用户名: 密码: 验证码:
硼/环氧复合材料补片修复含中心裂纹铝合金厚板研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料补片胶接修复技术是一项先进的结构损伤件快速修复技术,已成功应用于军民用飞机铝合金薄板结构件的修复。然而针对铝合金厚板的修复,国外尚处在实验室研究阶段,缺乏必要的实验数据,尤其缺乏有关铝合金厚板修复的疲劳性能实验数据。与碳/环氧复合材料相比,硼/环氧复合材料具有高模量和较大的热膨胀系数等特点,更适于损伤铝合金厚板的修复。我国关于硼/环氧复合材料及其修复铝合金厚板的研究则更少。
     本文研制出了满足胶接修复用的硼/环氧复合材料补片,研究了硼/环氧复合材料的树脂基体性能、纤维与基体间的界面性能和复合材料力学性能,确定其树脂基体配方和复合材料制备工艺;考察残余热应力、铝合金板厚度、补片材料种类、补片铺层和几何参数及修复工艺等对修复效果的影响,重点考察了试件的热应力、准静态拉伸性能和疲劳性能。
     采用液体丁腈橡胶(LNBR)改性环氧树脂E-51,考察了其热学、力学和固化反应动力学性能;采用接触角法和改进的单纤维拔出试验方法研究了纤维与基体间的界面性能,同时考察了硼纤维表面处理方法和环氧树脂体系对界面剪切强度的影响;在此基础上,制备出了硼/环氧复合材料,考察了硼/环氧复合材料的力学性能和拉伸破坏模式。结果表明,硼纤维表面采用沸腾乙醇处理、环氧树脂体系为E-51 / 10 wt% LNBR / DDM(DDM为二胺基二苯基甲烷)制备的单向硼/环氧复合材料的力学性能较好,其力学性能为:拉伸强度为1257MPa,拉伸模量为187GPa,断裂延伸率为0.80%;弯曲强度为1606MPa,弯曲模量为187GPa;复合材料层间剪切强度为77.5MPa。
     分析了厚度为5.20mm和10.20mm两种LC52CS铝合金板的断裂韧度,并分析了这两种铝合金板的应力状态。室温下,5.20mm和10.20mm两种厚度LC52CS铝合金板的断裂韧度KC分别为45.2MPa·m~(1/2)和42.7MPa·m~(1/2)。理论分析表明,厚度为5.20mm铝合金板中占主导地位的是平面应力断裂韧度,而厚度为10.20mm铝合金板则是平面应变断裂韧度占主导地位。
     采用三维有限元模型分析了铝合金厚板修复试件的应力强度因子,考察了残余热应力、铝合金板厚度、补片材料种类和补片参数对修复效果的影响。结果表明,采用硼/环氧补片胶接修复后,铝合金板裂纹尖端应力强度因子显著降低,但其值随铝合金板厚度增大而增大;修复试件的残余热应力降低了修复效果;硼/环氧补片的修复效果好于碳/环氧补片;存在较佳的补片长度、宽度和厚度。
     分析了铝合金厚板单面修复试件的残余热应力/热应变。结果表明,修复试件中心弯曲挠度随铝合金板厚度增大而减小;修复试件铝合金未修复表面裂纹尖端附近的残余热应力/热应变大于其它区域的残余热应力/热应变,且随铝合金板厚度增大而增大;单向硼/环氧补片单面修复试件的热变形匹配性好于单向碳/环氧补片单面修复试件。
     分析了铝合金厚板修复试件的准静态拉伸性能。结果表明,相同尺寸的补片,修复试件的承载能力保留率η和承载能力恢复率χ均随铝合金板厚度增大而减小;厚度为10.20mm铝合金板单面修复试件的最大拉伸载荷是完好试件的85.80%,η值比厚度为1.76mm铝合金板单面修复试件的小8.05%,而χ值则只小3.71%;修复试件的最大拉伸载荷提高量随铝合金板厚度增大而增大;修复区域的等效刚度Estiff随铝合金板厚度增大而增大,且均大于相同尺寸完好试件的刚度;临界裂纹中心张开位移δc增大量随铝合金板厚度增大而减小;单向硼/环氧补片单面修复试件的修复效果稍好于单向碳/环氧补片。
     结果还表明,在本文研究条件下,采用磷酸阳极化表面处理工艺、单向铺层和双面修复等修复方式能较大地提高单向载荷作用下铝合金厚板修复试件的承载能力;采用共固化修复,补片长度为100mm、全宽度和预浸料层数为10层时,单向硼/环氧补片单面修复厚度为5.20mm铝合金板的修复效果较好。
     研究了铝合金厚板修复试件的疲劳性能。结果表明,在初始裂纹长度为12mm、最大应力为80MPa和应力比为0.1条件下,单向硼/环氧补片单面修复厚度为1.76mm、5.20mm和10.20mm三种铝合金板试件的疲劳寿命分别是未修复试件的22.30倍、12.84倍和8.40倍;单向硼/环氧补片单面修复后,铝合金板的裂纹扩展速率比修复前的裂纹扩展速率小一个数量级,即复合材料补片胶接修复能大大延缓铝合金板疲劳裂纹扩展,且修复试件和未修复试件的裂纹扩展速率均随铝合金板厚度增大而增大;单面修复试件的归一化裂纹长度差Δa随铝合金板厚度增大而增大,说明补片对铝合金板未修复表面裂纹的限制作用随铝合金板厚度增大而减弱;单向硼/环氧补片单面修复试件的疲劳寿命高于单向碳/环氧补片单面修复试件的疲劳寿命。
     本文同时研究了疲劳破坏模式对修复效果的影响。结果表明,修复试件疲劳破坏由胶粘剂层界面脱粘控制时(厚度为1.76mm铝合金板单面修复试件),无论铝合金板初始裂纹长度有多大(甚至裂纹完全贯穿铝合金板宽度),复合材料补片单面修复均能大幅度提高其准静态拉伸和疲劳性能;单面修复试件的最大拉伸载荷能恢复到完好试件的90%左右(铝合金板断裂副修复后也能恢复到完好试件的60%以上),疲劳寿命(最大应力为80MPa,应力比为0.1)能达到初始裂纹长度为12mm铝合金板的21倍以上;当修复试件疲劳破坏由铝合金板裂纹扩展控制时(厚度为5.20mm和10.20mm铝合金板单面修复试件),修复试件的准静态拉伸和疲劳性能均随初始裂纹长度增大而降低。
     本文还采用Paris公式预测了铝合金厚板单面修复试件的疲劳寿命。结果表明,由试验数据拟合得到了不同厚度铝合金板的Paris公式材料常数C和m,材料常数随铝合金板厚度变化而变化;Paris公式能较好地预测疲劳破坏由铝合金板裂纹扩展控制的修复试件疲劳寿命,而对由胶粘剂层界面脱粘控制的修复试件不再适用,建议采用界面脱粘速率与应变能释放率幅值关系式预测其疲劳寿命。
The bonded patch repair method is an advanced rapid repair technique for damaged aluminum structures, which has been successfully applied in repairing thin aluminum plates of military and civil aircraft. However, overseas researches are still at the laboratory stage, lacking necessary experimental data, especially the data about the fatigue properties of repaired thick aluminum plates. Compared with carbon fiber reinforced epoxy (Cf / epoxy) composite, boron fiber reinforced epoxy (Bf / epoxy) composite is characterized by high-modulus and bigger coefficient of thermal expansion, which is more suitable for repairing the damaged thick aluminum plates. In China, even fewer studies about Bf / epoxy composite and its application in repairing thick aluminum plates have been carried out.
     This dissertation studies resin matrix properties of Bf / epoxy composite, interfacial properties of interface between fiber and the matrix, mechanical properties of the composite, then determines the formula of the resin matrix and the preparation technology of the composite to make composite patch according to bonded repair requirements. The study took the Bf / epoxy and Cf / epoxy composite patches to repair center-cracked aluminum plates. The cracked plates were made of LY12CZ aluminum plate with thickness of 1.76 mm and LC52CS aluminum plates with thicknesses of 5.20 mm and 10.20 mm respectively. It aimed to explore the effects on the repair efficiency caused by residual thermal stress, plate thickness, patch material, ply stacking, patch geometry, repair technology, and so on. Study focuses were on the residual thermal stress, quasi-static tensile and fatigue properties of the specimen.
     Firstly, epoxy resin E-51 was modified by liquid nitrile rubber (LNBR) to explore the thermal properties, stress properties and curing reaction kinetics properties. Contact angle method and developed single fiber pull-out tests were applied to study the interfacial properties of interface between fiber and the matrix, and the effects of boron fiber surface processing method and epoxy resin system on interfacial shear strength were investigated. Based on this experiment, it prepared the Bf / epoxy composite, and studied its mechanical properties and tensile failure mode. The results show that when the boron fiber surface is treated by boiling ethanol, the unidirectional Bf / epoxy composite prepared by epoxy resin of E-51/10 wt% LNBR / 4, 4’-diamino- diphenyl methane (DDM) has good mechanical properties. The indexes of the mechanical properties are as follows: tensile strength is 1257MPa, tensile modulus 187GPa, elongation to fracture 0.80%, bending strength 1606MPa, bending modulus 187GPa, and the interlaminar shear strength 77.5MPa.
     Secondly, the study analyzed the fracture toughness and the stress state of two types of LC52CS aluminum plates with thicknesses of 5.20mm and 10.20 mm respectively. At the room temperature, the fracture toughness for the plate with thicknesses of 5.20mm and 10.20mm is 45.2MPa·m1/2 and 42.7MPa·m1/2 respectively. Theoretical analysis shows that the plane stress state plays a dominant role in the aluminum plate with thickness of 5.20mm, while the plane strain state plays a dominant role in the aluminum plate with thickness of 10.20mm. Then, three-dimensional finite element model was adopted to calculate Stress Intensity Factor (SIF) of the repaired thick specimens, and the effects of the residual thermal stress, plate thickness, patch material, and ply stacking and patch geometry on the SIF were investigated. It is found that after the bonded repair by Bf / epoxy patch, the SIF of the crack tip of repaired specimens is significantly decreased and the value increases with the increase of the plate thickness. Residual thermal stress of the repaired specimen decreases the repair efficiency. The repair efficiency of Bf / epoxy patch is better than that of Cf / epoxy patch, and there exists better patch length, width, and thickness.
     Thirdly, the study analyzed residual thermal stress and thermal strain of the single-side repaired thick specimen. The results show that center bending deflection of the repaired specimen, due to mismatching of the coefficient of thermal expansion between the composite patch and aluminum plate, decreases with the increase of the plate thickness. The residual thermal stress and thermal strain near the crack tip of the unrepaired surface are bigger than those around other areas, and they increase with the increase of the plate thickness. The thermal deformation matching ability of single-side repaired specimen of the unidirectional Bf / epoxy patch is better than that of the unidirectional Cf / epoxy patch.
     Fourthly, quasi-static tensile properties of the repaired specimens were analyzed. The results show that the loading capacity reservations (η), the loading capacity resumption (χ) and the critical crack opening displacement (δc) increment of the repaired specimens decrease with the increase of the plate thickness. The maximum tensile loading for the single-side repaired specimen with thickness of 10.20 mm is 85.80% of the undamaged specimen. Itsηis of 8.05% smaller than the single-side repaired specimen with thickness of 1.76mm. But theχis only of 3.71% smaller. The increase amount of the maximum tensile loading increases with the increase of the plate thickness. The equivalent stiffness (Estiff) of the repaired area increases with the increase of the plate thickness, and both the value of them are bigger than the stiffness of the undamaged plate of the same size. The repair efficiency of single-side repaired specimen of the unidirectional Bf / epoxy patch is better than that of the unidirectional Cf / epoxy patch.
     The results also show that under the research condition of this study, using anodizing treatment by phosphoric acid to process aluminum plate surface, or taking unidirectional stacking, or double-side repair method could increase the loading capacity of the repaired thick specimen under the unidirectional loading. The repair efficiency of the repaired specimen with thickness of 5.20 mm is the best when the patch width is equal to the plate width, patch length is 100 mm and the number of patch plies is 10.
     Lastly, it studied the fatigue properties of the repaired thick aluminum plate. The results show that when the initial crack length is 12mm, the maximum stress is 80MPa and the stress ration is 0.1, then the fatigue life of the repaired specimens with thicknesses of 1.76mm, 5.20mm and 10.20mm is 22.30 times, 12.84 times and 8.40 times of those unrepaired specimens respectively. When the unidirectional Bf / epoxy gets single-side repair, the crack growth rate of the aluminum plate is 1 order of magnitude smaller than its growth rate before the repair. That is, bonded patch repair method can greatly delay the fatigue crack growth of aluminum plate, and the crack growth rate of both the repaired specimen and unrepaired specimen increases with the increase of the plate thickness. The normalized crack length difference (Δa ) of the single-side repaired specimen increases with the increase of the plate thickness, which demonstrates that the restriction of patch to the unbonded surface crack growth in single-side repaired specimen decreases with the increase of the plate thickness. The fatigue life of single-side repaired specimen of the unidirectional Bf / epoxy patch is longer than that of the unidirectional Cf / epoxy patch.
     The dissertation also studied the effect of fatigue failure mode on the repair efficiency. The results show that when the fatigue failure of the repaired specimen with thickness of 1.76mm is controlled by adhesive interfacial debonding, then no matter how long the initial crack of aluminum plate is, the single-side repair of the composite patch can largely increase the quasi-static tensile and fatigue properties. The maximum tensile loading of the single-side repaired specimen can be recovered to 90% of the undamaged specimen, and even the repaired specimen in which the aluminum plate was completely failed can also be recovered up to 60% of the undamaged specimen. The fatigue life, with which the maximum stress is 80 MPa and stress ratio is 0.1, could arrive at 21 times of the repaired specimen with initial crack length of 12mm. However, when the fatigue failure of the repaired specimen with thicknesses of 5.20mm and 10.20mm is controlled by crack growth of aluminum plate, the quasi-static tensile and fatigue properties decrease with the increase of the initial crack length.
     The dissertation also took Paris law to predict the fatigue life of the single-side repaired thick specimen. The result shows that by matching the experimental data it gets two material constants C and m of the Paris law. The constants in this study have a dependence on the plate thickness. The Paris law can better predict fatigue life of the repaired specimen in which the fatigue failure is controlled by crack growth of aluminum plate, but it is not effective for predicting the repaired specimen controlled by adhesive interfacial debonding. It has been suggested that amplitude formula of interfacial debonding ratio and strain energy release rate range could be used to predict the fatigue life.
引文
[1]唐伟,陈丽君,王立波. 6082-T651铝合金厚板拉伸断裂原因分析[J].轻合金加工技术, 2003, 31(11): 17-19.
    [2] R Jones, L Moment, A A Baker, et-al. Bonded repair of metallic components: thick sections[J]. Theor Appl Fract Mech, 1988, 9: 61–70.
    [3] A A Baker, R J Chester. Recent advances in bonded composite repair technology for metallic aircraft components[J]. Proceedings of the International Conference on Advanced Composite Materials, 1993: 45-49.
    [4] J B Avram. Fatigue response of thin stiffened aluminum cracked panels repaired with bonded composite patches[D]. MS thesis, Ohio: Air Force Institute of Technology, 2001.
    [5] A A Baker. Bonded composite repair of fatigue-cracked primary aircraft structure[J]. Composite Structures, 1999, 47: 431-443.
    [6] D Ouinas, B B Bouiadjra, B Serier, et al. Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge[J]. Composites Structures, 2007, 80: 514-522.
    [7] C S Shin, C M Wang, P S Wong. Fatigue damage repair: comparison of possible methods[J]. International Journal of Fatigue, 1996, 18: 535-546.
    [8] R Jones, L. Molent. Application of constitutive modelling and advanced repair technology to F111C aircraft[J]. Composite Structures, 2004, 66: 145-157.
    [9]杨孚标,肖加余,曾竟成等.双向受载裂纹板的碳纤维复合材料补片的胶接修复分析[J].国防科学技术大学学报, 2005, 27(6): 21-25.
    [10]王必宁.复合材料胶接修复金属裂纹板的计算与试验研究[D].陕西西安:西北工业大学硕士论文, 2004.
    [11]王清远,陶华.复合材料修复件的强度和疲劳性能[J].材料工程, 2003(1): 21-24.
    [12]王祝堂.铝合金中厚板的生产、市场与应用[J].轻合金加工技术, 2005, 33(1): 1-20.
    [13] J J Schubbe. Thickness effects on a cracked aluminum plate with composite patch repair[D]. Ph.D. thesis, Ohio: Wright-Patterson AFB, 1997.
    [14] J G Labor, M M Ratwani. Development of bonded composite patch repairs forcracked metal structures final report[R]. Report no: NADC-79066-60, United States Navy-Naval Air Development Center, Warminster, PA 18974, 1980.
    [15] A C Okafor, N Singh, U E Enemuoh, et al. Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels[J]. Composite Structures, 2005, 71: 258-270.
    [16] H H Toudeshky. Effects of composite patches on fatigue crack propagation of single-side repaired aluminum panels[J]. Composite Structures, 2006, 76: 243-251.
    [17] H H Toudeshky, S Bakhshandeh, B Mohammadi, et al. Experimental investiga- tions on fatigue crack growth of repaired thick aluminium panels in mixed-mode conditions[J]. Composite Structures, 2006, 75: 437-443.
    [18] G C Tai, S B Shen. Fatigue analysis of cracked thick aluminum plate bonded with composite patches[J]. Composite Structures, 2004, 64: 79-90.
    [19] D C Seo, J J Lee. Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch[J]. Composite Structures, 2002, 57: 323-330.
    [20] R Kaye, M Heller. Finite element-based three-dimensional stress analysis of composite bonded repairs to metallic aircraft structure[J]. International Journal of Adhesion & Adhesives, 2006, 26: 261-273.
    [21] V Sabelkin, S Mall, M A Hansen, et al. Investigation into cracked aluminum plate repaired with bonded composite patch[J]. Composite Structures, 2007, 79: 55-66.
    [22] A A Baker, E J Lumley. Fibre composite reinforcement of cracked aircraft structures, thermal stress and thermal fatigue studies[J]. Proceedings of the 2nd International Conference on Composite Materials, Toronto, 1978: 649-668.
    [23] A A Baker. Repair of cracked or defective metallic components with advanced fiber composites: an overview of Australian work[J]. Composite Structures, 1984, 2: 153-181.
    [24] A A Baker. A summary of work on application of advanced fiber components at the Aeronautical Research Lab[J]. Journal of Composites, 1987, 9: 11-16.
    [25] A A Baker. Crack patching: experimental studies, pratical applications. In: Bonded repair of aircraft structures[M]. A.A. Baker, R. Jones, editors. the Netherlands: Martinus Nijhoff Publishers, 1988, 107-174.
    [26] J T F. Christian, D O Hammond. Composite materials repairs to metallic airframe components[J]. Journal of Aircraft, 1992, 2(3): 470-476.
    [27] N P Avdelidis, C Ibarra-Castanedo, X Maldague, et al. A thermographic comparison study for the assessment of composite patches[J]. Infrared Physics &Technology, 2004, 45: 291–299.
    [28] H C Ki, H Y Won. A study on the fatigue crack growth behavior of thick aluminum panels repaired with a composite patch[J]. Composite Structures, 2003, 60: 1–7.
    [29] C T Sun, J. Klug, C Arendt. Analysis of cracked aluminum plates repaired with bonded composite patches[J]. AIAA Journal, 1995, 34(2): 369-374.
    [30] H Alawi, I E Saleh. Fatigue crack growth retardation by bonding patches[J]. Engineering Fracture Mechanics, 1992, 42(5): 861-868.
    [31] M Ekstrom. Bonded repair of aircraft structures Materials Evaluation[J]. Engineering Fracture Mechanics. 1992, 50(3): 340-342.
    [32] C H Chue, S C Wang. Application of bonded patch and sleeve to cracked hole repair under biaxial load[J]. Engineering Fracture Mechanics. 1994, 48(4): 518-522.
    [33] J Q Tarn, K L Shek. Analysis of cracked plates with a bonded patch[J]. Engineering Fracture Mechanics. 1991, 40(6): 1055-1065.
    [34] C S Zhu, M Heller, Y C Lam. Analytical formula for calculating stresses in unidirectional/cross-ply unbanlanced laminates[J]. Composite Structures, 1993, 24: 333-343.
    [35] F Erdogan, K Arin. A sandwich plate with a part-through and debonding crack[J]. Engineering Fracture Mechanics, 1972, 4(2): 449-458.
    [36] K Arin. A plate with a crack, stiffened by a partially debonded stringer[J]. Engineering Fracture Mechanics, 1974, 6(1): 133-140.
    [37] L M Keer, C T Lin, T Mura. Fracture analysis of adhesively bonded sheets[J]. Journal of Applied Mechanics, 1976, 43: 652-656.
    [38] M M Ratwani. Analysis of cracked, adhesively bonded laminated structures[J]. AIAA Journal, 1979, 17(9): 988-994.
    [39] R Jones, M Davis, R J Callinan, et al. Cracking patching: analysis and design[J]. Journal of Structural Mechanics, 1982, 10(2): 177-190.
    [40] R Jones, R J Callinan. Bonded repair to surface flaws[J]. Theoretical and Applied Fracture Mechanics, 1984, 2: 17-25.
    [41] M Heller, R Jones. Numerical analysis of bonded repairs for fastener holes with three-dimensional cracks[J]. Engineering Fracture Mechanics, 1989, 33: 81-90.
    [42] J Paul, R A Bartholomeusz, R Jones. Bonded composite repair of cracked load-bearing holes[J]. Engineering Fracture Mechanics, 1994, 48: 455-461.
    [43] L R F Rose. An application of the inclusion analogy for bonded reinforcements[J].International Journal of Fracture, 1981, 18: 827-838.
    [44] C N Duong, J Yu. An analytical estimate of thermal effects in a composite bonded repair: plane stress analysis[J]. International Journal of Solids and Structures, 2002, 39: 1003-1014.
    [45] C N Duong, J Yu. Thermal stresses in one-sided bond repair: geometrically nonlinear analysis[J]. Theoretical and Applied Fracture Mechanics, 2003, 40: 197-209.
    [46] C N Duong. An engineering approach to geometrically nonlinear analyses of a one-sided composite repair under thermo-mechanical loading[J]. Composite Structures, 2004, 64: 13-21.
    [47] A A Baker. Repair efficiency in fatigue-cracked aluminum components reinforced with boron/epoxy patches[J]. Fatigue & Fracture of Engineering Materials and Structures, 1993, 16(7): 753-765.
    [48] C H Wang, L R F Rose, R. Callinan et al. Thermal stresses in a plate with a circular reinforcement [J]. International Journal of Solids and Structures, 2000, 37: 4577-4599.
    [49] R S Fredell. Damage tolerant repair techniques for pressurized aircraft fuselages[D]. Ph.D. thesis, the Netherlands: Delft University of Technology, 1994.
    [50] J Cho, C T Sun. Multi-step bonding cycles for lowering thermal residual stresses in composite patch repairs[C]. The 43rd AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, & Materials Conference. Denver: AIAA, 2002.
    [51]王遵.复合材料单面补强含裂纹铝合金薄板的残余热应力及其影响研究[D].湖南长沙:国防科学技术大学博士论文, 2007.
    [52]陈夫饶,高永寿.表面裂纹平板的胶粘贴补研究[J].航空学报, 1989, (12): 587-594.
    [53]陈保兴,张相周.复合材料贴片修理内部穿透裂纹的粘弹性研究[J].航空学报, 1989 (7):A338-345.
    [54] R A Mitchell, R M Woolley, D J Chwirut. Analysis of composite reinforced cutouts and cracks[J]. AIAA Journal, 1975, (13): 744-749.
    [55] R Jones. Cracked patching analysis and design[J]. Journal of Structure Mechanics, 1982, (2): 177-190.
    [56] R Jones, W K Chiu. Composite repairs to cracks in thick metallic components[J]. Composite Structures, 1999, 44: 17-29.
    [57] C Arendt, C T Sun. Bending effects of unsymmetrica adhesively bondedcomposite repairs on cracked aluminum panels[R]. NASACP3274: 33-48.
    [58] C T Sun, J Klug, C Arendt. Analysis of cracked aluminum plates repaired with bonded composites patches[J]. AIAA Journal, 1986, (3): 369-374.
    [59] J J Schubbe, S Mall. Modeling of cracked thick metallic structure with bonded composite patch repair using three-layer technique[J]. Composite Structures, 1999, 45: 185-193.
    [60] S Naboulsi, S Mall. Three layer technique for bonded composite patch[C]. Proceedings of International Conference on Fracture, ICF9, 1997: 2167-2174.
    [61] S Naboulsi, S Mall. Modelling of a cracked metallic structure with bonded composite patch using the three layer technique[J]. Composite Structures, 1996, 35: 295-308.
    [62] S Naboulsi, S Mall. Thermal effects on adhesively bonded composite repair of cracked aluminum panels[J]. Theoretical and Applied Fracture Mechanics, 1997, 26: 1-12.
    [63] S Naboulsi, S Mall. Nonlinear analysis of bonded composite patch repair of cracked aluminum panels[J]. Composite Structures, 1998, 41: 303-313.
    [64] L Y Tong, X N Sun. Nonlinear stress analysis for bonded patch to curved thin-walled structures[J]. Journal of Adhesion & Adhesives, 2003, (5): 349-364.
    [65] E Oterkus, A Barut, E Madenci, et al. Nonlinear analysis of a composite panel with a cutout repaired by a bonded tapered composite patc[J]. International Journal of Solids & Structures, 2005, 42: 5274-5306.
    [66] C H Cheu, L C Chang, J B Tsai. Bonded repair of plate with inclined central cracked plate under biaxial loading[J]. Composite Structures, 1994, 28: 39-45.
    [67] P Colombi, A Bassetti, A Nussbaumer. Delamination effects on cracked steel members reinforced by prestressed composite patch[J]. Theoretical and Applied Fracture Mechanics, 2003, (1): 61-71.
    [68] A Megueni, B B Bouiadjra, M Belhouari. Disbond effect on the stress intensity factor for repairing cracks with bonded composite patch[J]. Computational Materials Science, 2004, 29: 407-413.
    [69] L Y Tong, X N Sun. Shape optimization of bonded patch to cylindrical shell structure[J]. International Journal for Numerical Methods in Engineering, 2003, (5): 793-820.
    [70] R J Callinan, L R F Rose, C H Wang. Three-dimensiona stress analysis of crack patching[C]. In: Proceedings of the International Conference on Fracture, ICF-9, 1997: 2151-2158.
    [71] F Ellyin, F Ozah, Z H Xia. 3-D modeling of cyclically loaded composite patch repair of a cracked plate[J]. Composite Structures, 2007, 78: 486-494.
    [72] R Jones, R J Callinan. Thermal considerations in the patching of metal sheet with composite over layers[J]. Journal of Structure Mechanics, 1980, (8): 143-149.
    [73] M Heller. Stress intensity factors for patched structures with no out of plane bending restraint. Minute paper 8/4/93, 1993.
    [74]杨孚标.复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D].湖南长沙:国防科学技术大学博士论文, 2006.
    [75]徐建新,刘艳红,周煊等.损伤金属结构的复合材料胶接修补实验研究[J].南京航空航天大学学报, 2001, 33(1): 96-99.
    [76]张移山,华庆祥.复合材料补片参数对裂纹尖端应力强度因子的影响[J].机械强度, 2004, 26: 100-103.
    [77]白金泽,孙秦,董善艳.复合材料补片胶接补强修补技术参数分析[J].机械科学与技术, 2001, 20(5): 748-750.
    [78]蒋金龙,赵名泮.含裂纹板的复合材料胶接修复分析[J].航空学报, 1991, (2): 61-67.
    [79]孙宏涛.复合材料胶接修复止裂技术的理论及试验研究[D].陕西西安:西北工业大学博士论文, 1998.
    [80] M M Ratwani, H Ran, J H. Fitzgerald, et al. Experiment investigations of fiber composite reinforcement of cracked metallic structures[J]. ASTM STP787, 1982, 541-558.
    [81] J J Denney, S Mall. Characterization of disbond effects on fatigue crack growth behavior in aluminum plate with bonded composite patch[J]. Engineering Fracture Mechanics, 1997, 57(5): 507-525.
    [82] J C Klug, S Maley, C T Sun. Characterization of fatigue behavior of bonded composite repairs[J]. Journal of Aircraft, 1999, (6): 1016-1022.
    [83] E B Belason. Fatigue and static ultimate stress of boron/epoxy doublers bonded to 7075-T6 aluminum with simulated crack[C]. Proceedings of the 18th Symposium of the International Conference on Aeronautical Fatigue, Australia, 1995.
    [84] C N Duong, S Verhoeven, C B Guijt. Analytical and experimental study of load attractions and fatigue crack growths in two-sided bonded repairs[J]. Composite Structures, 2006, 73: 394-402.
    [85] D Roach. Performance analysis of bonded composite doublers on aircraft structures[C]. Proceedings of the 10th Composite Repair of Aircraft structures-Vancouver Conference, Canada, 1995.
    [86] R Fredell, R Muller, L Butkus. Bonded repair of multiple site damage with GLARE fiber metal laminate patches[C]. Proceedings of the Aircraft Structural Integrity Program Conference, Texas, 1994.
    [87] R Fredell, D I J Schijve, A Lizza. Damage-tolerant repairs to pressurized fuselages: 'soft-patching' with GLARE fiber metal laminates[C]. Proceedings of the 18th ICAF Symposium, Australia, 1995.
    [88] F A Sandow, R K Cannon. Composite repair of cracked aluminum alloy aircraft structure[R]. AD-A 190514.
    [89] G Ivan. Bonded composite solution to ship reinforcement [J]. Composites: Part A 2003, 34: 847–854.
    [90] J J Schubbe, S Mall. Fatigue behavior in thick aluminum panels with a composite repair[J]. AIAA, 98-1997.
    [91] H H Toudeshky, B Mohammadi. A simple method to calculate the crack growth life of adhesively repaired aluminum panels[J]. Composite Structures, 2007, 79: 234-241.
    [92]肖加余,曾竟成,梁重云等.碳纤维复合材料修补带孔铝合金板的强度性能[J].复合材料学报, 2002, 19(3): 51-55.
    [93]孙洪涛,刘元镛,彭俊.复合材料胶接修补问题的试验研究和分析[J].实验力学, 1999, 14(4): 419-424.
    [94]刘艳红,徐建新,孙智强等.复合材料补片胶接修补结构的有限元分析[J].中国民航学院学报, 2000, 18(6): 13-17.
    [95]徐建新.损伤金属结构的复合材料胶接修复技术研究[D].江苏南京:南京航空航天大学博士学位论文, 1996.
    [96]王清远,袁祥明,李戌中.损伤金属结构件复合材料粘贴修补[J].玻璃钢/复合材料, 2003, (6): 41-44.
    [97] Q Y Wang, R M Pidaparti. Static characteristics and fatigue behavior of composite-repaired aluminum plates[J]. Composite Structures, 2002, 56: 151-155.
    [98]邢素丽,曾竟成,杨孚标等.复合材料修复铝合金构件的刚度分析和试验验证[J].机械工程材料, 2005, 29(1): 13-15.
    [99]魏东,刘成武,魏自明等.光固化复合材料补片在飞机蒙皮修复中地应用[J].航空制造技术, 2003, (7): 65-67.
    [100]蔡洪能,陆玉姣,王雅生等. FRP补强疲劳损伤钢结构裂纹扩展研究[J].材料工程, 2006, (增刊): 378-381.
    [101] W K Chiu, D Rees, P Chalkley. Designing for damage-tolerant composite repairs [J]. Composite Structures, 1994, 28: 19-37.
    [102] D Hughes, I Mass. Airlines evaluate boron/epoxy for repair of aircraft structure[J]. Aviation Week & Space Technology, 1989, (10): 67-68.
    [103] J Cochran. Composite patches for metallic structures[R]. TechTIP, TT89034, Lockheed Georgia Co,Aug. l989.
    [104]陈绍杰.用复合材料技术修理金属飞机结构的修理纪实[J].航空工程与维修, 2000, (1): 21-22.
    [105] C M Scala, P A Doyle. Ultrasonic leaky interface waves for composite-metal adhesive bond characterization[J]. Journal of Nondestructive Evaluation, 1995, 14(2): 49-59.
    [106]胡艳玲,李荻,郭宝兰.碳纤维/环氧树脂复合材料与金属的电偶腐蚀行为[J].腐蚀科学与防护技术, 1998, 10(2): 93-97.
    [107]陈卫星,刘志斌,杜玉军.环氧树脂的增韧改性[J].西安工业学院学报, 2000, 20(2): 149-154.
    [108] V D Ramos, H M Costa, V L P Soares, et al. Modification of epoxy resin: a comparison of different types of elastomer[J]. Polymer Testing 2005, 24: 387-394.
    [109] L Calabrese, A Valenza. Effect of CTBN rubber inclusions on the curing kinetic of DGEBA–DGEBF epoxy resin[J]. European Polymer Journal, 2003, 39: 1355-1363.
    [110] T Garima, S Deepak. Effect of carboxyl-terminated poly(butadiene-co-acryloni- trile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin[J]. Materials Science and Engineering A, 2006: 1-8.
    [111] O Gryshchuk, N Jost, J Karger-Kocsis. Toughening of vinylester-urethane hybrid resins by functional liquid nitrile rubbers and hyperbranched polymers[J]. Polymer, 2002, 43: 4763-4768.
    [112] N Chikhi. Modification of epoxy resin using reactive liquid (ATBN) rubber[J]. Euro Polym J, 2002, 38: 251-264.
    [113]李绍英,韩孝族,张庆余.丁腈羟增韧环氧树脂形态余力学性能[J].高等学校化学学报, 1997, 18(9): 1541-1545.
    [114]吕润生,顾国芳.端羟基液体丁腈橡胶增韧环氧树脂的研究[J].高分子材料科学与工程, 1991, (2): 70-75.
    [115] S C Kunz, P W R Beaumont. Low temperature behavior of epoxy-rubber particulate composites[J]. Journal of Materials Science, 1981, 16: 3141-3152.
    [116] W D Bascom. Fracture of Rubber-Toughened Adhesives: Viscoelastic Effects [C].Proceeding in international Conference on Toughening of Plastics in London, 1978: 23-39.
    [117] A J Kinloch, D L Hunston. Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers[J]. Journal of Materials Science Letter, 1986, 5: 1207-1209.
    [118] F J J Mc Garry. Rubber-toughened thermosels. In: B Charles, Arends.Polymer toughening[M]. New York: Marcel Dekker Inc, 1999: 175-188.
    [119] C B Bucknall, Rubber toughening. In: R.N. Haward and R.J. Young, Editors, The physics of glassy polymers[M]. Chapman & Hall, London, 1997, chapter 8.
    [120] Z Mauro, A A Skordos, K P Ivana. Investigation of cure induced shrinkage in unreinforced epoxy resin[J]. Plastics, Rubber and Composites Processing and Applications, 2002, 31: 377-384.
    [121]罗辉阳.橡胶增韧环氧树脂的增韧机理模型化和疲劳行为的研究[D].北京:清华大学硕士论文, 1997.
    [122]罗延龄,薛丹敏.活性端基橡胶增韧环氧树脂研究概况[J].石化技术与应用, 2001, 19(5): 316-320.
    [123]毕鸿章.硼纤维及其应用[J].高科技纤维与应用, 2003, 28(1): 32~34.
    [124]徐洪清.高性能硼纤维的研究进展[J].国家八六三计划新材料领域成果专刊, 43.
    [125]陈祥宝主编.聚合物基复合材料手册[M].北京,化学工业出版社, 2004.
    [126] R J Cano, H L Belvin, N J Johnston, er al. Process of making boron-fiber reinforced composite tape: US Patent, 620274, 2000-7-18.
    [127] S W Case, L R Kenneth. Micromechanics-based strength and lifetime prediction of polymer composites [M]. Blacksburg, Virginia, 2002.
    [128] V Roger. Environmental exposure of boron-epoxy composite material[R], DSTO-TN-0309.
    [129] J V Mullin, V F Mazzio. Basic failure mechanisms in advanced composites[R]. Final report to NASA, contract No. NASw-2093.
    [130]黄仁忠,王豫跃,杨冠军等.热压压力对B/Al复合材料组织结构及力学性能的影响[J].宇航材料工艺, 2004, (3): 51-55.
    [131]吴旭飚,张崇方,余宗森等.硼纤维增强钛基复合材料中的纤维断裂影响区域[J].北京科技大学学报, 1998, 20(4): 349-353.
    [132]杨盛良,张绪虎,杨德明.热暴露对B/Al复合材料力学性能的影响[J].中国有色金属学报, 2002, 12(1): 131-135.
    [133] N C W Judd, W W Wright. Voids and their effects on the mechanical propertiesof composites-an appraisal[J]. SAMPE Journal, 1978, (1): 10-15.
    [134]郑安呐,吴叙勤,李世缙.碳纤维表面处理及其复合材料界面优化的研究[J].华东理工大学学报, 1994, 20(4): 485-491.
    [135] A Kelly, W R Tyson. Tensile properties of fiber reinforced metals: copper/ tungsten and copper/molybdenum. Journal of Mechanics and Physics of Solids, 1965, 13:329-350.
    [136] L J Broutman. Glass-resin joint strengths and their effect on failure mechanisms in reinforced plastics[J]. Polymer Engineering and Science, 1966, 7: 263-271.
    [137] J F Mandell, D H Dond, F J McGarry. Modified microdebonding test fordirect in situ fiber/matrix bond strength determination in fiber composites. In Composite Materials: Testing and design, ASTM STP 893, 1986: 87-108.
    [138] B Miller, P Muri, L Rebenfeld. A microbond method for determination of the shear strength of a figer/resin interface[J]. Composite Science and technology, 1987, 28: 17-82.
    [139] M J Pitketh. A round robin programme on interfacial test methods[J]. Composite Science and technology, 1993, 48: 205-214.
    [140]戴瑛,嵇醒.界面端应力奇异性与复合材料界面剪切强度细观实验分散性分析[J].应用力学学报, 2004, 21(1): 90-95.
    [141] S Y Zhang. A new model for the energy release rate of fiber/matrix interfacial fracture[J]. Composite Science and technology, 1998, 58: 163-166.
    [142] S Y Fu, C Y Yue, X Hu, et al. Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests[J]. Composite Science and technology, 2000, 60: 569-579.
    [143] C Y Yue, H C Looi, M Y Quek. Assessemnt of fibre-matrix adhesion and interfacial properties using the pull-out test[J]. International Journal of Adhesion & Adhesives, 1995, 15: 73-80.
    [144]戴瑛,嵇醒.基于界面端奇异性理论的单纤维拔出试验的试件设计[J].力学季刊, 2004, 25(3): 338-341.
    [145]邢素丽.装备构件复合材料快速修复用新型环氧固化剂体系研究[D].湖南长沙:国防科学技术大学博士论文, 2005.
    [146]冀克俭,邓卫华,陈刚邓.臭氧处理对碳纤维表面及其复合材料性能的影响[J].工程塑料应用, 2003, 31(5): 34-36.
    [147] G. Yu, X. Wang, L. Zhu, et al. Crystalization process and microstructure of sol-gel derived Pb0.9La0.1Ti0.875O3 fine fibers with a novel heat-treatment process[J]. Solid State Sciences, 2007, (10): 27-33.
    [148]吴杰.铝合金胶接表面的溶胶-凝胶处理[D].湖南长沙:国防科学技术大学学士论文, 2007.
    [149] A M Emelyaneneko, N V Ermolenko, L B Boinovich. Contact angle and wetting hysteresis measurements by digital image processing of the drop on a vertical filament[J]. Colloids and Surfaces A: Physicochem Eng. Aspects, 2004, 239: 25-31.
    [150] M R Piggott. Why interface testing by single-fibre methods can be misleading[J]. Composites Science and Technology, 1997, 57: 965-974.
    [151]黄玉东,孙文训,张志谦等.单纤维拔出方法表征CFRP界面强度的研究[J].高技术通讯, 1995, (12): 34-37.
    [152]向海. RTM成型用高性能苯并噁嗪树脂的分子设计、制备及性能研究[D].四川成都:四川大学博士论文, 2005.
    [153] S Vyazovkin, C A Wight. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340: 53-68.
    [154] A Yousefi, P G Lafleur. Kinetic studies of thermoset cure reactions: A review[J]. Polymer Composites, 1997, 18(2): 157-168.
    [155] J E K Schawe. A description of chemical and diffusion control in isothermal kinetics of cure kinetics[J]. Thermochimica Acta, 2002, 388: 299-312.
    [156] S Sourour. Thermal and kinetic characterization of thermosetting resins during cure[D]. Ph.D. thesis, Montreal: McGill University, 1978.
    [157] M R Keenan. Autocatalytic cure kinetics from DSC measurements: Zero initial cure rate[J]. Journal of Applied Polymer Science, 1987, 33: 1725-1734.
    [158] H E Kissinger. Reaction kinetics in differential thermal analysis[J]. Analysis Chemistry, 1957, 29(11): 1702-1706.
    [159] L W Crane, P J Dynes, D.H. Kaelble, et al, Analysis of curing kinetics in polymer[J]. Journal of polymer: Polymer Letters Edition, 1973, 11(8): 533-540.
    [160] A review of DSC kinetics methods, TA-073B.
    [161] C DiFrancis, T C Ward, R O Claus. The single-fibre pull-out test. 1: Review and interpretation[J]. Composites: Part A, 1996, 27A: 597-612.
    [162] Y F Liu, Y Kagawa. The energy release rate for an interfacial debond crack in a fiber pull-out model[J]. Composites Science and Technology, 2000, 60: 167-171.
    [163] X L Lu, Y Zhang, J R Xu. Influence of fiber morphology in pull-out process of chain-shaped fiber reinforced polymer composites[J]. Scripta Materialia, 2006, 54: 1617-1621.
    [164] Q S Yang, Q H Qin, X R Peng. Size effects in the fiber pullout test[J]. Composites Structures, 2003, 61: 193-198.
    [165] C Marotzke. Influence of the fiber length on the stress transfer from glass and carbon fibers into a thermoplastic matrix in the pull-out test [J]. Composites Interfaces, 1993, 1: 153-166.
    [166]杜刚.复合材料推力筒设计与整体制备技术研究[D].湖南长沙:国防科学技术大学博士论文, 2007.
    [167]刘钧.固体火箭发动机全复合材料连接裙RTM整体制备技术[D].湖南长沙:国防科学技术大学博士论文, 2007.
    [168]吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社, 1998.
    [169] K Goda, S L Phoenix. Riliability approach to the tensile strength of unidirectional CFRP composites by Monte-Carlo simulation in a shear-lag model[J]. Composite Science and Technology, 1994, 50: 457-468.
    [170]杨政,郭万林,霍春勇. X70管线钢不同温度下断裂韧性实验研究[J].金属学报, 2003, 39(9): 908-913.
    [171]库德良绍夫,斯莫连采夫著.铝合金断裂韧性[M].北京:冶金工业出版社, 1980.
    [172]张行,崔德渝著.断裂与损伤力学[M].北京:北京航空航天大学出版社, 2006.
    [173]邢静忠,王永岗,陈晓霞编. ANSYS 7.0分析实例与工程应用[M].北京:机械工业出版社, 2004.
    [174] H Q Wu, X Zhang, K R Hebert. Atomic force microscopy study of the initial stages of anodic oxidation of aluminum in phosphoric acid solution[J]. Journal of the Electrochemical Society, 2000, 147(6): 2126-2132.
    [175]王成,江峰,林海潮. Al合金表面铬酸盐处理及替代工艺研究进展[J].腐蚀科学与防护技术, 2001, 13(6): 347-350.
    [176] N N Voevodin, N T Grebasch, W S Soto, et al. An organically modified zirconate film as a corrosion-resistant treatment for aluminum 2024-T3[J]. Progress in Organic Coatings, 2001, 41: 287-293.
    [177]安茂忠著.电镀理论与技术[M].中国哈尔滨:哈尔滨工业大学出版社, 2004.
    [178]程靳,赵树山编.断裂力学[M].北京:科学出版社, 2006.
    [179] A A Baker, L R F Rose, R Jones. Advances in the bonded composite repair of metallic aircraft structure[M]. Elsevier, 2002 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700