用户名: 密码: 验证码:
TCF7L2及SLC30A8基因多态性与2型糖尿病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     第一节2型糖尿病家系中不同糖耐量状态一级亲的胰岛β细胞功能研究
     目的研究2型糖尿病(T2DM)家系中一级亲不同糖耐量亚组的胰岛β细胞功能特点。
     方法对T2DM家系中既往无血糖异常史的234例一级亲和无糖尿病家族史的189例配偶进行75g口服葡萄糖耐量试验(OGTT);据OGTT结果将家系的一级亲和配偶分别又分为糖耐量正常(NGT)、糖耐量受损(IGR)和T2DM 3个亚组。用Homa-IR和胰岛素作用指数(IAI)评估胰岛素抵抗,处置指数DI1(Homa-β/Homa-IR)、DI2(△I30/△G30/ Homa-IR)和DI3(MBCI×IAI)分别评估基础、早相和糖负荷后的胰岛β细胞功能。
     结果(1)家系一级亲及配偶从NGT经IGR到T2DM,Homa-IR进行性增加,而Homa-β、DI1、DI2、DI3及IAI进行性下降,差异均具有统计学意义(P<0.01或0.05)。(2)一级亲FNGT、FIGR及FT2DM组的Homa-IR和IAI与配偶相应糖耐量亚组之间无统计学差异(P>0.05);(3)家系一级亲中FNGT组的DI1、DI2明显低于配偶的NGT组(分别为3.98±0.43 vs 4.17±0.42,1.54±0.86 vs 1.67±0.84,P<0.05);一级亲FIGR组的DI1、DI2也明显低于配偶的IGR组;一级亲T2DM组的MBCI和DI3明显低于配偶的T2DM组。
     结论T2DM家系中一级亲的不同糖耐量亚组均存在胰岛β细胞功能缺陷,而且较配偶中相应糖耐量亚组严重;糖耐量正常的一级亲已存在胰岛β细胞功能缺陷,但无IR。提示胰岛β细胞功能缺陷具有遗传倾向;胰岛β细胞功能缺陷可能是T2DM发病的始动因素。
     第一部分
     第二节2型糖尿病家系中初诊糖尿病患者的胰岛β细胞功能
     目的研究2型糖尿病(T2DM)家系中初诊T2DM患者的胰岛β细胞功能和IR状况;探讨新诊断T2DM人群胰岛β细胞功能的特点及其与糖代谢的关系。
     方法来自T2DM家系的初诊T2DM患者158例、无糖尿病家族史的正常糖耐量配偶(NC)62例进行75g OGTT和胰岛素释放试验。据空腹血糖(FPG)的水平,将T2DM分为DM1(FPG<6.1mmol/L)、DM2(6.1≤FPG≤7.8mmol/L)和DM3(FPG≥7.8mmol/L)三组。用Homa-IR和胰岛素作用指数(IAI)分别评估IR、胰岛素敏感性;用三种胰岛素分泌指数及三种相应的葡萄糖处置指数(DI)分别评估基础、早期和糖负荷后的胰岛β细胞功能。
     结果(1)家系的初诊T2DM,随着FPG的升高,Homa-IR进行性增加,IAI、胰岛素分泌指数和DI进行性下降,两组之间差异均具有统计学意义(P<0.01或0.05);与胰岛素敏感性降低相比,胰岛β细胞功能下降更为明显。(2)在NC组FPG的变化主要由Homa-IR解释(近60%);而初诊T2DM各亚组则主要由Homa-β解释,在DM3组Homa-β可解释的比例高达89.6%。
     结论T2DM家系的初诊T2DM患者存在胰岛素敏感性和胰岛β细胞功能下降,但胰岛β细胞功能降低更加突出,对空腹血糖的影响更大。提示胰岛β细胞功能缺陷可能在T2DM的发生、发展过程中起的作用更大。
     第二部分
     第一节TCF7L2基因多态性与2型糖尿病的关联研究
     目的研究中国汉族人群TCF7L2基因rs7903146C/T和rs12255372G/T单核苷酸多态性(SNPS)的等位基因及基因型频率分布及其与代谢指标的关系,了解该基因与T2DM的相关性。
     方法应用限制性片段长度多态性(RFLP)方法,对749例重庆及周边地区汉族人(其中T2DM患者446例、正常对照[NC]303例)的rs7903146C/T和rs12255372G/T进行基因分型;同时进行人体测量学及代谢指标的检测,分别用Homa-IR、Homa-β评估IR和胰岛β细胞功能。
     结果(1)rs7903146C/T位点的T等位基因频率(T2DM和NC组分别为9.3%、4.3%,χ2=14.33,P=1.2×10-3)、CT和TT基因型频率(T2DM和NC组分别为16.8 %、8.2%,χ2=13.25,P=0.001)在T2DM组均明显高于NC组;(2)T等位基因携带者患T2DM的风险为C等位基因携带者的2.29倍(OR=2.29,95%CI=1.47-3.56);非条件Logistic回归校正年龄、性别及BMI后显示CT/TT与CC基因型相比,患T2DM的危险显著增加(OR=2.25,95%CI=1.39-3.62);(3)协方差分析校正性别、年龄及BMI后,CT/TT基因型的腰围、空腹胰岛素、葡萄糖负荷后2小时胰岛素、Homa-β及Homa-IR显著低于CC型(P<0.01或0.05);高密度脂蛋白胆固醇明显高于CC型(P<0.05)。
     (4)rs12255372G/T位点G、T等位基因(T2DM组分别为(98.3%、1.7%,NC组98.7%、1.3%)及GG、GT、TT基因型频率(T2DM组分别为96.6 %、3.4%、0.0%,NC组97.4%、2.6%、0.0%)分布在NC、T2DM组中均无显著性差异。
     结论TCF7L2基因rs7903146C/T多态性位点的T等位基因是T2DM的风险等位基因;T等位基因可能通过引起胰岛β细胞功能缺陷(而不是IR)来增加T2DM的发病风险。提示TCF7L2基因可能是中国汉族人T2DM的易感基因之一。
     第二部分
     第二节SLC30A8基因多态性与2型糖尿病的关联研究
     目的研究中国汉族人群SLC30A(8solute carrier family 30, member 8)基因6个TagSNPS的等位基因及基因型频率分布及其与代谢指标的关系,了解该基因与T2DM的相关性。
     方法应用RFLP方法,对重庆及周边地区汉族人SLC30A8基因的6个TagSNPS(rs11989843A/G、rs13270550C/T、rs7007057A/G、rs10955804A/G、rs13266634C/T及rs3802177C/T)进行基因分型;同时进行人体测量学及代谢指标的检测,并分别用Homa-IR、Homa-β评估IR和胰岛β细胞功能。
     结果(1) T2DM组外显子8的rs13266634C/T位点的C等位基因频率(χ2=8.29,P=0.004)明显高于NC组;TT、CT和CC基因型频率分布在两组中有显著性差异(χ2=9.38,P=0.009),其中T2DM组的CC基因型明显高于NC组。C等位基因携带者患T2DM的风险是T等位基因的1.36倍(OR=1.36,95%CI=1.11-1.67);CT和CC基因型患T2DM的危险显著增加,分别为TT型的1.55倍(OR=1.55,95%CI=1.07-2.25 ,χ2 = 5.42 , P=0.02 )、1.75倍( OR=1.75 ,95%CI=1.17-2.61,χ2=7.38,P=0.006)。此外,通过对代谢指标的比较分析发现C等位基因可能与胰岛素分泌减少有关。(2)rs11989843A/G、rs13270550C/T、rs7007057A/G、rs10955804A/G及rs3802177C/T位点的等位基因及基因型频率分布在NC及T2DM组之间无显著性差异。
     结论SLC30A8基因rs13266634C/T多态性位点的C等位基因可能是T2DM的风险等位基因,提示SLC30A8基因可能是中国汉族人T2DM的易感基因之一。
THE FIRST CHAPTER OF PARTⅠPANCREATICβ-CELL FUNCTION IN FIRST-DEGREE RELATIVES WITH A FAMILY HISTORY OF TYPE 2 DIABETES
     Objective To evaluate pancreaticβ-cell function in the first-degree relatives with different glucose tolerance of patients with type 2 diabetes (T2DM) in the Chinese population.
     Methods First-degree relatives of T2DM patients without a history of blood glucose abnormalities and their spouses, who did not have a family history of diabetes, underwent a 75-g oral glucose tolerance test (OGTT). Based upon the OGTT results, these two groups were further divided into three groups , including groups with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and T2DM. Insulin resistance (IR) was evaluated using the homeostasis model assessment-IR (Homa-IR) and the insulin action index (IAI). Basal, first-phase, and post-glucose loadβ-cell function indices were measured by DI1 (Homa-β/Homa-IR), DI2 (△I30/△G30/oma-IR), and DI3 (MBCI×IAI).
     Results (1)Among the first-degree relatives and their spouses, the Homa-IR increased was highest in the T2DM group and lowest in the NGT group. However, the Homa-β, DI1, DI2, DI3, and IAI decreased progressively in these groups with statistical significance (P<0.01 or 0.05). (2)There were no differences in Homa-IR and IAI between the corresponding glucose tolerance subgroups of the first-degree relatives and their spouses.(3)DI1 and DI2 values of the NGT group of first-degree relatives (FNGT) were significantly lower than those of the spouse NGT (SNGT) group (3.98±0.43 vs 4.17±0.42 and 1.54±0.86 vs 1.67±0.84, P<0.05, respectively). DI1 and DI2 of the IGR group of first degree relatives (FIGR) were significantly lower than those of the spouse IGR (SIGR) group, and MBCI and DI3 values for the T2DM group of first-degree relatives (FT2DM) were significantly lower than those of the spouse T2DM (ST2DM) group.
     Conclusions Defects in pancreaticβ-cell function exist in the first-degree relatives, who have different glucose tolerance status, of T2DM patients. These defects are more profound when compared to their spouses in corresponding glucose tolerance subgroups.however ,there is no evident IR in the first-degree relatives with NGT. It suggests that the pancreaticβ-cell dysfunction which is related to genetic factor may be the predominant initiating factor in T2DM.
     THE SECOND CHAPTER OF PARTⅠDYSFUNCTION OF ISLETβ-CELL IN NEWLY DIAGNOSED DIABETIC PATIENTS IN TYPE 2 DIABETES FAMILIES
     Objective To investigate the dysfunction of isletβ-cell and insulin resistance in newly diagnosed type 2 diabetic patients with family history of type 2 diabetes and the role ofβ-cell function defect in worsening glucose tolerance.
     Methods 158 newly diagnosed type 2 diabetic patients in type 2 diabetes (T2DM) families , and their 62 spouses with normal glucose tolerance (NC group) who had no diabetes families underwent an oral glucose tolerance test (OGTT) and insulin release test. According to the level of fasting plama glucose , the subjects of T2DM were divided into 3 subgroups: DM1(FPG<6.1mmol/L)、DM2(6.1≤FPG<7.8mmol/L)and DM3 group(FPG≥7.8mmol/L). Homeostasis model assessment of insulin resistance(Homa-IR) and insulin action index(IAI) were used to estimate insulin sensitivity. Three insulin release indices (Homa-β,△30/△G30: the ratio of incremental glucose and insulin 30min after glucose intake, and MBCI:modified beta-cell function index) and their correponding disposition indices (DI1= Homa-β/Homa-IR, DI2=△I30/△G 30/ Homa-IR, DI3=MBCI×IAI) were used to evaluate isletβ-cell function .
     Results (1) With increasing FPG , form DM1 through DM2 to DM3, the Homa-IR progressively increased,△I30/△G30, MBCI, DI1, DI2, DI3, and IAI progressively decreased(all P<0.01or 0.05) in newly diagnosed T2DM. Compared with the reduced insulin sensitivity, isletβ-cell function declined obviously.(2) In NC group, the level of FPG was mainly determined by Homa-IR.However, Homa-βwhich can explain the FPG change up to 90% in DM3 group was a more important contributor than Homa-IR for FPG in subgroups of newly diagnosed diabetes .
     Conclusion Both decreased insulin sensitivity and impairedβ-cell function are associated with increased glucose level in newly diagnosed diabetes.Furthermore ,β-cell function declines more obviously than insulin sensitivity.It indicates thatβ-cell function defect may be play more important role in the development and progression of type 2 diabetes.
     THE FIRST CHAPTER OF PARTⅡASSOCIATION OF POLYMORPHISMS IN TRANSCRIPTION FACTER 7-LIKE 2 (TCF7L2) GENE WITH TYPE 2 DIABETES IN CHINESE HAN POPULATION
     Objective To study an association between TCF7L2 polymorphisms and T2DM in the Chinese Han Population,and to investigate the involvement of TCF7L2 in the etiology of type 2 diabetes (T2DM).
     Methods Two polymorphisms (rs7903146C/T and rs12255372G/T) of TCF7L2 gene were genotyped, in 449 patients with type 2 diabetes (T2DM group) and 303 Normal controls (NC group), using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Waist circumference,body mass index (BMI),plasma glucose, serum insulin and lipid profile, high-sensitivity C-reactive protein (hsCRP) and non-esterified fatty acid (NEFA) were measured. Homa-IR and Homa-βwere analyzed to estimate insulin resistance andβ-cell function.
     Results⑴In T2DM group,T allele frequency (χ2=14.33,P=1.2×10-3) and CT/TT genotypes frequencies (χ2=13.25,P=0.001) of rs7903146C/T was significantly higher than that in NC group. Logistic regression analysis showed the CT/TT genotypes might be a risk factor of type 2 diabetes with OR=2.25(95%CI=1.39-3.62 , P=0.001) and associated with the decrease of insulin secretion.⑵No significant association, for rs12255372G/T, was observed on its alleles and genotypes with T2DM.
     Conclusion These results indicate that TCF7L2 might be one of the candidates for conferring susceptibility to T2DM in the Chinese Han Population.
     THE SECOND CHAPTER OF PARTⅡASSOCIATION OF POLYMORPHISMS IN SLC30A8(SOLUTE CARRIER FAMILY30,MEMBER8) GENE WITH TYPE 2 DIABETES IN CHINESE HAN POPULATION
     Objective An association between common variants of rs132666-34C/T in SLC30A8 (solute carrier family30, member8) gene and type 2 diabetes using the whole genome-wide association study has been reported in European and American Populations. To further investigate the involvement of SLC30A8 in the etiology of type 2 diabetes (T2DM), an association study between the six TagSNPS (rs11989843A/G,rs13270550C/T,rs7007057,rs10955804A/G,rs13266634C/T and rs3802177C/T)of SLC30A8 gene and T2DM was performed in the Chinese Han Population.
     Methods (1)The six TagSNPS of SLC30A8 gene were genotyped, in 454 patients with type 2 diabetes (T2DM group) and 311 normal controls (NC group), by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Waist circumference,body mass index (BMI) , plasma glucose, serum insulin and lipid profile, high-sensitivity C-reactive protein (hsCRP) and non-esterified fatty acid (NEFA) were measured. Homa-IR and Homa-βwere analyzed to estimate insulin resistance andβ-cell function.
     Results⑴In T2DM group,the frequencies of C allele (χ2=8.29,P=0.004) and CC genotype of rs13266634C/T were significantly higher than that in NC group (χ2=9.38,P=0.009). The C-allele of rs13266634C/T significantly increased T2DM risk with an allelic odd ratio (OR) of 1.36(OR=1.36,95%CI=1.11-1.67);Compared with non-carriers, heterozy- gous and homozygous carriers of C allele might be risk factors of type 2 diabetes with OR=1.55(95%CI=1.07-2.25,χ2=5.42,P=0.02)and 1.75(95%CI=1.17-2.61,χ2=7.38,P=0.006),respectively; The genotypes of CT and CC were associated with decreased insulin secretion but not increased insulin resistance. ( 2 ) No significant associations, for rs11989843A/G,rs13270550C/T,rs7007057A/G,rs10955804A/G,and rs3802177C/T were observed on its alleles and genotypes with T2DM.
     Conclusion These results indicated that SLC30A8 might be one of the candidates for conferring susceptibility to T2DM in the Chinese Han Population.
引文
[1]唐晓君,张素华,李革,等.重庆地区社区人群2型糖尿病现况调查[J].中国临床康复.2006,10(12):10-12.
    [2] King H, Aubert RE, Herman WH.Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections[J]. Diabetes Care,1998,21:1414–1431.唐晓君,张素华,李革,等.重庆地区社区人群2型糖尿病现况调查[J].中国临床康复.2006,10(12):10-12.
    [3] Ferrannini E.Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus:problems and prospects[J].Endocr Rev,1998,19:477-490.
    [4] Kruszynska YT,Olefsky JM.Cellular and molecular mechanisms of non-insulindependent diabetes mellitus[J] .1996,J Investig Med ,44:413–428.
    [5]张素华,李晨钟,余路,等.家族性Ⅱ型糖尿病家系中非糖尿病一级亲属的高胰岛素血症与胰岛素抵抗[J].中华医学杂志,1998,78(8): 585- 587.
    [6] Kahn SE .The importance of beta-cell failure in the development and progression of type 2 diabetes [J]. J Clin Endocrinol Metab,2001,86:4047–4058.
    [7] UK Prospective Diabetes Study 16. Overview of 6 years′therapy of type II diabetes. A progressive disease[J]. Diabetes ,1995,44:1249-1258.
    [8] Bergman RN, Phillips LS, Cobelli C.Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and B-cell glucose sensitivity from the response to intravenous glucose[J].J Clin Invest,1981, 68:1456–1467,
    [9] Bergman RN, Ader M, Huecking K, et al. Accurate assessment ofβ-Cell function.The Hyperbolic Correction[J].Diabetes,2002,51(suppl 1),S212-220.
    [10]张素华,余路,邱鸿鑫,等.家族性非胰岛素依赖型糖尿病患者的家系调查.中华医学杂志[J],1996,76(6):435-439.
    [11] Weedon MN. The importance of TCF7L2. Diabetic Medicine,2007,24:1 062– 1066.
    [12] Sladek R, Rocheleau G, Rung J, et al. Genome-wide association study identifies novel risk loci for type 2 diabetes [J]. Nature,2007,445:881-885.
    [13] The International HapMap Consortium A haplotype map of the human genome[J]. Nature ,2005,437:1299–1320.
    [14] Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes[J]. Nat Genet , 2006, 38:320-323.
    [1] King H, Aubert RE, Herman WH.Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections[J]. Diabetes Care,1998,21:1414–1431.
    [2] Kahn SE, Porte D Jr .Pathophysiology of type II diabetes mellitus. In: Porte D Jr, Sherwin RS (eds) Diabetes mellitus[M]. 1996,Appleton and Lange, Stamford, pp 487-512.
    [3] Ferrannini E.Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus:problems and prospects[J].Endocr Rev,1998,19:477-490.
    [4] Elbein SC, Wegner K, Kahn SE.Reducedβ-cell compensation to the insulin resistance associated with obesity in members of Caucasian familial type 2 diabetic kindreds[J]. Diabetes Care,2000,23:221–227.
    [5] Larsson H, Ahren B.Islet dysfunction in obese women with impaired glucose tolerance[J]. Metabolism, 1996,45:502–509.
    [6] Buchanan TA, Xiang AH, Kjos SL,et al. Antepartum predictors of the development of type 2 diabetes in Latino women 11–26 months after pregnancies complicated by gestational diabetes[J]. Diabetes,1999,48:2430–2436.
    [7] Weyer C, Bogardus C, Mott DM, et al.The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus[J]. J Clin Invest,1999,104:787–794.
    [8] Cnop M,Vidal J,Hull RL,et al. Progressive loss ofβ-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes[J].Diabtes care,2007,30(3):677-682.
    [9] UK Prospective Diabetes Study 16. Overview of 6 years′therapy of type II diabetes[J]. A progressive disease. Diabetes ,1995,44:1249-1258.
    [10] Holman RR. Assessing the potential forα-glucosidase inhibitors in prediabetic states[J].Diabetes Res Clin Pract,1998,40(Suppl):S21-S25.
    [11]李光伟,Bennett PH.关于空腹血糖、空腹胰岛素乘积的倒数在流行病学研究中应用的补充说明[J].中国糖尿病杂志,2005, 13(4):247-249.
    [12] Hanson RL, Pratley RE, Bogardus C, et al. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies[J]. Am J Epidemiol, 2002, 151:190-198.
    [13] Matthews DR,Hosker JP,Rudenski AS,et al.Homeostasis model assessment:insulin resistance andβ-cell function from fasting plasma glucose and insulin concertrations in man[J].Diabetologia,1985,28:412-419.
    [14]李光伟.对胰岛β细胞功能评估的再认识.国外医学内分泌学分册,2005, 25(3):164-189.
    [15] Bergman RN, Phillips LS, Cobelli C.Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and B-cell glucose sensitivity from the response to intravenous glucose[J].J Clin Invest,1981, 68:1456–1467, 1981.
    [16] Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function[J]. Diabetes ,1993, 42:1663–1672.
    [17] Bergman RN, Ader M, Huecking K, et al. Accurate assessment ofβ-Cell function.The Hyperbolic Correction[J].Diabetes,2002,51(suppl 1),S212-220.
    [18] Albareda M,Rodriguez-Espinosa J,Murugo M,et al.Assessment of insulin sensitivity and beta-cell function from measurements in the fasting state and during an oral glucose tolerance test[J].Diabetologia,2000,43(12):1507-1511.
    [19]张素华,李晨钟,余路,等.家族性Ⅱ型糖尿病家系中非糖尿病一级亲属的高胰岛素血症与胰岛素抵抗[J].中华医学杂志,1998,78(8): 585- 587.
    [20] Jensen CC, Cnop M, Hull RL, et al.β-Cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. [J]. Diabetes, 2002,51:2170-2178.
    [21] Kahn SE.Regulation of B-cell function in vivo:from health to disease[J]. Diabetes Rev,1996, 4:372–389.
    [22] Elbein SC, Hasstedt SJ, Wegner K,et al.Heritability of pancreatic beta-cell functionamong nondiabetic members of Caucasian familial type 2 diabetic kindreds[J]. J Clin Endocrinol Metab, 1999,84:1398–1403.
    [23] Pimenta W, Korytkowski M, Mitrakou A,et al. Pancreaticβ-cell dysfunction as the primary genetic lesion in NIDDM: evidence from studies in normal glucose-tolerant individuals with a first-degree NIDDM relative[J]. JAMA, 1995,273:1855-1861.
    [24] Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes[J]. Nat Genet , 2006, 38:320-323.
    [25]李延兵,朱大龙,田浩明,等.新诊断T2DM患者胰岛β细胞功能分析[J].中华医学杂志.2006,86(36):2537-2541.
    [26] Levy J, Atkinson AB, Bell PM, et al. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study[J]. Diabet Med, 1998,15:290-296.
    [1] Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet , 2006, 38:320-323.
    [2] Sladek R, Rocheleau G, Rung J, et al. Genome-wide association study identifies novel risk loci for type 2 diabetes[J] . Nature,2007,445:881-885.
    [3] Cauchi S,Meyre D,Dina C,et al.Transcription factor TCF7L2 genetic study in the French population-Expression in humanβ-cell and adipose tissue and strong association with type 2 diabebtes[J].Diabetes,2006,55:2903-2908.
    [4] Smith U. TCF7L2 and type 2 diabetes–we wnt to know[J].Diabetologia 2007; 50: 5-7.
    [5] Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells[J]. Stem Cells 2004; 22: 849–860.
    [6] Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling[J]. Science 2000; 289:950–953.
    [7] Papadopoulou S, Edlund H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function[J]. Diabetes 2005; 54:2844–2851.
    [8] Korinek V, Barker N, Moerer P, et al.Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4[J].Nat Genet, 1998,19:379–383.
    [9] Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta catenin and glycogen synthase kinase-3beta[J].J Biol Chem,2005,280(2):1457- 1464.
    [10] Chimienti F, Favier A, Seve M. ZnT-8, a pancreatic beta-cell-specific zinc transporter[J].Biometals, 2005,18(4):313-317.
    [11] Florez JC, Jablonski KA, Bayley N, et al . TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program[J].N Engl J Med, 2006, 20:355(3):241-250.
    [12] Maeda S, Tsukada S, Kanazawa A, et al Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus[J].J Hum Genet,2005,50: 283–292.
    [13] The International HapMap Consortium A haplotype map of the human genome[J]. Nature ,2005,437:1299–1320.
    [14] Keyue Ding,Kaixin Zhou,Fuchu He,et al.LDA-A java-based linkage disequilibrium analyzer[J].Bioinformatics,2003,19:2147-2148.
    [15] Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics. 2005 Jan 15 [PubMed ID: 15297300]
    [16] Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes[J].J Clin Invest,2007,117:2155 -2163.
    [17] Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, et al. Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort[J]. Diabetologia. 2007,50(1):59-62.
    [18] Lehman DM, Hunt KJ, Leach RJ, et al. Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans[J]. Diabetes. 2007,56:389-393.
    [19] Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population[J]. Diabetologia, 2007,50:63-67.
    [20] Helgason A, Pálsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution[J].Nat Genet, 2007, 39:218-225.
    [21] Hayashi T, Iwamoto, Y, Kaku K, et al. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population[J]. Diabetologia,2007, 50:908-984.
    [22] Guo T, Hanson RL, Traurig M,et al. TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: An analysis of 3501 Individuals[J]. Diabetes,2007 Oct 1.
    [23] Ng MC, Tam CH, Lam VK, et al.Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese[J]. J Clin Endocrinol Metab. 2007;92(9):3733-3737.
    [24] Chang YC,Chang TJ,Jiang YD,et al.Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population[J].Diabetes,2007,56:2631-2637.
    [25] Kimber CH, Doney AS, Pearson ER,et al. TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels[J]. Diabetologia. 2007;50(6):1186-1191.
    [26] Saxena R, Gianniny L, Burtt NP, et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals[J].Diabetes. 2006,55:2890-2895.
    [27] Hattersley AT.Prime suspect:the TCF7L2 gene and type 2 diabetes risk[J]. J Clin Invest,2007,117(8):2077-2079.
    [28] Ritchie MD, Hahn LW, Roodi N,et al.Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer[J]. Am J Hum Genet, 2001,69:138–147.
    [29]张素华,余路,邱鸿鑫,等.家族性非胰岛素依赖型糖尿病患者的家系调查.中华医学杂志[J],1996,76(6):435-439.
    [30] Rich SS.Mapping genes in diabetes.Genetic epidemiology perspective[J].Diabe-tes,1990;39:1315-1319.
    [31] Cauchi S, Proen?a C, Choquet H, et al.Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study[J].J Mol Med,2008 86(3):341-348.
    [32] Boesgaard TW, Zilinskait? J, V?nttinen M, et al.The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study[J]. Diabetologia. 2008,51(5):816-820.
    [33] Staiger H, Machicao F, Stefan N, et al. Polymorphisms within novel risk loci fortype 2 diabetes determine beta-cell function[J]. PLoS ONE,2007,2(9):e832.
    [34] Chimienti F, Devergnas S, et al. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules[J]. Diabetes, 2004 53(9):2330-2337.
    [35] Chimienti F, Devergnas S, Pattou F, et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion[J]. J Cell Sci, 2006, 119:4199-4206.
    [36] Ishihara H, Maechler P, Gjinovci A, et al.Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells[J].Nat Cell Biol,2003,5:330–335.
    [37] Emdin SO, Dodson GG, Cutfield JM,et al. Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic B cell[J]. Diabetologia , 1980,19:174–182.
    [1]King H, Aubert RE, Herman WH.Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections[J]. Diabetes Care,1998,21:1414–1431.
    [2]Kahn SE, Porte D Jr .Pathophysiology of type II diabetes mellitus. In: Porte D Jr, Sherwin RS (eds) Diabetes mellitus[M]. 1996,Appleton and Lange, Stamford, pp 487-512.
    [3]Ferrannini E.Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus:problems and prospects[J].Endocr Rev,1998,19:477-490.
    [4]DeFronzo RA, Ferrannini E.Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity,hypertension, dyslipidemia, and atherosclerotic cardiovascular disease[J]. Diabetes Care, 1991,14:173–194.
    [5]Kruszynska YT,Olefsky JM.Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus[J].1996,J Investig Med ,44:413–428.
    [6]张素华,李晨钟,余路,等.家族性Ⅱ型糖尿病家系中非糖尿病一级亲属的高胰岛素血症与胰岛素抵抗[J].中华医学杂志,1998,78(8): 585- 587.
    [7]Porte D Jr .β-cells in type II diabetes mellitus. 1991,Diabetes,40:166–180.
    [8]Mitrakou A, Kelley D, Mokan M et al.Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance[J]. N Engl J Med ,1992,326:22–29.
    [9]Kahn SE .The importance of beta-cell failure in the development and progression of type 2 diabetes[J]. J Clin Endocrinol Metab,2001,86:4047–4058.
    [10]DeFronzo RA,Tobin JD,Andres R.Glucose clamp technique:a method for quantifying insulin secretion and resistance[J].Am J Physiol,1979,E214-223.
    [11]李光伟.胰岛β细胞功能评估[J].国外内分泌学分册,2003,23(3):159-163.
    [12]Bergman RN, Phillips LS, Cobelli C.Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and B-cell glucose sensitivity from the response to intravenous glucose[J].J Clin Invest,1981, 68:1456–1467, 1981.
    [13]Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function[J]. Diabetes ,1993, 42:1663–1672.
    [14]Wagenknecht LE, Meyer EJ, Rewers M,et al.The Insulin Resistance Atherosclerosis Study (IRAS): objectives, design, and recruitment result[J]s. Annals Epidemiol , 1996,5:464-472.
    [15]Utzschneider KM,Prigeon RL,Carr DB,et al. Impact of differences in fasting glucose and glucose tolerance on the hyperbolic relationship between insulin sensitivity and insulin responses[J]. Diabetes care,2006,29(2), 356-362.
    [16]Ward WK, Bolgiano DC, McKnight B,,et al.Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus[J]. J Clin Invest,1984,74:1318–1328.
    [17]Kahn SE.The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes[J]. Diabetologia, 2003, 46:3–19.
    [18]Weyer C, Bogardus C, Mott DM, et al.The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus[J]. J Clin Invest,1999,104:787–794.
    [19]Bergman RN, Ader M, Huecking K, et al. Accurate assessment ofβ-Cell function[J].The Hyperbolic Correction.Diabetes,2002,51(suppl 1),S212-220.
    [20]Albareda M,Rodriguez-Espinosa J,Murugo M,et al.Assessment of insulin sensitivity and beta-cell function from measurements in the fasting state and during an oral glucose tolerance test[J].Diabetologia,2000,43(12):1507-1511
    [21]UK Prospective Diabetes Study 16. Overview of 6 years′therapy of type II diabetes[J]. A progressive disease. Diabetes ,1995,44:1249-1258.
    [22]Holman RR. Assessing the potential forα-glucosidase inhibitors in prediabeticstates[J].Diabetes Res Clin Pract,1998,40(Suppl):S21-S25.
    [23]Kahn SE.Regulation of B-cell function in vivo:from health to disease[J]. Diabetes Rev,1996, 4:372–389.
    [24]Elbein SC, Wegner K, Kahn SE.Reducedβ-cell compensation to the insulin resistance associated with obesity in members of Caucasian familial type 2 diabetic kindreds[J]. Diabetes Care,2000,23:221–227.
    [25]Ryan EA, Imes S, Liu D et al.Defects in insulin secretion and action in women with a history of gestational diabetes[J]. Diabetes,1995,44:506–512.
    [26]Buchanan TA, Xiang AH, Kjos SL,et al. Antepartum predictors of the development of type 2 diabetes in Latino women 11–26 months after pregnancies complicated by gestational diabetes[J]. Diabetes,1999,48:2430–2436.
    [27]Ehrmann DA, Sturis J, Byrne MM, et al.Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus[J]. J Clin Invest,1995,96:520–527.
    [28]Dunaif A, Finegood DT.Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome[J].J Clin Endocrinol Metab,1996, 81:942–947.
    [29]Kahn SE, Larson VG, Schwartz RS et al.Exercise training delineates the importance of B-cell dysfunction to the glucose intolerance of human aging[J]. J Clin Endocrinol Metab,1992,74:1336–1342.
    [30]Larsson H, Ahren B.Islet dysfunction in obese women with impaired glucose tolerance[J]. Metabolism, 1996,45:502–509.
    [31]Cavaghan MK, Ehrmann DA, Byrne MM,et al.Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance[J]. J Clin Invest,1997,100:530–537.
    [32]Vidal J, Kahn SE.Regulation of insulin secretion in vivo. In: Lowe WL Jr (ed.) Genetics of Diabetes Mellitus[M]. 2001,Kluwer, Stamford, pp 109–131.
    [33]Jensen CC,Cnop M,Hull RL,et al.American Diabetes Association GENNID Study Group.β-cell function is the major determinant of oral glucose tolerance in fourethnic groups in the United States[J].Diabetes,2002,51:2170-2178.
    [34]韩学尧,纪立农,周翔海.T2DM一级亲属的胰岛素敏感性和胰岛β细胞功能[J].中华医学杂志,2004,84(2):1777-1780.
    [35]Cnop M,Vidal J,Hull RL,et al. Progressive loss ofβ-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes[J].Diabtes care,2007,30(3):677-682.
    [36]Elbein SC, Hasstedt SJ, Wegner K,et al.Heritability of pancreatic beta-cell function among nondiabetic members of Caucasian familial type 2 diabetic kindreds[J]. J Clin Endocrinol Metab, 1999,84:1398–1403.
    [1]King H, Aubert RE, Herman WH.GlobalΒurden of diabetes, 1995–2025:prevalence, numerical estimates,and projections[J]. Diabetes Care, 1998;21:1414–1431.
    [2]Rich SS.Mapping genes in diabetes.Genetic epidemiology perspective[J].Diabetes,1990;39:1315-1319.
    [3]Βell JI.The double helix in clinical practice[J]. Nature,2003; 421:414–416.
    [4]Weedon MN. The importance of TCF7L2[J]. Diabetic Medicine,2007,24:1062–1066.
    [5]Sladek R, Rocheleau G, Rung J, et al. Genome-wide association study identifies novel risk loci for type 2 diabetes[J] . Nature,2007,445:881-885.
    [6]Cauchi S,Meyre D,Dina C,et al.Transcription factor TCF7L2 genetic study in the French population-Expression in humanβ-cell and adipose tissue and strong association with type 2 diabebtes.Diabetes,2006,55:2903-2908.
    [7]Smith U. TCF7L2 and type 2 diabetes–we wnt to know.Diabetologia 2007; 50: 5–7.
    [8]Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells[J]. Stem Cells 2004; 22: 849–860.
    [9]Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling[J]. Science, 2000, 289:950–953.
    [10]Papadopoulou S, Edlund H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function[J]. Diabetes 2005; 54:2844–2851.
    [11]Korinek V, Barker N, Moerer P, et al.Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4[J]. Nat Genet, 1998,19:379–383.
    [12]Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta catenin and glycogen synthase kinase-3beta[J].J Biol Chem,2005,280(2):1457- 1464.
    [13]Chimienti F, Devergnas S, et al. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules[J]. Diabetes, 2004 53(9):2330-2337.
    [14]Chimienti F, Devergnas S, Pattou F, et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion.JCell Sci, 2006, 119:4199-4206.
    [15]Chimienti F, Favier A, Seve M. ZnT-8, a pancreatic beta-cell-specific zinc transporter[J].Biometals, 2005,18(4):313-317.
    [16]Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes[J]. Nat Genet , 2006, 38:320-323.
    [17]Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants[J].Science, 2007, 16(5829):1341-1345.
    [18]Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science, 2007, 316(5829):1331-1336.
    [19]Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes[J]. Science, 2007, 316(5829):1336-1341.
    [20]Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, et al. Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort[J]. Diabetologia. 2007,50(1):59-62.
    [21]Scott LJ,Bonnycastle LL,Willer C,et al.Association of transcription factor 7-like 2(TCF7L2) variants with type 2 diabetes in Finnish sample[J].Diabetes,2006,55:2649-2653.
    [22]Lehman DM, Hunt KJ, Leach RJ, et al. Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans. Diabetes. 2007,56:389-393.
    [23]Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population[J]. Diabetologia, 2007,50:63-67.
    [24]Helgason A, Pálsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution[J]. Nat Genet, 2007, 39:218-225.
    [25]Hayashi T, Iwamoto, Y, Kaku K, et al. Replication study for the association ofTCF7L2 with susceptibility to type 2 diabetes in a Japanese population[J]. Diabetologia,2007, 50:908-984.
    [26]Miyake K, Horikawa Y, Hara K,et al. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects[J]. J Hum Genet. 2008;53(2):174-80.
    [27]Ng MC, Tam CH, Lam VK, et al.Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese[J]. J Clin Endocrinol Metab. 2007;92(9):3733-3737.
    [28]Chang YC,Chang TJ,Jiang YD,et al.Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population[J].Diabetes,2007,56:2631-2637.
    [29]Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program[J]. N Engl J Med. 2006,355(3):241-250.
    [30]Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes[J]. J Clin Invest,2007,117:2155-2163.
    [31]Guo T, Hanson RL, Traurig M, et al.TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: analysis of 3,501 individuals[J].Diabetes,2007 ,56(12):3082-3088.
    [32]Loos RJ, Franks PW, Francis RW,et al.TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population[J]. Diabetes. 2007,56(7):1943-1947.
    [33]Freathy RM, Weedon MN, Bennett A ,et al.Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals[J].Am J Hum Genet,2007, 80(6):1150-1161.
    [34]Melzer D,Murray A,Hurst AJ,et al.Effects of the diabetes linked TCF7L2 polymorphism in a representative older population[J].BMC Med.2006,20,4:34.
    [35]Omori S, Tanaka Y, Takahashi A,et al.Association of CDKAL1, IGF2BP2,CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population[J]. Diabetes. 2008,57(3):791-795.
    [36]Zeggini E, Weedon MN, Lindgren CM,et al.Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes[J]. Science. 2007,316(5829):1336-1341.
    [37]Cauchi S, Proen?a C, Choquet H, et al.Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study[J].J Mol Med,2008 86(3):341-348.
    [38]Boesgaard TW, Zilinskait? J, V?nttinen M, et al.The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study[J]. Diabetologia. 2008,51(5):816-820.
    [39]Staiger H, Machicao F, Stefan N, et al. Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function[J]. PLoS ONE,2007 ,2(9):e832.
    [40]Kirchhoff K, Machicao F, Haupt A, et al.Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion[J]. Diabetologia.2008 ,51(4):597-601.
    [41]Hattersley AT.Prime suspect:the TCF7L2 gene and type 2 diabetes risk[J]. J Clin Invest,2007,117(8):2077-2079.
    [42]Damcott CM, Pollin TI, Reinhart LJ,et al.Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance[J]. Diabetes. 2006,55(9):2654-2659.
    [43]Dodson G, Steiner D. The role of assembly in insulin's biosynthesis[J]. Curr Opin Struct Biol,1998,8:189–194.
    [44]QianWJ, Aspinwall CA, BattisteMA, et al. Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy[J]. Anal Chem ,2000,72:711–717.
    [45]Ishihara H, Maechler P, Gjinovci A, et al.Islet beta-cell secretion determinesglucagon release from neighbouring alpha-cells[J]. Nat Cell Biol,2003,5:330–335.
    [46]Emdin SO, Dodson GG, Cutfield JM,et al. Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic B cell[J]. Diabetologia ,1980,19:174–182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700