用户名: 密码: 验证码:
弹载SAR制导技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代武器对高精度和复杂背景下自动目标选择能力的需求,将SAR应用于导弹平台进行主动二维成像制导日益受到重视。与机载和星载SAR相比较,弹载SAR需要解决由其应用任务和平台的不同而产生的一些特殊问题,论文围绕曲线弹道SAR成像、摆动目标成像、弹体定位、目标定位以及抗干扰等弹载SAR制导技术走向应用亟需解决的关键问题开展研究。
     论文首先介绍了目前主要的弹载SAR制导系统,综述了弹载SAR制导技术的发展现状,分析了需要解决的问题:横向机动或俯冲引起的曲线航迹成像、恶劣海情下摆动舰船成像、基于单特征点单次观测的导弹定位、基于距离-多普勒的目标定位和抗干扰等。
     针对导弹横向规避或俯冲等机动引起的孔径非直线问题,首先分析了机动引入的相位误差,给出了曲线弹道补偿的定量条件;然后分析了横向规避和俯冲弹道条件下弹载SAR回波信号的特点,在合理近似的基础上,提出了基于距离-多普勒算法的横向规避和俯冲航迹弹载SAR成像方法,与直线孔径下的距离-多普勒算法相比,仅仅是修改了部分相位因子,没有因为孔径的非直线而增加成像算法的复杂度。
     针对恶劣海情下摆动舰船的成像问题,采用钟摆作为舰船的运动模型建立了摆动目标的回波信号模型;分析了摆动对回波信号调制的特点,得出了散射点三次相位误差的主要来源是相对速度在视线方向上的投影、中心频率偏移大的分量存在明显的三次相位项的结论;基于此结论提出了基于分数阶傅立叶变换和三次相位误差补偿的成像方法,先进行子孔径分数阶傅立叶变换检测各散射点并估计中心频率和调频率,然后进行全孔径分数阶傅立叶变换并构造带通滤波器分离各散射点信号,再估计三次相位误差进行补偿,在补偿后根据子孔径分数阶傅立叶变换对调频率的估计进行成像。
     针对导弹定位中可用图像少、数据率低和定位信息不足的问题,提出了高度信息辅助的基于单特征点单次距离-多普勒观测的导弹位置估计方法。采用发射点惯性坐标系作为导航坐标系推导了远程导弹位置求解的解析表达式,给出了详细的定位流程;在不需要考虑地球自转影响时以地心直角坐标系为导航坐标系推导了导弹位置求解的简化表达式;定量分析了高度测量对定位误差的影响,提出了通过加装一部天线作为测高通道的INS/双天线SAR组合导弹定位思路,通过估计弹下点高程提高了导弹定位精度。
     针对利用距离-多普勒估计弹目相对位置的问题,分析了不同弹道下弹目相对位置的可观测性,得出了要估计弹目三维相对位置导弹必须进行不“瞄准”目标机动的结论,分别研究了利用两次观测和利用观测序列的弹目相对位置估计方法,通过计算弹目相对位置估计的克拉美-罗下限分析了观测时间长度、初始弹目距离、导弹沿航向速度、垂直航向速度、沿航向加速度和垂直航向加速度对估计精度的影响,提出了INS速度输出存在偏差时的估计方法,分析了导弹匀速飞行时对视线角和视线转率的可观测性,提出了将DBS二维寻的制导和传统的单脉冲前视跟踪进行复合完成全程末制导的寻的制导技术,既利用了DBS对目标的检测和识别能力,又降低了末段对导弹制导控制系统的要求。
     针对SAR导引头抗干扰问题,提出了利用被动导引头辐射源参数测量能力和INS对成像区域“锁定”能力的对抗有源欺骗干扰和场景散射干扰方法;针对INS/被动微波/SAR复合导引头的交接班问题,通过定量描述成功交接班需要满足的条件建立了交接班成功概率的数学模型,并给出了交接班参数的求解方法。
     最后,对论文工作和研究方向的发展趋势、应用前景进行了总结,指出了需要进一步研究和解决的问题。
More and more importance is attached to the 2-D imaging guidance with missile-borne synthetic aperture radar (SAR), in order to enable modern weapons to obtain high precision and target selection capability in the complex environment. Missile-borne SAR, compared with air-borne and space-borne SAR, is faced with a few problems induced by its specific application and platform. The dissertation focuses on SAR imaging with non-linear aperture, imaging for swinging targets, missile geo-location, target location, SAR anti-jamming, and other key issues encountered in the application of SAR guidance.
     Current typical missile-borne SAR systems and the state of the art of missile-borne SAR guidance are first introduced. Then we present a few topics such as non-linear aperture SAR induced by its transversal or vertical motion components, missile geo-location based on a single prominent point and a single measurement, range-Doppler based target location, and the anti-jamming.
     For the non-linear aperture problem, the maneuver induced phase error the compensation condition for non-linear aperture are first analyzed, followed by the analysis of the characteristics of non-linear missile-borne SAR returns. A range-Doppler processing for missile-borne SAR maneuvering transversally and vertically, respectively, is presented with rational approximation performed, in which only a few phase factors are modified and no additional computation load is brought compared to the range-Doppler algorithm for the linear aperture.
     For the SAR imaging under atrocious sea conditions, the pendulum model is employed to model the echo of swinging targets. The characteristics of echo induced by the swinging are analyzed, with the conclusion that cubic phase error results mainly from the radial velocity, and is remarkable for large Doppler centroid. Thus an imaging algorithm is proposed based on fractal Fourier transform (FrFT) and cubic phase error compensation. Specifically, FrFT with sub-aperture data is performed for the detection and estimation of the Doppler rate and Doppler centroid for the scatters. In what follows, FrFT with full-aperture data is carried out and bandpass filters are designed to separate the echoes of different scatters. Cubic phase error is then compensated while the separated target is focused using its Doppler rate estimated by FrFT.
     For the problems of few applicable images, low dada rate, and insufficient information for location, a missile geo-location method is presented, which utilizes additional height data and a single measurement for range-Doppler of a single scatter. The close form of the missile position and the detailed location flowchart are given in the inertial launching-point coordinate frame. Simplified expressions for missile positions are derived, with the earth centered (second) equator frame as the navigation frame, when earth rotation induced effects are disregarded. Furthermore, effects of missile height measurements on the location are also quantificationally analyzed. In the end, an INS/dual-aperture-SAR combined geo-location method is presented, which requires an additional antenna. Missile geo-location precision is improved via the altitude estimation for the ground point under the missile.
     For the estimation of the missile-target relative position using range-Doppler information, we analyze the observability of the relative position for different trajectories, concluding that the missile must have the acceleration component not‘aimming at target’to obtain the 3-D relative position of the target. Additionally, the relative position estimation methods, using two measurements and measurement series, respectively, are presented. The computation of Crammer-Rao bound gives the effects on the relative position estimation induced by the series length, the initial missile-target range, the cross-range and radial velocity of the missile, and the cross-range and radial acceleration of the missile, respectively. The estimation method is also presented with INS error into account. The observability of the aspect angles and their rates are analyzed when the missile flies a linear path with constant velocity. Finally, a new homing guidance technique is proposed which combines (Doppler Beam Sharpening) DBS guidance and monopulse tracking in the terminal course. The technique would utilize DBS’s detection and recognition capabilities, and reduce the requirement for the guidance system.
     For the anti-jamming of SAR seekers, the techniques to anti deceptive-jamming and anti scattering-wave-jamming are presented, which employ the measurability of passive seekers for emitter parameters and the‘locking on’ability of (Inertial Navigation System) INS for imaged scenes. For the handover encountered by the INS/passive radar/SAR seeker, additionally, the model for successful handover is established by quantificationally representing the required constraints for successful handover, and the method for finding handover parameters is also discussed.
     Finally, related work and its developing trend as well as potential applications are summarized, while problems to be resolved in further are also given in the end.
引文
[1]张澄波.综合孔径雷达-原理、系统分析及应用[M].北京:科学出版社, 1989.
    [2]高烽.合成孔径雷达导引头技术[J].制导与引信. 2004, 25(1): 1-4
    [3]高社生,李华星. INS/SAR组合导航定位技术与应用[M].西安:西北工业大学出版社, 2004.
    [4]金振山,申功勋.适合于航空应用的INS/CNS/Doppler组合导航系统研究[J].中国惯性技术学报. 2004, 12(2): 31-35
    [5]金振山,申功勋.适合于机动弹道导弹的星光-惯性组合制导系统研究[J].航空学报. 2005, 26(2): 168-172
    [6]邹维宝,任思聪,李志林,丁晓利等. SAR在飞行器组合导航系统中的应用[J].火力与指挥控制. 2003, 28(1): 7-15
    [7]谌国森,陈晓丽.美军巡航导弹的现状及发展趋势[J].飞航导弹. 2005(2): 37-40
    [8]李为民,朱永锋,赵宏钟,付强.基于多普勒谱的多目标鉴别技术[J].系统工程与电子技术. 2005, 27(12): 2030-2034
    [9]李为民,赵宏钟,石志广,付强.水面舰队目标的探测与识别技术研究[J].现代防御技术. 2004, 32(3): 58-63
    [10]董江曼,李应岐,邓飚. SAR图像舰船目标的特征识别[J].陕西师范大学学报(自然科学版). 2004, 32(6): 203-205
    [11]梁勇,邓方林.巡航导弹制导技术的现状及发展趋势分析[J].中国航天. 2003(8): 35-39
    [12]付文宪,李少洪,洪文.基于高分辨率Sar图像的打击效果评估[J].电子学报. 2003, 31(9): 1290-1294
    [13] Smith B J, Garner W, Cannon R. Precision dynamic SAR testbed for tactical missiles[C]. IEEE Aerospace Conference Proceedings. Big Sky, MT, United States, 2004: 2220-2223
    [14] Anonym. Joint warfighting science and technology plan[EB/OL]. http://www.hawaii.edu/resrel/workshops/dod/2001/jwstp.pdf.
    [15]丛敏.反舰导弹将用于海岸和对陆攻击任务[J].飞航导弹. 1999(4): 1-7
    [16] Malenke T. W-band-radar system in a dual-mode seeker for autonomous target detection[C]. EUSAR. Cologne, Germany, 2002
    [17] Neumann C, Senkowski H. MMW-SAR seeker against ground targets in a drone application[C]. EUSAR. Cologne, Germany, 2002
    [18]黄世奇,禹春来,刘代志,钱昌松.成像精确制导技术分析与研究[J].导弹与航天运载技术. 2005(5): 20-25
    [19] Polge R, Green A H, Mullins J H. Extension of synthetic aperture radar imaging to nonlinear trajectories[C]. IEEE SOUTHEASTCON Conference Proceedings. New Orleans, LA, USA, 1990: 161-166
    [20]李道京,张麟兮,俞卞章.主动雷达成像导引头几个问题的研究[J].现代雷达. 2003, 25(5): 12-15
    [21]俞根苗,尚勇,邓海涛,张长耀等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报. 2005, 33(5): 778-782
    [22]俞根苗,邓海涛,张长耀,葛家龙等.弹载条带SAR成像研究[C].中国合成孔径雷达会议, 2003: 241-244.
    [23] Li Y, Liang D. A refined range doppler algorithm for airborne squinted SAR imaging under maneuvers[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007: 389-392
    [24] Xie H, Zhao H, Zhou J, Gong T. A Doppler centroid estimation method using the Radon transform for forward-squint SAR imaging[C]. IEEE Radar Conference. Rome, Italy, 2008
    [25] Mahafza B R, Knight D L, Audeh N F. Three-dimensional SAR imaging technique for MMW seekers[C]. IEEE Aerospace Applications Conference Proceedings. Vail, CO, USA, 1994: 185-198
    [26]谢文冲,孙文峰,王永良.弹载毫米波聚束SAR对地面目标成像研究[J].系统工程与电子技术. 2003, 25(7): 84-86
    [27]张强,梁甸农,董臻.一种弹载条带式SAR成像方法[C].中国合成孔径雷达会议, 2005: 119-123
    [28]孙兵,周荫清,陈杰,李春升.基于环扫成像的双侧视新模式合成孔径雷达[C].中国合成孔径雷达会议, 2005: 71-74
    [29]孙兵,周荫清,李天池,郭彩虹.环扫SAR的快速聚焦成像算法[J].北京航空航天大学学报. 2007, 33(7): 803-806
    [30] Hamilton P C, Acton. Autonomous system for initializing synthetic aperture radar seeker acquisition[P]. USA, 5232182
    [31]孙兵,周荫清,陈杰,李春升.基于俯冲模型的SAR成像处理和几何校正[J].北京航空航天大学学报. 2006, 32(4): 64-68
    [32]郭彩虹,陈杰,孙雨萌,孙兵等.超大前斜视空空弹载SAR成像实现方法研究[J].宇航学报. 2006(05): 880-884
    [33]李军显,岳应娟,刘岩,李萍萍.空空导弹雷达导引头成像研究[J].弹箭与制导学报. 2006, 26(2): 3-5
    [34]李军显.空空导弹弹载SAR回波信号模拟[J].战术导弹技术. 2008(2): 53-56
    [35]黄晓芳.反舰导弹聚束式SAR导引头成像算法研究[J].制导与引信. 2005, 26(4): 6-13
    [36]田金文,耿远明,程辉,于秋则.基于图像分割的SAR图像匹配方法[J].华中科技大学学报:自然科学版. 2006, 34(10): 31-33
    [37]冷雪飞,刘建业,熊智,邢广华.鲁棒Hausdorff距离在SAR/惯性组合导航图像匹配中的应用研究[J].东南大学学报:自然科学版. 2004, 34(B11): 141-144
    [38]冷雪飞,刘建业,熊智,邢广华.加权Hausdorff距离算法在SAR/INS景象匹配中的应用[J].控制与决策. 2006, 21(1): 42-45
    [39]梁勇.合成孔径雷达景象匹配技术研究[D].中国科学院电子学研究所, 2006.
    [40]刘佳敏,周荫清,李春升.基于边缘信息的SAR与可见光景像匹配算法[J].遥测遥控. 2003, 24(2): 9-13
    [41]陈东,李飚,沈振康,刘文华. SAR与可见光图象匹配方法的研究[J].中国图象图形学报:A辑. 2001, 6(3): 223-227
    [42]邵永社.雷达图像定位方法与关键技术研究[D].上海:同济大学, 2006.
    [43]于秋则,程辉,田金文,柳健.基于边缘特征的SAR图像与光学图像的匹配[J].雷达科学与技术. 2003, 1(4): 242-245
    [44]于秋则.合成孔径雷达(SAR)图像匹配导航技术研究[D].华中科技大学,2004.
    [45]于秋则,程辉,柳健,田金文等.基于改进Hausdorff测度和遗传算法的SAR图像与光学图像匹配[J].宇航学报. 2006, 27(1): 130-134
    [46]张绍明,陈映鹰,林怡.用于末制导的SAR图像多子区实时匹配算法[J].测绘学报. 2007, 36(4): 406-413
    [47]李天池,周荫清,马海英,何向晨.基于参数估计的SAR定位方法[J].系统工程与电子技术. 2007, 29(3): 372-374
    [48]李亚超,蓝金巧,邢孟道,沈福民. SAR末制导中导弹定位方法及分析[J].遥测遥控. 2004, 25(6): 29-34
    [49]李亚超,吕孝雷,王虹现,保铮.高精度景象匹配下的高速SAR平台定位和测速[J].系统工程与电子技术. 2007, 29(11): 1851-1855
    [50]蒋金龙,穆荣军,崔乃刚. SAR在弹道导弹末制导中的应用[J].弹道学报. 2008, 20(02): 49-51
    [51]燕英,周荫清,李春生,许丽香.弹载合成孔径雷达成像处理及定位误差分析[J].电子与信息学报. 2002, 24(12): 1932-1938
    [52]朱珍珍.调频连续波SAR回波模拟研究[D].国防科学技术大学, 2005.
    [53] Lorga J F, Meta A, De W J, Hoogeboom P, et al. Airborne FM-CW SAR and integrated navigation system data fusion[C]. San Francisco, CA, United States, 2005: 2172-2183
    [54]黄世奇,郑健,刘代志,王金泉. SAR/红外双模成像复合制导系统研究与设计[J].飞航导弹. 2004(6): 40-45
    [55] Damini A, Mcdonald M, Haslam G E. X-band wideband experimental airborne radar for SAR, GMTI and maritime surveillance[J]. IEE Proc.-Radar Sonar Navig. 2003, 150(4): 305-312
    [56]谭皓,王金岩,沈春林,许漪.巡航导弹中制导阶段航迹规划算法[J].南京航空航天大学学报. 2005, 37(1): 1-5
    [57] Soumekh M. Time Domain Non-Linear SAR Processing[R]. Department of Electrical Engineering, State University of New York, 2006.
    [58] Vigurs G J, Wood M S. Non-Linear Synthetic Aperture Radar Techniques[C]. 2nd EMRS DTC Technical Conference. Edinburgh, 2005
    [59] Axelsson S R. Mapping performance of curved-path SAR[C]. SPIE SAR Image Analysis Modeling and Techniques. Toulouse, France, 2002: 180-187
    [60]孙兵,周荫清,陈杰,李春升.基于俯冲模型的SAR成像处理和几何校正[J].北京航空航天大学学报. 2006, 32(4): 435-439
    [61]孙兵,周荫清,陈杰,李春升.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报. 2006, 34(9): 1595-1599
    [62]房丽丽,王岩飞.俯冲加速运动状态下SAR信号分析与运动补偿[J]. 2008, 30(6): 1316-1320
    [63] Li J, Bi Z, Liu Z S, Knaell K. Use of curvilinear SAR for three-dimensional target feature extraction[J]. IEE Proceedings - Radar, Sonar and Navigation. 1997, 144(5): 1350-2395
    [64]苏志刚,彭应宁,王秀坛.曲线合成孔径雷达中散射点三维特征提取方法[J].清华大学学报(自然科学版). 2005, 45(07): 947-950
    [65]吴仁彪,苏志刚,刘家学,刘杰.一种基于曲线SAR的三维目标特征提取与自聚焦新算法[J].遥感学报. 2002, 6(6): 490-495
    [66] Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Artech House Inc., 2005.
    [67]李军,文科.精确计算SAR图像质量指标的递推方法[J].无线电通信技术. 2004, 30(6): 15-17
    [68]贺志毅.合成宽带毫米波雷达导引头的理论及实现[D].北京:航天科工集团第二研究院二十五所, 2002.
    [69]魏纳新,彭秀艳,赵希人,施向宇.三自由度运动仿真平台设计及应用[J].系统仿真学报. 2003, 15(1): 63-65
    [70] Perry R P, Dipietro R C, Fante R L. SAR Imaging of Moving Targets[J]. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(1): 188-200
    [71]汤立波,李道京,吴一戎,丁赤飚.海面运动舰船目标的高分辨率Sar成像[J].电子与信息学报. 2006, 28(4): 624-627
    [72]李亚超,周峰,刑孟道,保铮.一种直升机的舰船Dechirp实测数据SAR成像方法[J].电子与信息学报. 2007, 29(8): 1794-1798
    [73]李燕平,李亚超,刑孟道,保铮.低信杂(噪)比情况下机载雷达的舰船目标成像[J].电子学报. 2008, 36(3): 433-439
    [74]邢孟道,保铮.外场实测数据的舰船目标ISAR成像[J].电子与信息学报. 2001, 23(12): 1271-1277
    [75]王勇,姜义成.基于自适应chirplet分解的舰船目标ISAR成像[J].电子与信息学报. 2006, 28(6): 982-984
    [76]汪玲,朱岱寅,朱兆达.基于SAR实测数据的舰船成像研究[J].电子与信息学报. 2007, 29(2): 401-404
    [77]雷杰,邢孟道,保铮.一种基于钟摆模型的舰船目标成像方法[J].电子与信息学报. 2006, 28(1): 1-6
    [78]张亚标,苑秉成,秦江,汤子跃.星载SAR对舰船高分辨成像研究[J].海军工程大学学报. 2007, 19(2): 90-94
    [79] Wehner D R. High Resolution Radar(2nd Edition)[M]. Boston & London: Artech House, 1995.
    [80] Pantaleoni A V, Ferrando M. Quality evaluation for efficient ScanSAR data processing algorithms[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003: 4022-4024
    [81]韩传钊等译, Curlander J, RMcdonough著.合成孔径雷达——系统与信号处理(Synthetic Aperture Radar: Systems and Signal Processing)[M].北京:电子工业出版社, 2006.
    [82]孙泓波.机载合成孔径雷达的地杂波抑制[D].
    [83]王永良,陈建文,吴志文.现代DPCA技术研究[J].电子学报. 2000, 28(6): 118-121
    [84] Lightstone L, Faubert D, Rempel G. Multiple phase centre DPCA for airborne radar[J]. Radar Conference, 1991., Proceedings of the 1991 IEEE National. 1991: 36_40
    [85]高飞,毛士艺,袁运能,玉振明.基于原始数据域的星载双通道Sar-Gmti研究[J].电子学报. 2005, 33(12): 2105-2110
    [86]张英,李景文.基于DPCA的机载SAR-MTI系统误差分析及补偿方法研究[J].电子学报. 2004, 31(B12): 2031-2034
    [87] Stockburger E F, Held D N. Interferometric moving ground target imaging[C].IEEE International Radar Conference, 1995: 438-443
    [88] Romeiser R. Current Measurements by Airborne Along-Track InSAR: Measuring Technique and Experimental Results[J]. IEEE Journal of Oceanic Engineering. 2005, 30(3): 552-569
    [89]郑明洁,杨汝良.双通道沿迹干涉SAR地面动目标检测[J].电子与信息学报. 2005, 27(10): 1560-1563
    [90]高飞,毛士艺,玉振明,袁运能.一种全自动的检测方法用于SAR-ATI的GMTI[J].航空学报. 2005, 26(1): 84-89
    [91]保铮,张玉洪,廖桂生,王永良等.机载雷达空时二维信号处理[J].现代雷达. 1994, 16(1): 38-48
    [92]保铮,张玉洪,廖桂生,王永良等.机载雷达空时二维信号处理(续)[J].现代雷达. 1994, 16(2): 17-27
    [93]王永良,彭应宁.机载雷达空时二维自适应信号处理的进展与展望[J].电子学报. 1999, 27(3): 94-100
    [94] Chung C H, Gillem C M. Target motion compensation by spectrum shifting in synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(3): 895-901
    [95] Kazuo O. On the multilook images of moving targets by synthetic aperture radars[J]. IEEE Transactions on Antennas and Propagation. 1985, AP-33(8): 823-827
    [96]高翔.合成孔径雷达动目标检测和成像研究[D].成都:电子科技大学, 2005.
    [97] Barbarossa S, Farina A. Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution[J]. IEE Proceedings, Part F: Radar and Signal Processing. 1992, 139(1): 89-97
    [98] Barbarossa S. Detection and imaging of moving objects with synthetic aperture radar. Part 1: Optimal detection and parameter estimation theory[J]. IEE Proceedings, Part F: Radar and Signal Processing. 1992, 139(1): 79-88
    [99] Cohen L. Time-frequency distributions-a review[J]. Proceedings of the IEEE. 1989, 77(7): 941-981
    [100] Barbarossa S. Analysis of multicomponent LFM signals by a combinedWigner-Hough transform[J]. IEEE Transactions on Signal Processing. 1995, 43(6): 1511-1515
    [101] Barbarossa S, Zanalda A. A combined Wigner-Ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation[J]. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1992, 5: 173-176
    [102] Mao Y, Chen G, Wang J. SAR/ISAR imaging of multiple moving targets based on combination WVD and HT[C]. CIE International Conference of Radar Proceedings. Beijing, China, 1996: 342-345
    [103] Namias V. The Fractional Order Fourier Transform and its Application to Quantum Mechanics[J]. IMA Journal of Applied Mathematics. 1980, 25(3): 241-265
    [104] Mcbride A C, Kerr F H. On Namias's Fractional Fourier Transforms[J]. IMA Journal of Applied Mathematics. 1987, 39(2): 159-175
    [105] Boashash B, Shea P O. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra[J]. IEEE Transactions on Signal Processing. 1994, 42(1): 216-220
    [106]郭汉伟王岩,梁甸农.检测多项式相位信号的时频综合方法[J].系统工程与电子技术. 2004, 26(04): 482-484
    [107]张晓冬,吴乐南.多项式Wigner-Ville分布(PWVD)的系数设计[J].电路与系统学报. 2003, 8(4): 119-122
    [108] Djeddi M, Benidir M. Robust polynomial Wigner-Ville distribution for the analysis of polynomial phase signals in /spl alpha/-stable noise[J]. AIEEE International Conference on coustics, Speech, and Signal Processing. 2004, 2: 613-616
    [109]刘庆云,李志舜,李海英,梁红.多分量多项式相位信号的参量估计[J].电子学报. 2004, 32(12): 2031-2034
    [110]高勋章,任双桥,黎湘,庄钊文.基于mc-PPS模型的空间目标运动补偿[J].系统工程与电子技术. 2004, 26(9): 1201-1204
    [111]卢琨,刘兴钊.短序列条件下基于分段多项式建模方法的相位估计性能分析[J].电子与信息学报. 2005, 27(4): 523-526
    [112]肖文书,张兴敢,王茹琪.基于PHAF的多普勒参数估计[J].电子与信息学报. 2007, 29(7): 1678-1682
    [113]刘庆云,张汗灵,梁红.多分量多项式相位信号瞬时频率变化率的估计[J].电子学报. 2005, 33(10): 1890-1892
    [114] Peter O S. A new technique for instantaneous frequency rate estimation[J]. IEEE Signal Processing Letters. 2002, 9(8): 251-252
    [115]张卫杰,龙腾.星载合成孔径雷达图像解析定位算法研究[J].北京理工大学学报. 2005, 25(2): 147-150
    [116]张波,张红,王超,吴樊.一种新的星载SAR图像定位求解方法[J].电波科学学报. 2006, 21(1): 1-5
    [117]杨杰,潘斌,李德仁,钟永正.无地面控制点的星载SAR影像直接对地定位研究[J].武汉大学学报(信息科学版). 2006, 31(2): 144-147
    [118]刘秀芳,刘佳音,洪文.星载Sar图像的定位精度分析研究[J].遥感学报. 2006, 10(1): 76-81
    [119]陈尔学,李增元.分析法和数值解算法相结合的星载Sar直接定位算法[J].中国图象图形学报. 2006, 11(8): 1105-1109
    [120]常本义,高力. Iecas高分辨率机载合成孔径雷达几何精度试验[J].电子与信息学报. 2006, 28(5): 945-949
    [121]尤红建,丁赤飚,付琨. SAR图像对地定位的严密共线方程模型[J].测绘学报. 2007, 36(2): 158-162
    [122]孙文峰,陈安,邓海涛,俞根苗.一种新的机载SAR图像几何校正和定位算法[J].电子学报. 2007, 35(3): 553-556
    [123]李立钢,尤红建,彭海良,吴一戎等.一种新的星载SAR图像定位方法的研究[J].电子与信息学报. 2007, 29(6): 1441-1444
    [124]李立钢,吴一戎,刘波,彭海良等.基于卫星参数预测的星载SAR图像定位方法研究[J].电子与信息学报. 2007, 29(7): 1691-1694
    [125]袁孝康.星载合成孔径雷达目标定位研究[J].上海航天. 2002, 19(1): 1-7
    [126]卫星坐标系[M]. 1991.
    [127]熊智,刘建业,林雪原.高度辅助的INS/SAR组合导航系统研究[J].中国空间科学技术. 2003(4): 62-66
    [128]徐剑,毕笃彦,袁建国.一种无气压高度信息辅助的地形导航系统[J].电光与控制. 2005, 12(6): 46-49
    [129] Raney R K. The Delay/Doppler radar altimeter[J]. IEEE Transactions on Geoscience and Remote Sensing. 1998, 36(5): 1578-1588
    [130] Skolnik M I,王军等.雷达手册[M].北京:电子工业出版社, 2003.
    [131]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [132] Nygren I, Jansson M. Terrain navigation using the correlator method[C]. Monterey, CA, United States, 2004: 649-657
    [133]刘寅,吴顺君.扫描方式下Dbs子图像拼接算法[J].雷达科学与技术. 2005, 3(2): 91-95
    [134]毛士艺,李少洪,黄永红,陈远知.机载PD雷达DBS实时成像研究[J].电子学报. 2000, 28(3): 32-34
    [135]危嵩,孙文,王宏远.应用DBS技术在SAR/GMTI模式下高分辨率成像[J].红外与激光工程. 2005, 34(3): 337-340
    [136] Hodgson J A, Lee D W. TERMINAL GUIDANCE USING A DOPPLER BEAM SHARPENING RADAR[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Tx., 11: 2003-5796
    [137] Farooq A, Limebeer D J. Trajectory Optimization for Air-to-Surface Missiles with Imaging Radars[J]. Journal of Guidance, Control, and Dynamics. 2002, 25(5): 876-887
    [138] Hodgson J A. Trajectory Optimization Using Differential Inclusion to Minimize Uncertainty in Target Location Estimation[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, USA, 2005
    [139]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社, 1996.
    [140]占荣辉.基于空频域信息的单站被动目标跟踪算法研究[D].长沙:国防科学技术大学, 2007.
    [141]刘福生,罗鹏飞.统计信号处理[M].长沙:国防科技大学出版社, 1999.
    [142] Ristic B, Arulampalam S, Mccarthy J. Target Motion Analysis UsingRange-onely Measurements: Algorithms, Performance and Application to Ingara ISAR Data[R]. Australia: Electronics and Surveillance Research Laboratory, 2001.
    [143]张景伟,任思聪,谭敏琦. INS/GNSS组合导航系统中高度阻尼问题的研究[J].空军工程大学学报(自然科学版). 2003, 4(06): 37-39
    [144] Allen R R, Blackman S S. Angle-only tracking with a MSC filter[J]. IEEE/AIAA 10th Digital Avionics Systems Conference. 1991: 561-566
    [145]赵宏钟,何松华.基于高分辨距离像的单脉冲角跟踪技术[J].电子学报. 2000, 28(4): 1-4
    [146]程永强.主动毫米波导引头地面雷达站检测识别技术[D].长沙:国防科学技术大学, 2007.
    [147] Blair W D, Brandt-pearce M. Monopulse DOA estimation of two unresolved Rayleigh targets[J]. IEEE Transactions on Aerospace and Electronic Systems. 2001, 37(2): 452-469
    [148]胡东辉,吴一戎.合成孔径雷达散射波干扰研究[J].电子学报. 2002, 30(12): 1882-1884
    [149]高晓平,雷武虎. Sar散射波干扰实现方法的研究[J].现代雷达. 2006, 28(8): 22-24
    [150] Li T, Chen W, Lu G, Wang D. A study on scatter-wave jamming for countering SAR[C]. International Conference on Microwave and Millimeter Wave Technology. Guilin, China, 2007: 4266255
    [151]王盛利,于立,倪晋鳞,张光义.合成孔径雷达的有源欺骗干扰方法研究[J].电子学报. 2003, 31(12): 1900-1902
    [152]李伟,梁甸农,董臻.基于欺骗式动目标的Sar干扰技术研究[J].遥感学报. 2006, 10(1): 71-75
    [153]甘荣兵,王建国.对Sar的几何目标欺骗干扰的快速算法[J].现代雷达. 2006, 28(2): 40-4273
    [154]甘荣兵,王建国.改进的对星载Sar的应答式欺骗干扰[J].电子科技大学学报. 2005, 34(5): 614-617
    [155] Hongrong Z, Yuesheng T, Guan W, Long S. SAR deceptive jamming signal simulation[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings. Huangshan, China, 2007: 61-64
    [156] Li N, Qu C. Research on jamming synthetic aperture radar technologies[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings. Huangshan, China, 2007: 563-566
    [157] Heer C, Shutie P F. Digital Beam Forming Synthetic Aperture Radar[C]. IEEE Radar Conference, 2005: 1627-1630
    [158] Rosenberg L, Gray D. Anti-jamming Techniques on Multichannel SAR Imaging[C]. EUSAR. Ulm, 2004: 879-882
    [159]甘永兵,王建国,何川.双路对消抑制对合成孔径雷达弹射式干扰[J].信号处理. 2005, 21(1): 27-30
    [160] Garmatyuk D S, Narayanan R M. ECCM capabilities of an ultrawideband bandlimited random noise imaging radar[J]. IEEE Transaction on Aerospace and Electronic System. 2002, 38(4): 1243-1255
    [161] Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(1): 191-205
    [162]李伟.分布式星载SAR干扰与抗干扰技术研究[D].国防科技大学, 2006.
    [163]李少洪,毛士艺,屈剑明.雷达导引头交班与弹目几何位置关系研究[J].北京航空航天大学学报. 2000, 26(3): 274-277
    [164]罗喜霜,张天桥.多用途导弹中末段交班研究[J].弹道学报. 2001, 13(4): 47-50
    [165] Weiss M, Bucco D. Handover analysis for tactical guided weapons using the adjoint method[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005
    [166]刘海军,王丽娜.复合制导防空导弹中末制导交班问题研究[J].现代防御技术. 2006, 34(2): 29-33
    [167]张科,王延.近距空空导弹中末制导导引头交接班策略及截获概率研究[J].弹箭与制导学报. 2006, 26(1): 513-517
    [168]姬厚磊,王军,卢福刚.小视场导弹弹道中末交接班问题分析[J].弹箭与制导学报. 2007, 27(2): 239-241
    [169] Soumekh M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms[M]. 1999.
    [170]数学手册编写组.数学手册[M].北京:人民教育出版社, 1979.
    [171]单月晖.空中观测平台对海面慢速目标单站无源定位跟踪及其关键技术研究[D].长沙:国防科学技术大学, 2002.
    [172]粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社, 2002.
    [173] Rto/nato. Technologies for Future Precision Strike Missile Systems[R]. France: RESEARCH AND TECHNOLOGY ORGANIZATION, 2001.
    [174] Rigling B D. Signal Processing Strategies for Bistatic Synthetic Aperture Radar[D]. The Ohio State University, 2003.
    [175] Ong K P. Signal Processing for Airborne Bistatic Radar[D]. The University of Edinburgh, 2003.
    [176]张直中.双基地合成孔径雷达[J].现代雷达. 2005, 27(1): 1-6
    [177] Dod. Future Years Defense Programs[R]. USA: Department of Defense, 2004.
    [178] White M E, Price W R. Affordable Hypersonic Missiles for Long-Range Precision Strike[J]. Johns Hopkins APL technical Digest. 1999, 20(3): 415-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700