用户名: 密码: 验证码:
载骨形态发生蛋白2活性肽纳米仿生骨基质材料成骨能力和修复骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建BMP-2活性肽/PLGA-[ASP-PEG]仿生骨基质材料,评价BMP-2活性肽对大鼠骨髓基质干细胞(BMSC)的粘附、增殖及诱导成骨分化的影响。
     方法对聚乳酸-乙醇酸共聚物(PLGA)改性,制成PLGA-[ASP-PEG]多元共聚物,同时用固相合成法合成寡肽BMP-2活性肽(P24),将其与PLGA-[ASP-PEG]共价结合,构建BMP-2活性肽(P24)/ PLGA-[ASP-PEG]仿生骨基质支架材料。实验分三组,将大鼠BMSC与不同材料复合培养。A组为PLGA-[ASP-PEG]仿生骨基质材料,B组为PLGA-[ASP-PEG]材料,C组为单纯的PLGA材料。流式细胞仪(FCM)对培养细胞性质进行鉴定。沉淀法测定细胞与材料到粘附率。四甲基偶氮唑蓝微量酶反应比色法(MTT)、考马斯亮蓝法和扫描电镜(SEM)检测BMSC体外增殖活性,成骨诱导标志物碱性磷酸酶(ALP)活性,骨钙蛋白(OCN)含量,ALP染色和钙结节染色了解BMSC成骨分化情况。
     结果FCM证实分离培养的细胞为BMSC。细胞粘附率检测显示,BMSC在P24/ PLGA-[ASP-PEG]材料表面和PLGA-[ASP-PEG]材料表面的粘附性能和增殖能力明显高于PLGA表面,差异有统计学意义(P<0.05)。与SEM、细胞生长曲线和细胞蛋白质含量测定结果一致。ALP活性和OCN含量检测显示:P24诱导的A组ALP活性和OCN含量明显高于B组和C组,ALP染色和钙结节染色:P24诱导的A组出现阳性表现的时间最早。
     结论PLGA-[ASP-PEG]能促进BMSC在骨基质材料表面的粘附、增殖并能较好地保持细胞的形态,PLGA-[ASP-PEG]材料及其降解产物不影响BMSC的成骨分化, P24能体外诱导BMSC向成骨方向分化,具有与BMP-2类似的骨诱导活性。
     第二部分BMP-2活性肽体外定向诱导大鼠BMSC向成骨方向分化的剂量依赖性研究
     目的探讨自行合成的寡肽P24对大鼠BMSC体外定向诱导成骨分化的能力,评价P24的成骨诱导活性及体外诱导成骨的最佳剂量。
     方法取4周龄SD大鼠分离培养BMSC,传至第3代时改用成骨诱导培养基,培养基中分别加入浓度为300、200、100、50和0μg/ml的P24,并依次记为A、B、C、D和E组。观察细胞的形态学改变,检测细胞的ALP活性和OCN含量,实时荧光定量RT-PCR检测成骨标志物基因Ⅰ胶原(COL-Ⅰ)、骨桥蛋白(OPN)及OCN mRNA的表达。
     结果倒置相差显微镜下观察,用成骨诱导培养基培养3~4d,培养细胞形态由长梭形转变为短梭形或多角形。随着培养基中P24浓度的增加,细胞发生成骨样改变的时间提前。ALP活性和OCN含量检测显示,A和B组ALP活性和OCN含量较其他三组增加明显,差异有显著性(P<0.05),组间比较,差异无显著性(P>0.05)。实时荧光定量RT-PCR检测显示培养14d,成骨诱导标志物COL-Ⅰ、OPN和OCN mRNA在各组均有表达。A组和B组的Ct值明显大于C组和D组,差异有显著性(P<0.05),但A组和B组之间差异无显著性(P>0.05)。
     结论P24体外能有效地诱导BMSC向成骨方向分化,在PLGA-[ASP-PEG]材料体系中,最适合的P24体外诱导剂量认为是200μg/ml。
     第三部分BMP-2活性肽/PLGA-[ASP-PEG]仿生骨基质材料异位成骨的实验研究
     目的评价P24/PLGA-[ASP-PEG]仿生骨基质材料的异位成骨能力。
     方法成年雄性SD大鼠48只,随机分成三组,分别在大鼠背部双侧竖脊肌浅层肌袋中植入不同材料。A组:P24/ PLGA-[ASP-PEG]仿生骨基质材料;B组:单纯PLGA-[ASP-PEG]材料;C组:单纯的明胶海绵材料。X线、CT+三维成像观察植入物成骨情况,不同时间点病理切片,行组织学观察,western blot检测植入区成骨标志物Col-I及OPN蛋白的表达,实时荧光定量RT-PCR检测Col-I及OPN mRNA的表达。
     结果X线、CT+三维成像:8周时,A组可见明显的成骨表现,B组偶见成骨样影像,C组未见新骨表现。组织学观察:A组8周骨小梁明显增粗增宽,表面形成类骨密质的结构,可见大量新骨形成,在新骨外周部有骨小梁及新生血管。B组8周时植入区纤维组织增生,偶见软骨细胞及少量成骨细胞。C组8周明胶海绵吸收,呈现肌肉组织表现,未见新骨形成。实时荧光定量RT-PCR:各组8周均有Col-I mRNA和OPN mRNA的表达, A组中Col-I mRNA和OPN mRNA为高表达。与western blot检测结果一致。
     结论构建的P24/PLGA-[ASP-PEG]仿生骨基质材料能够诱导异位成骨,P24具有与天然BMP-2类似的异位诱导成骨能力和骨诱导活性,其成骨过程以软骨内化骨为主。
     第四部分BMP-2活性肽/PLGA-[ASP-PEG]仿生骨基质材料修复兔股骨缺损的实验研究
     目的探讨P24/PLGA-[ASP-PEG]仿生骨基质材料修复兔股骨中段临界大小骨缺损的可行性。
     方法36只新西兰大白兔制备成股骨中段15mm的临界大小骨缺损模型。按实验设计分为三组。A组:植入P24/ PLGA-[ASP-PEG]仿生骨基质材料,B组植入PLGA-[ASP-PEG]材料;C组,植入单纯的明胶海绵。5孔钢板螺钉内固定。X线观察,组织学观察、修复组织ALP测定以及生物力学测试,比较各组材料修复骨缺损的能力。
     结果X线显示及评价:A组8周骨痂与宿主骨界限模糊,骨痂密度不均匀,皮质骨轮廓出现,骨缺损已基本消失,有典型的骨愈合影像;12周骨痂开始塑性,新生骨皮质结构清晰,与断端骨自然连接,髓腔有再通趋势。按照X线骨缺损愈合分级,16周时4级以上为9只(优良率64.28%)。B组12周缺损区有少量骨痂生成,断端吸收变细,髓腔开始闭锁,缺损区依然存在。X线骨缺损愈合分级0级为5只(占62.5%)。C组:12周骨缺损区表现为骨不连影像,髓腔闭锁,钢板有松动迹象。X线骨缺损愈合分级均为0级。组织学观察:A组:8周时成骨细胞活跃,新骨大量增生,相互融合生长,呈编织骨和骨小梁结构,骨小梁钙化形成板层股。12周时编织骨增厚密集,呈典型的板层骨结构,骨细胞趋于成熟,有血管形成和长入,不规则骨髓腔出现。B组:8周纤维组织增生,材料部分吸收。12周植入区两端与宿主骨交界处,新骨增生,可见骨小梁和板层骨。植入区中央材料大部分吸收,可见大量的纤维组织,偶见软骨细胞。C组:12周缺损区被纤维结缔组织填充,骨端增生不活跃,髓腔封闭。生物力学测试:A组最大抗弯曲负荷122.14±12.83N,与同组正常骨参照值相比,修复比率为87.42%。B组最大抗弯曲负荷38.38±8.09N,与同组正常骨参照值相比,修复比率为26.89%。二者具有统计学差异性(P<0.05)。
     结论体外构建的P24/PLGA-[ASP-PEG]仿生骨基质材料是一种理想的组织工程支架材料,能诱导启动典型的软骨内化骨过程,促进骨缺损的修复。
Objective In this research, a new biomimetic bone tissue engineering scaffold material, BMP-2-derived peptide P24 / PLGA-[ASP-PEG] composite was constructed. The effect of P24 to the adhesion, proliferation and osteodifferentiation of bone mesenchymal stem cells (BMSCs) were investigated.
     Methods PLGA was modified with polyethylene glycol (PEG) and asparagic acid (ASP), and tri-block polymer PLGA-[ASP-PEG] material was prepared. Then peptide P24 was introduced into PLGA-(PEG-ASP)n scaffolds by cross-linkers. Thus, BMP-2-derived peptide P24 / PLGA-[ASP-PEG] composite was synthesized. BMSCs were cultured on three kinds of material respectively, one was P24 / PLGA-[ASP-PEG] biomimetic material (Group A), one was PLGA-[ASP-PEG] material (Group B), the other was simple PLGA material (Group C). The lineage specificity of the cells on these materials were detected by Flow cytometry(FCM). The cell adhesion was assessed by precipitation method. The proliferative ability of BMSCs were measured by MTT assay, Coomassie brilliant blue staining and scanning electron microscope(SEM). And the measure of alkaline phosphatase(ALP) activity and osteocalcin(OCN) level and ALP staining and calcium tubercle staining were performed to assess the cells’differentiation towards osteoblasts.
     Results FCM confirmed the cells that isolated and cultured were BMSCs. The adhesive ratio measure suggested that adhesion and proliferation of BMSCs on the surface of P24 / PLGA-[ASP-PEG] is much higher than the control group (P<0.05). These were coincident with the cells’growth curve and the result of total protein assay and SEM. The ALP activity and osteocalcin(OCN) level of BMSCs in P24 / PLGA-[ASP-PEG] group were significant higher than in PLGA-[ASP-PEG] group and PLGA group. And in the assessment of ALP staining and calcium tubercle staining, positive staining was expressed firstly in P24 / PLGA-[ASP-PEG] group.
     Conclusion The PLGA-[ASP-PEG] material was confirmed to improve BMSCs’adhesion and proliferation, and maintain their morphology. The material and its degradation product didn’t impact BMSCs’osteodifferentiation. And the BMP-2 derived peptide P24 could induce BMSCs’differentiation towards osteoblasts, its activity was equal to BMP-2.
     PartⅡDose-dependent of BMP-2-derived Peptied on Osteogentc Induction of BMSCs in vitro
     Objective To evaluate the capability of synthesized BMP2-derived peptide P24 on osteogenic induction of BMSCs, and investigate its dose-dependent and optimal dose in vitro.
     Methods BMSCs were separated from 4-week-old SD rats and cultured with normal medium. At 3rd generation the medium was changed to osteogenetic medium which contained different dose of BMP2-derived peptide. The concentrations of BMP2-derived peptide contained in medium were 300、200、100、50 and 0μg/ml, respectively. These groups were labeled with A~E by turns. The change of cell morphology was observed with microscopy. ALP activities and OCN levels were taken at different points of time. The mRNA expression level of several osteogenetic marker such as Type I collagen(Col-I), osteopontin(OPN) and osteocalcin(OCN) were measured using real-time fluorescent quantitative polymerase chain reaction (FQ-PCR) technique to detect the osteoinductivity of different concentration of BMP2-derived peptide,.
     Results Under inverted phase contrast microscope, MSCs had changed their shape from long fusiform to short fusiform or polygon with the osteogenetic medium for 3~4 days. With the increase of the concentration of BMP2-derived peptide in medium, the time of MSCs changed their shape into osteoblast-like had advanced accordingly. The detection of ALP activities and OCN levels suggested that group A and group B were significant higher than the rest three groups (P<0.05). But there was no statistical significance between group A and group B(P>0.05). FQ-PCR suggested that after cultured for 14d, Col-I, OPN and OCN were expressed in each group. And the value of cycle threshold (Ct) of Group A and Group B were significant higher than the rest three groups(P<0.05). But there has no statistical significance between group A and group B(P>0.05).
     Conclusion BMP2-derived peptide can induce BMSCs to differentiate into osteoblasts effectively. And among the PLGA-[ASP-PEG] material system, the optimal inductive concentration of P24 was 200μg/ml.
     PartⅢEctopic osteogenesis of BMP-2-derived peptide combined with PLGA-[ASP-PEG] scaffold
     Objective Evaluated the ectopic osteogenetic capacity of synthesis BMP2-derived peptide combined with poly (lactic acid / glycolic acid / asparagic acid-co-polyethylene glycol) (PLGA-[ASP-PEG]) by animal experiment.
     Methods A total of 48 SD rats were allocated into three groups randomly. Three kinds of materials were respectively implanted into each side of superficial layer of erector spinae. Group A: BMP2-derived peptide P24 / PLGA-[ASP-PEG] complex, Group B: simple PLGA-[ASP-PEG], Groups C: simple gelatin sponge . The bone formation of the implants was detected by X-ray and CT three-dimensional imaging, further assessed by histological sections in different points of time. The osteogenic marker, Col-I and OPN were detected by western blot at protein level and by RT-PCR at mRNA level.
     Results X-ray and CT three-dimensional imaging showed obvious osteogenesis in group A, occasional osteogenesis in group B, and no bone formation in group C in the 8th week. Histological examination showed at 8th week, in group A, bone trabeculae were found to be robust and wide with some compact bone-like tissue formed on their surface, and plenty of new bone formation was found, some bone trabeculae and new vessels located around them; and the material was absorbed totally. In group B, fibroplasia was found around implant and chondrocytes and osteoblasts could be seen occasionally; and in Group C, implanted gelation sponge was absorbed, the area displayed muscle tissue-like appearance, no new bone structure could be found. Real-time fluorescent quantitative polymerase chain reaction (FQ-PCR) suggested that Col-I mRNA and OPN mRNA were expressed at each groups at 8th week, and in group A the express levels were higher than others. Western blot obtained the same consequence.
     Conclusion BMP2-derived peptide P24 could induce ectopic osteogenesis, and its ectopic osteogenetic capacity and osteoinductivity were equal to nature BMP-2. Os endochondrale acted predominantly during osteogenesis.
     PartⅣAccelerated bone regeneration with a novel synthetic BMP-2-derived bioactive oligopeptide combined with a nano-biomimetic PLGA-[ASP-PEG] scaffold
     Objective Furtherly investigate the osteogenetic capacity of biomimetic materials modified with a novel peptide P24 derived from Bone Morphogenetic Protein-2 combined with PLGA-[ASP-PEG] polymer by using them to repair critical-sized bone defect.
     Methods A total of 36 new zealand white rabbits were allocated into three groups randomly. A 1.5cm unilateral segmental critical-sized bone defect was created in the left femoral diaphysis in all rabbits. Three kinds of materials were used respectively. P24 combined with PLGA-[ASP-PEG] scaffold were implanted in group A, PLGA-[ASP-PEG] without P24 were implanted in group B, and simple gelatin sponge were implanted in group C. Five-hole plates and screws were applied to perform internal fixation routinely. Macroscopic observation, X-ray, histological investigation, ALP activity of repaired tissue and biomechanics measure were taken to evaluate the bone repair capability of each kind of material.
     Results Radiographic findings showed: In group A, at 8th week, the boundary between bone callus and host bone became obscure, bone callus appeared uneven in density, the profile of os integumentale was displayed, bone defect almost disappeared, typical symbol of bone healing was observed; at 12th week, bone callus moulding was found, the texture of new os integumentale became clear, and them united with the broken end naturally, and the medullary cavity was trend to be recanalization. According to the standardized radiographic scales of bone defect repair, 9 rabbits were assessed as Grade 4 or above (fine ratio was 64.28%). In group B, at 12th week, a little bone callus was formed in the defect area, the broken ends were absorbed and became small, the medullary cavity began to be atresic, and the defect was still presented. There were 5 rabbits that be assessed as Grade 0 (62.5%). In group C, at 12th week, ununion symbol was still observed, atresic medullary cavity and loosing plate were be found. All of the rabbits were assessed as grade 0. Histological observations showed: In group A, in 8th week, active osteoblasts could be found, plenty of new bone tissue was formed and fused with each other, and seemed like woven bone and bone trabecula, lamellar bone was formed by calcification of bone trabeculae. At 12th week, woven bone tissue became thick and intensive, and turned into typical lamellar bone, osteocytes were trend to be mature, and with angiopoiesis and its invasion, irregular medullary cavities were formed. In group B, at 8th week, fibroplasia could be found and the material was absorbed partly.; at 12th week, new bone formation was found in the juncture of implant and host bone tissue, and bone trabeculae and lamellar bone were appeared. The middle of material was absorbed subtotally, massive fibrous tissue could be seen, and chondrocytes were be occasionally seen. In group C, at 12th week, the defect area was filled by fibrous connective tissue, hyperplasy in broken ends were inconspicuous, and medullary cavities were blocked. Biomechanics measure suggested the ultimate bending load of group A was 122.14±12.83N, which reparative ratio was 87.42% when compared with the reference value of normal bone in the same group; and in group B, the ultimate bending load was 38.38±8.09N, the reparative ratio of it was 26.89% when compared with the reference value of normal bone in the same group. And there was statistical difference between group A and B (p<0.05).
     Conclusion This novel biomimetic material P24/PLGA-[ASP-PEG] is an ideal scaffold for bone tissue engineering, which can trigger typical os endochondrale procession and improve repair of bone defect.
引文
1 EI-Amin SF,Lu HH,Khan Y,et al. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterrals,2003,24(7): 1213-1221.
    2 Ren T,Ren J,Jia X,et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A,2005,74(4):562-569.
    3 Day RM,Boccaccini AR,Maquet V,et al. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. J Mater Sci Mater Med,2004,15(6):729-734.
    4 Karp JM , Shoichet MS , Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res,2003,64(2):388-396.
    5 Cheng H,Jiang W,Phillips F,et al. Osteogenic activity of the fourteen type of human bone morphogenic proteins(BMPs). J Bone Joint Surg Am,2004,86-A (1):141-147.
    6 Boden SD. The ABCs of BMPs. Orthop Nurs,2005,24(1):49-54.
    7 Wozney J,Seeherman H. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol,2004,15(5):392-398.
    8 Saito N,Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials,2003,24(13):2287-2293.
    9 Chadderdon R,Shimer A,Gilbertson L. Advances in gene therapy for intervertebral disc degeneration. Spine,2004,4(6 Suppl):341S-34.
    10 Gugala Z,Olmsted D. Osteoinductive by ex vivo adenovirus-mediated BMP-2 delivery is independent of cell type. Gene Ther,2003,10(16):1289-1295.
    11 Mountain A. Gene therapy: the first decade. Trends Biotechnol,2000,18(3): 119-128.
    12 Barany G,Merrifield RB. 1979. Solid phase peptide synthesis. In: Gross E,Meienhofer J. eds. The peptides. New York Academic Press. pp:1-284.
    13 Gratzer PF,Lee JM. Control of pH Alters the Type of Cross-linking Produced by 1- Ethyl- 3-(3- Dimethylaminopropyl)- Carbodiimide (EDC): Treatment of Acellular Matrix Vascular Grafts. J Biomed Mater Res,2001,58:172-179.
    14 Antia M,Islasa LD,Boness DA. Single molecule fluorescence studies ofsurface-adsorbed fibronectin. Biomaterials,2006,27(5):679-690.
    15 Kasten P,Luginbuhl R,van Griensven M,et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite,beta-tricalcium phosphate and demineralized bone matrix. Biomaterials,2003,24(15):2593-2603.
    16 Boyan BD,Hummert TW,Dean DD,et al. Role of material surfaces in regulating bone and cart ilage cell response. Biomaterials,1996,17(2):137-146.
    17 Lieb E , Tessmar J , Hacker M , et al. Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells. Tissue Eng,2003,9(1):71-84.
    18 Peter SJ,Miller MJ,Yasko AW,et al. Polymer concepts in tissue engineering. J Biomed Mater Res,1998,43(4):422-427.
    19 Ranieri JP,Bellamkonda R ,Jacob J ,et al. Selective neuronal cell attachment to a covalently patterned monoamine on fluorinatied ethylone propylone films. J Biomed Mater Res,1993,27 (7):917 -925.
    20郭晓东,袁泉,郑启新,等.具有骨诱导活性的仿生骨基质材料的制备.中华实验外科杂志,2006,23(8):985-986.
    21李宏卫,张栋华,祁兵,等.乳酸和乙醇酸共聚物膜的细胞亲和性实验研究.南京医科大学学报(自然科学版),2005,25(12):959-961.
    22 Jeong B , Bae YH , Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release,2000,63(1-2):155-163.
    23全大萍,高建文,廖凯荣,等.聚乳酸一聚乙二醇一聚乳酸三嵌段共聚物的降解性能.功能高分子学报,2002,15(4):391-394.
    24 LeBaron RG,Athanasion KA.Extracellular matrix cell adhesion peptides:functional applications in orthopedic materials.Tissue Eng,2000,6(2):85-103.
    25罗丙红,全大萍,廖凯荣,等.PLGA-(PEG-ASP)n共聚物的合成与性能研究.功能高分子学报,2005,18(2):295-298.
    26赵洁,全大萍,廖凯荣,等.含不同侧氨基密度的PLGA-(L-Asp-alt-diol)x -PLGA共聚物的合成与表征.高等学校化学学报,2005,8(2):1570-1573.
    27罗丙红,全大萍,廖凯荣,等. PLGA-(PEG-ASP)n共聚物的合成与性能研究.功能高分子学报,2005,18(2):295-298.
    28 Zhao J,Quan DP,Liao KR,et al. PLGA-(L-Asp-alt-diol)x-PLGAs with Different Contents of Pendant Amino Groups: Synthesis and Characterization. MacromolBiosci,2005,5(7): 636-643.
    29郝杰,郑启新,郭晓东,等.三嵌段高分子骨组织工程支架材料的制备及细胞粘附性研究.中国生物医学工程学报,2005,24(2):129-133.
    30刘国辉,郭晓东,郑启新,等.聚(丙交酯-co-乙交酯)仿生基质材料的制备.中华实验外科杂志,2004,21(4):461-463.
    31 Saito A,Suzukib Y,Ogata SI. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochimica et Biophysica Acta,2003,1651(1-2):60- 67.
    32 Kirsch T,Sebald W,Dreye MKr. Crystal structure of the BMP-2-BRIA ectodomain complex,Nat. Struct. Biol,2000,7(6):492-496.
    33 Kirsch T,Nickel J,Sebald W. BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPRII. EMBO J,2000,19(13):3314- 3324.
    34 Knaus P,Sebald W. Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem,2001,382(8):1189-1195.
    35 Garcia AJ,Ducheyne P,Boettiger D. Effect of surface reaction stage on fibronectin2mediated adhesion of osteoblast-like cells to bioactive glass.J Biomed Mater Res,1998,40(1):48 - 56.
    36 Sakai H,Jingushi S,Shuto T,et al. Fibroblasts from the inner granulation tissue of the Pseudocapsule in hips atrevision arthroplasty induce osteoelast differentiation,as do stromal cells. Ann Rheum Dis,2002,61(2):103-109.
    1. Ebara S,Nadayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine,2002,27(16 Suppl 1):10-15.
    2. Chen D,Zhao M,Mundy GR. Bone morphogenetic proteins. Growth Factors,2004,22(4):233-241.
    3. Wozney JM,Seeherman HJ. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol,2004,15(5):392-398.
    4. Saito N,Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials,2003,24(13):2287-2293.
    5. Chadderdon RC,Shimer AL,Gilbertson LG,et al. Advances in gene therapy for intervertebral disc degeneration. Spine J,2004,4(6 suppl ):341-347.
    6.段智霞,郑启新,郭晓东,等.大鼠骨形成蛋白2活性多肽/ PLGA-[ASP-PEG]复合物植入异位成骨观察.郑州大学学报,2007,42(3):441-444.
    7. Guo XD,Yuan Q,Zheng QX,et al. Biologically inspired self-assembling synthesis of bone-like nano- hydroxyapatite /PLGA-(PEG-ASP)n composite: A new biomimetic bone tissue engineering scaffold material. J Wuhan Univer Technol,Mater Sci Ed,2005,20(Suppl):234-237.
    8.段智霞,郑启新,郭晓东,等. BMP-2活性多肽/PLGA复合物植入异位成骨的实验研究.国际生物医学工程杂志,2007,30(3):129-132.
    9.郭晓东,袁泉,郑启新,等.具有骨诱导活性的仿生骨基质材料的制备.中华实验外科杂志,2006,23(8):985-986.
    10. Saito A,Suzuki Y,Ogata S,et al. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta, 2003,1651(1-2):60-67.
    11. Saito A,Suzuki Y,Ogata S,et al. Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. J Biomed Mater Res A,2004,70(1):115-121.
    12. Saito A,Suzuki Y,Ogata S,et al. Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res A,2005,72(1):77-82.
    13. Suzuki Y,Tanihara M,Suzuki K,et al. Alginate hydrogel linked with synthetic oligopeptedi derived from BMP-2 allows ectopic osteoinduction in vivo. J BiomedMater Res,2000,50(3):405-409.
    14.潘海涛,郑启新,郭晓东,等.新型靶向性非病毒载体K16GRGDSPC转染骨髓基质细胞的条件优化.华中科技大学学报(医学版),2006,35(3):369-372.
    15.潘海涛,郑启新,郭晓东,等.含RGD肽基因导入系统介导TGF-β1基因转染对兔骨髓基质干细胞增殖和体外诱导成骨的影响.中国生物医学工程学报,2006,25(5):596-601.
    16. Yuan Q,Guo XD,Zheng QX,et al. Bioinspired growth of hydroxyapatite nanocrystals on PLGA- (PEG- ASP)n scaffolds modified with oligopeptide derived from BMP-2. Key Engin Mater,2007,334(3):1261-1264.
    17.袁泉,郭晓东,郑启新.骨形态发生蛋白基因在骨组织工程领域的研究进展.国外医学生物医学工程分册,2005,28(6):321-324.
    18.郁卫东,秦书俭.骨形态发生蛋白-2在骨形成过程中的作用机制.中国临床解剖学杂志.2000,18(1):82-83.
    19.赵广跃,胡蕴玉,刘建,等. RhBMP-2诱导效应的体内和体外观察.解放军医学杂志,2005,30(12):1118.
    20.张超,胡蕴玉,徐建强,等.骨相关生长因子对兔骨髓基质干细胞生长及分化的量效作用.中国修复重建外科杂志,2OO5,19(11):906-909.
    21.杨志明,余希杰,黄国富等。外源性Ⅰ型胶原对人胚骨膜成骨细胞生物学特性的影响。华西医科大学学报。2001,32(1):1-4.
    22. Alborzi A,Mac-K G,Lackin CA,et al. Endochondral and intramembranous fetal bone development: osteoblastic cell proliferation,and expression of alkaline phosphatase m-twist,and histone H4. J Craniofac Genet Dev Biol.1996,16(2):94-101.
    23.栗向东,胡蕴玉,PcDNA3-Hbmp2转染对成纤维细胞生物学性状的影响.中华外科杂志.2001,39(4):320-324.
    24. Aydin HM Turk M Calimli A,et al. Attachment and growth of fibroblasts on poly(L-lactide/epsilon-caprolactone) scaffolds prepared in supercritical CO2 and modified by polyethylene imine grafting with ethylene diamine-plasma in a glow-discharge apparatus. Int J Artif Organs, 2006,29(9):873-880.
    25. Kenar H,Kose GT,Hasirci V. Tissue engineering of bone on micropatterned biodegradable polyester films. Biomaterials,2006,27(6):885-895.
    26. Kasten P,Vogel J,Luginbuhl R,et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials,2005,26(29) :5879-5889.
    1 Cheng H,Jiang W,Phillips F,et al. Osteogenic activity of the fourteen type of human bone morphogenic proteins(BMPs) .J Bone Joint Surg Am,2004,86-A (1):141-147.
    2 Boden SD. The ABCs of BMPs. Orthop Nurs,2005,24(1):49- 54.
    3 Wozney JM, Seeherman HJ. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol,2004,15(5):392-398.
    4 Chadderdon RC,Shimer AL,Gilbertson LG,et al. Advances in gene therapy for intervertebral disc degeneration. Spine J,2004,4(6 suppl ):341-347.
    5 Chen D,Zhao M,Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004,22(4): 233-41.
    6 Saito N, Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials,2003,24(13):2287-2293.
    7 Chadderdon R,Shimer A,Gilbertson L. Advances in gene therapy for intervertebral disc degeneration. Spine,2004,4(6 Suppl):341-34.
    8 Gugala Z,Olmsted D. Osteoinductive by ex vivo adenovirus-mediated BMP-2 delivery is independent of cell type. Gene Ther,2003,10(16):1289-1295.
    9 Guo XD, Yuan Q, Zheng QX, et al. Biologically inspired self-assembling synthesis of bone-like nano- hydroxyapatite /PLGA-(PEG-ASP)n composite: A new biomimetic bone tissue engineering scaffold material. J Wuhan Univer Technol,Mater Sci Ed,2005,20(Suppl):234-237.
    10 Duan Z,Zheng Q,Guo X,et al. Experimental Research on Ectopic Osteogenesis of BMP2-derived Peptide P24 Combined with PLGA Copolymers.J Huazhong Univ Sci Technolog Med Sci,2007, 27(2):179-182.
    11 Khan SN,Bostrom MPG,Lane JM. Bone growth factors. Orthop Clin North Am. 2000.31(3): 375-388.
    12郑启新,郭晓东。纳米生物材料。徐辉碧主编。纳米医药学。第一版。北京:清华大学出版社,2004,302-329.
    13 Ostrom MP,Lane JM,Berberian WS,et al. Immunolocalization of expresion of bone morphogenetic protein 2 and 4 in fracture healing. J Orthop Res,1995. 13(6):357-367.
    14 Tsumaki N,Yoshikawa H. The role of bone morphogenetic proteins in endochondral bone formation. Cytokine and Growth Factor Reviews,2005,16(3):279-285.
    15 Kugimiya F,Kawaguchi H,Chung UI. BMP and bone formation. Clin Calcium,2004,14(1): 173-179.
    16李宏卫,张栋华,祁兵,等.乳酸和乙醇酸共聚物膜的细胞亲和性实验研究.南京医科大学学报(自然科学版),2005,25(12):959-961.
    17全大萍,高建文,廖凯荣,等.聚乳酸一聚乙二醇一聚乳酸三嵌段共聚物的降解性能.功能高分子学报.2002,15(4):391-394.
    18 Hulth A.Current concept of fracture healing. Clin Orthop.1989,249(5):265-284.
    19 Goldstein SA, Patil PV,Moalli MR. Perspectives on tissue engineering of bone. Clin Orthop, 1999,367(suppl):S419-423.
    20 Okubo Y, Bessho K, Fujimura K, et al. Osteoinduction by recombinant human bone morphogenetic preotein-2 at intramuscular , intermuscular , subcutaneous and intrafatty sites. Int J Oral Maxillofac Surg,2000,29(1):62-66.
    21金岩,杨连甲. BMP骨诱导机制.见:杨连甲,金岩,胡蕴玉,主编。口腔和骨科的生物活性材料原理、应用、进展.第一版.西安:陕西科技出版社,1993:241-243.
    22 Zegzula HD.Buck IX3.Bone formation with use of rhBMP-2.Journal of Bone and Joint surgery,1997,79(5):I778 -1790.
    23 Ripamoni U,Van Den Heever B,Sampath TK,et a1.Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hHOP-1 , bonem orphogenetic protein-7).Growthfactors,1996.1 3(3-4):273- 289.
    24 Sakiyama-Elbert SE , Hubbell JA. Functional biomaterials : design of novel biomaterials. Annu Rev Mater Res,2001,31(2):183-201.
    25 Yuan Q, Guo XD, Zheng QX, et al. Bioinspired growth of hydroxyapatite nanocrystals on PLGA- (PEG- ASP)n scaffolds modified with oligopeptide derived from BMP-2. Key Engin Mater,2007,334(3):1261-1264.
    1. Murakami N,Saito N,Horiuchi H,et al. Repair of segmental defects in rabbit humeri with titanium fiber mesh cylinders containing recombinant human bone morphogenetic protein-2 and a synthetic polymer. J Biomed Mater Res 2002,62(2):69-74.
    2. Shinichi T,Michio S,Alexander S,et al. Tissue engineering in the twenty-first century. Yonsei Medical Journal. 2000,6(41):685-691.
    3. Groeneveld E,Burger E. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol. 2000,142(6):9 -21.
    4. Suzuki K,Suzuki Y,Tanihara M,et al. Reconstruction of rat peripheral nerve gap without sutures using freeze-dried alginate gel. J Biomed Mater Res 2000,49(4):528 -533.
    5. Yasko A,Lane J,Fellinger E,et al. The healing of segmental bone defects induced by recombinant human bone morphogenetic protein: a radiographic,histological,and biomechanical study in rats. J Bone Joint Surg(Am),1992,74(5):659-670.
    6. Chang-S K,Joon-Il K,Jin K,et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials,2005,26(15):2501-2507.
    7. Wozney J,Seeherman H. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol,2004,15(5):392-398.
    8. Boden SD. The ABCs of BMPs. Orthop Nurs,2005,24(1):49-54.
    9. Schmitz JP,Hollinger JO. The critical size defect as an experimental model for craniomandibulafacial nonuions. Clin Orthop,1986,205:299-308.
    10. Hollinger JO,Kleishmidt JC. The critical size defect an experimental model to test bone repair materials. J craniofac Surg,1990,1(1):60-68.
    11. Xiao DM,Xu ZS,Lin BW,et al. Reparation of experimental models of osseous nonunion. Chines Journall of Rehabilitation. 2005,9(30):214-215.
    12.扬志明,黄富锅,秦廷武,等.生物衍生组织工程骨植骨的初步临床应用.中国修复重建外科杂志,2002,16(5):311-314.
    13. Bruder SP,Fox BS. Tissue engineering of bone. Cell based strategies. Clin Orthop,1999,367(suppl):S68-83.
    1. Urist MR. Bone: formation by autoinduction.1965.Clin Orthop Relat Res. 2002 Fab, (395):4-10.
    2. Wozney JM, Seeherman H. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol, 2004, 15(5): 392-398.
    3. Urist MR. Surface-decalcified allogeneic bone (SDAB) implants. A preliminary report of 10 cases and 25 comparable operations with undecalcified lyophilized bone implants. Clin Orthop Relat Res. 1968 ;56:37-50.
    4. Urist MR, Iwata H, Ceccotti PL, et al. Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA. 1973;70(12):3511-3515.
    5. Urist MR, Mikulski AJ. A soluble bone morphogenetic protein extracted from bone matrix with a mixed aqueous and nonaqueous solvent. Proc Soc Exp Biol Med 1979;162(1) 48-53.
    6. Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA. 1979;76(4):1828-1832.
    7. Urist MR, Silverman BF, Buring K, et al. The bone inductive principle. Clin Orthop Relat Res. 1967;53:243-283.
    8. Urist MR, Lietze A, Mizutani H, et al. A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop Relat Res. 1982;162:219-232.
    9. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev, 2003, 55(12): 1613-1629.
    10. Okubo Y, Bessho K, Fujimura K, et al. Osteogenesis by recombinant human bone morphogenetic protein-2 at skeletal sites. Clin Orthop Relat Res, 2000,375 :295~301.
    11. Valentin-Opran A, Wozney J, Csimma C. et al. Clnical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop Relat Res. 2002, 395:110-120.
    12. Makimdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol. 2001, 189(3): 275-284.
    13. Urist MR, Lietze A, Mizutani H, et al. A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop Relat Res. 1982;162:219-232.
    14. Wu, ZY. Hu, XB. Seperation and purification of porcine bone morphogenetic protein. Clin Orthop Relat Res. 1988:230:229-236.
    15.唐国民,等,羊成骨蛋白诱导成骨的电子显微镜观察,上海医学.1989:12:208.
    16.孙正义,马骨形成蛋白Hr BMP的提取及其诱导成骨的实验研究,第三届全国骨科学术会议论文汇编.1989;p52.
    17. Bessho K, Tagawa T, Murata M. Purification of rabbit bane morphogenetic proteinderived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg. 1990;48(2):162-169.
    18. Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA. 1979;76(4):1828-1832.
    19. Hanamura H, Higuchi Y,Nakagawa M, et al. Solubilized bone morphogenetic protein (BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin Orthop Relat Res. 1980;148:281-290.
    20. Muthukumaran N, Sampath TK, Reddi AH. Comparison of bone inductive proteins of rat and porcine bone matrix. Biochem Biophys Res Comrnun. 1985;131(1):37-41.
    21. Mohan S, Jenning JC, Linkhart TA, et al. Isolation and purification of a low-molecular-weight skeletal growth factor from human bones. Biochem Biophy Acta. 1986;884(2):234-242.
    22. Hanamura H, Higuchi Y, Nakagawa M, et al. Solubilization and purification of bone morphogenetic protein(BMP) from Dunn osteosarcoma. Clin Orthop. 1980.153:232-240.
    23. Bessho K, Tagawa T. Murata M. Purification of rabbit bane morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg. 1990;48(2):162-169.
    24. Bessho K, Tagawa T, Murata M. Comparison of bone matrix-derived bone morphogenetic proteine from various animals. J Oral Maxillofac. Surg.1992.50:496-501.
    25. Peterson B, Zhang J, Iglesias R, et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 2005;11(1-2):120-129.
    26. Robert F, Karin S. Peptides as novel smart materials.Current Opinion in Structural Biology. 2005,15:453-463.
    27. Saito A, Suzuki Y, Ogata S,et al. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta, 2003, 23(9):60-67.
    28. Suzuki Y, Tanihara M, Suzuki K, et al. Alginate hydrogel linked with synthetic oligopeptedi derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res, 2000;50(3):405-409.
    29.潘海涛,郑启新,郭晓东,等.新型靶向性非病毒载体K16GRGDSPC转染骨髓基质细胞的条件优化.华中科技大学学报(医学版),2006,35(3):369-372.
    30.潘海涛,郑启新,郭晓东,等.含RGD肽基因导入系统介导TGF-β1基因转染对兔骨髓基质干细胞增殖和体外诱导成骨的影响.中国生物医学工程学报,2006,25(5):596-601.
    31. Duan Z, Zheng Q, Guo X, et al. Experimental Research on Ectopic Osteogenesis of BMP-2-derived Peptide P24 Combined with PLGA Copolymers. J Huazhong Univ Sci Technolog Med Sci. 2007, 27(2):179-182.
    32. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev, 2003 ,55(12):1613-1629.
    33. Tsumaki N, Yoshikawa H. The role of bone morphogenetic proteins in endochondral bone formation. Cytokine Growth Factor Rev, 2005 ,16(3):279-285.
    34. Kugimiya F, Kawaguchi H, Chung UI. BMP and bone formation. Clin Calcium , 2004, 14(1): 173-179.
    35. Rajendra S, Bhatnagar, Qian JJ, et al. Biomimetic habitats for cells: ordered matrix deposition and differentiation coated with a collagen analogue. Cells Materi, 1999,9: 93-104.
    36. Trasatti C, Spears R, Gutmann JL, et al. Increased TGF-β1 production by rat osteoblasts in the presence of PepGen P-15 in vitro. J Endod, 2004,30(4): 213-217.
    37. Geiger M, Li RH, Friess W. Collagen sponges for bond regeneration with rhBMP-2. Adv Drug Deliv Rev, 2003,55(12)1613-1629.
    38. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials, 2000, 21(23):2347-2359.
    39. Seeherman H. Wozney J,Li R. Bone morphogenetic protein delivery systems.Spine. 2002. 27(16 Suppl 1):S16-23.
    40. Omura S,Mizuki N, Kawabe R, et a1.A carrier for clinical use of recombinant human BMP-2: dehydrothermally cross-linked composite of fibrillar and denatured atelocollagen sponge. Int J Oral Maxillofac Surg. 1998 , 27(2):129-134.
    41.李亚非,胡蕴玉,吕荣,等.四种可溶性载体对骨形态发生蛋白在小鼠体内诱导成骨活性的影响.中华骨科杂志,1997,17:117—119.
    42. Brown WE, Chow LC, Cem Res Prog. A new calsium phosphate, water-setting cement. In: Brown PW Eds. Cement Research Progress, Wasterville, Ohio: American Ceramic Society. 1986: 352-379.
    43. Constantz BR, Barr BM, Ison IC, et al. Histological,chemical,and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res, 1998,43(4):451-461.
    44. Li RH, Bouxsein ML, Blake CA , et al. rhBMP-2 injected in a calcium phosphate paste accelerates healing in the rabbit ulnar osteomy m del. J Orthop Res ,2003-21(6):997-1004.
    45. Hochin H K Xu, Janet B Quinn. [J]. Biomaterial, 2002,23:193202.
    46. Dubok VA, Bioceramics-yesterday, today, tomorrow. POW-der metallru gay and metal ceramics. 2000,39: 381-394.
    47. Delreal RP, Wolkej GC, Vallet-REGI M, et al. A new method to produce macio pores in calcium phosphate cements. Biomaterials, 2002, 23(17): 3673-3680.
    48. Ruhe PQ,Kroese-Deutman HC, Wolke JG et al.Bone inductive properties of rhBMP-2 loaded porous calcium phosphatecement implants in cranial defects in rabbits.Biomaterials 2004 25(11):2123-2132.
    49. Del Real RP, Ooms E, Wolke JG, et al. In vieo bone response to porous calcium phosphate cement. J Biomed Mater Res A, 2003,65 (1):30-36.
    50.张伟,侯春林,刘昌胜等.磷酸钙骨水泥对骨形态发生蛋白缓释作用的体外实验研究.中国矫形外科杂志.2001,8(8):783-786.
    51. Alam MI, Asahina I, Ohmamiuda K, et al. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for thBMP-2. Biomaterials, 2001,22(12),1643-1651.
    52. Hassan AH,Evans CA,Zaki AM,et a1.Use of bone morphogenetic protein-2 and dentin matrix protein-1 to enhance the osteointegration of the Onplant system. Connect Tissue Res,2003;44(1):30~41.
    53. Jin QM, Takita H, Kohog T, et al, Effecte of geometry of hydroxyaptite as a cell substratum in BMP induced ectopic bone formation. J Biomed Mater Res, 2000,51(3):491-499.
    54. Jong Handechel, Hans Peter. TCP is hardly resorbed and not osterconductinve in a non-loading calvaril model. Biomaterials. 2002, 23:1689-1695.
    55. Kovacs K, Velich N, Huszar T, e tal. Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry. Acta Vet Hung, 2003,51(4):475-484.
    56. Ahn SH,Kim CS,Suk HJ,et al. Effect of recombinant human bone morphogenetic protein-4 with carriers in rat calvarial defects. J Periodontol. 2003, 74(6):787-797.
    57. Inone H, Iric. Porous beta-TCP as a bond graft substitute. 7th world biomaterials congress-2004
    58. Plliar RM, Filiaggi MJ, Wells MD, et al. Porous calcium poluphos phate scaffolds for bone substitute applications in vitro characterization. Biomaterials, 2001,22(9):963-972.
    59. Harris CT, Cooper LF. Comparison of bone graft matrices for human mesenchymal strm cell-directed osteogenesis. J Biomed Mater Res A, 2004,68(4):747-755.
    60. Holt GE, Halpern JL, Dovan TT, et al. Evolution of an in vivo bioreactor. J Orthop Res, 2005, 23(4): 916-923)
    61. Walsh WR, Chapman-Sheath PJ, Cain S, et al.A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model. J Orthop Res, 2003,21(4):655-661.
    62. Zou C, Weng W, Deng X, et al. Preparation and character-ization of porous beta-tricalcium phosphate/collagen composites with an integrated structure. Biomaterials, 2005 ,26(26):5276-5284.
    63. Jarman-Smith ML, Bodamyali T, Stevens C, et al. Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J Mater Sci Mater Med, 2004,15(8):925-932.
    64. Murata M, Huang BZ, Shibata T, et al. Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone. Int J Oral Maxillofac Surg. 1999, 28(3):232-237.
    65.罗卓荆,胡蕴玉,王茜.块状重组合异种骨修复犬桡骨骨缺损.中华骨科杂志,1998,18 6 :363-366.
    66. Nagao H,Tachikawa N,Miki T,et al. Effect of recombinant human bone morphogenetic protein-2 on bone formation in alveolar ridge defects in dogs. Int J Oral Maxillofac Surg. 2002; 31(1):66-72.
    67. SaitoN, OkadaT, HoriuchiH, et al. Local bone formation by injection of recombinanthuman bone morphogenetic protein-2 contained in polymer carriers. Bone. 2003 32(4):381-386.
    68. Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation J Biomed Mater Res A, 2004, 69(4):728-737.
    69. Yokoyama A, Gelinsky M, Kawasaki T, et al. Biomimetic porous scaffolds with high elasticity made from mineralized collagen-an animal study. J Bimed Mater Res B Appl Biomater, 2005,75(2): 464-472.
    70. Zhang SM, Cui FZ, Liao SS, et al. Synthesis and biocompatibility of Porous nano-hydroxyapatite/collagen/alginatecomposite. J Mater Sci Mater Med, 2003, 14(7): 641-645)
    71. Simon CG Jr, Khatri CA, Wight SA, et al. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly ( lactide-co-glycolide) microspheres. J Orthop Res, 2002,20(3):473-482.
    72. Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilic poly (lactic-co-glycolic acid)/poly (vinyl alcohol) blend cells caffolds by melt-moldingparticulate-leaching method. Biomaterials, 2003, 24(22): 4011-4021.
    73. Li X, Feng Q, Wang W, et al. Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2006, 77(2):219-226.
    74. Li X, Feng Q, Liu X, et al. Collagen-based implants reinforced by chitin fibres in a goat shank hone defect model. Biomaterials, 2006, 27(9): 1917-1923.
    75. Yunhun Hu, Shilley R, Winn et al. Porous polymer scaffolds surface-modified with RGD enhanced bone cell attachment and differention in vitro. J Bio Mat Res 2003, Vol 64A Iss 3,pp:583-590.
    1 Murphy WL,Mooney DJ. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrate. J Am Chem Soc. 2002(124):1910-17.
    2 Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids and Surfaces B:Biointerfaces, 2004(39): 125-31.
    3 Zuwei M, Masaya K,Ryuji I et al. Potential of nanafiber matrix as tissue-engineering scaffolds. Tissue engineering. 2005(11):101-9.
    4 Whitesides GM, Grzybowski B. Selfi-assembly at all scales. Science.2002(295):2418-21.
    5 Zhang SG. Fabrication of novel biomaterials through molcular self-assembly. Nat.Biotechnol. 2003(21):1171-9.
    6 Hong YS, Legge RL, Zhang S, et al. Effect of amino acid sequence and pH on nanofiber formation of Self-assembling peptides EKA16-2 and EKA16-4. Biomacromolecules. 2003(4):1433-41.
    7 Hwang W, Marini D, Kamm R, et al. Supramolecular structure of helical ribbones self-assembled from a B-sheet peptide. J Chem Phys. 2003(118):389-48.
    8 Jeffrey D, Hartgerink, Elia Beniash, et al. Peptide-amphiphile nanofibers:A versatile scaffold for the preparation of self-assembling materials. PNAS. 2002(99):5133-41.
    9 Liu DJ, Feyter SD, Cotlet M, et al. Fluorescent self-assembled polyphenylene dendrimer nanofibers. Macromolecules. 2003(36):8489-98.
    10 Liu DJ, Zhang H, Grim PCM, et al. Self-assembly of polyphenylene dendrimers into micrometer long nanofibers: An atomic force microscopy study. Langmuir. 2002(18):2385-91.
    11 Formhals A. Process and apparatus for preparing artificial threads. U S patent. 1934(1):504.-11
    12 Bognitzki M, Czado W, Frese T,et al. Nanostructured fibers via electrospinning. Adv Mater. 2001(13):70-81.
    13 Zarkoob S, Reneker DH, Eby RK. Synthetically spun silk nanofibers and a process for making the same. U S atent 6. 2000(110):590-99.
    14 Demir MM, Yilgor I, Yilgor E, et al. Electrospinning of poluurethane fibers. Polymer. 2002(43):3303-11.
    15 Ding B, Kim HY, Lee SC, et al. Preparation and Characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an dlectrospinning method. J Polym Sci. B Polym Phys. 2002(40):1261-73.
    16 Kenawy ER, Layman JM, Watkins JR, et al. Electrospinning ofpoly(ethlene-covinyl alcohol) fibers. Biomaterials 2003(24):907-11.
    17 Megelski S, Sephens JS,Rabolt JF, et al. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002(35):8456-63.
    18 Hua FJ, Kim GE, Lee JD, et al. Macroporous poly(L-lactide) scaffold. 1.Preparation of a macroporous scaffold by liquid-liquid phase separation of a PLLA-diocane-Water system. J Bromed Mater Res. 2002(63):161-7.
    19 Yang F, Murugan R, Rmakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004(25):1891-900.
    20 Xu CY, Inai R, Kotaki M, et al. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissre engineering. tissue Eng. 2004(10):1150-62.
    21 Xu CY, Inai R, Kotaki M, et al. Aligened biodegradable nanofibrous structure: A potential scaffold for biood vessel engineering. Biomaterials. 2004(25):877-83.
    22 Mo XM, Xu CY, Kotaki M et al. Electrospun P(LLA-CL) nanofiber:Abiomimetic cell proliferation. Biomaterials. 2004(25):1883-990.
    23 Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(caprolactone) scaffolds. J. Biomed.Mater.Res. 2003(67A):1105-14.
    24 Li WJ, Tulia R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. biomaterials. 2005(26):599-609.
    25 Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003(24):2077-82.
    26 Shin M, Ishii O, Sued T. Nanometre dimeter fibers of polymer, produced by electrospinning. Nanotechnology. 1996(7):216-23.
    27 Matthews JA, Wnek GE, Simpson DG, et al. Electrospinning of collagen nanofibers. Biomacromolecules. 2002(3):232-8.
    28 Matthews JA, Boland ED, Wnek GE, et al. Electrospinning of collagen typeⅡ: A feasibility study. J Bioact Compat Polym. 2003(18):125-31.
    29 JIn HJ, Chen, JS, Karageorgious V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004(25):1039-47.
    30 Fridrikh SV, Yu JH, Brenner MP, et al. controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 2003(90):114502.
    31 Reneker DH, Chun I. Nanometre diameter fibers of polymer, produced bydldctrospinning. Nanotechnology. 1996(7):216-24.
    32 Xu CY, Inai R, Kotaki M, et al. Aligened biodegradable nanofibrous structure:A potential scaffold for blood vessel engineering. Biomaterials. 2004(25):877-86.
    33 Lee CH, Shin HJ, Cho IH, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of buman ACL fibroblast. Biomaterials. 2005(26):1261-70.
    34 Zong XH, Ran SF, Fang DF, et al. Control of structued, morphology snd property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer. 2003(44):4959-69.
    35 Li D, Wang YL, Xia YN. Electrospinning of polumeric and ceramic nanofibers as uniacially aligned arrays. Nano Lett. 2003(3):1167-75.
    36 Luu YK, Kim K, Hsiao BS, et al. Development of a nanosturctured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J.Control. Release. 2003(89):341-53.
    37 Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J. Control.Release. 2003(92):349-60.
    38 Wang XY, Drew C, Lee SH, et al. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2002(2):1273-81.
    39 Sanders JE, Lamont SE, Karchin A, et al. Fibro-porous meshes made from poluurethane micro-fibers:Effects of surface charge on tissue response. Biomaterials. 2005(26):813-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700