fiber composites[J].Microwave and Optical Technology Letters.2002,32(4):245-249.
    [22]Jose K A,Sha Y,Varadan V K,et al.FSS embedded microwave absorber with carbon fiber composite[J].IEEE Trans on Antennas and Propagation Society International Symposium.2002:576-579.
    [23]Liu H T,Cheng H F,Chu Z Y,et al.Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches[J].Materials and Design.2007,28:2166-2171.
    [24]邢丽英.含电路模拟结构吸波复合材料研究[D].北京航空航天大学博士学位论文.2003.
    [25]王军等.以异型碳化硅纤维为吸收剂的结构吸波材料设计[J].材料工程.2000,7:27-29.
    [26]周永江.PAN基吸波纤维和吸波结构的研究[D].国防科技大学硕士学位论文.2002.
    [27]饶克谨,赵伯琳,高正平.吸波纤维层板的等效电磁参数研究[J].隐身技术.1999,3:2-5.
    [28]曹义.单层薄层宽频雷达吸波材料研究[D].国防科技大学硕士学位论文.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700