用户名: 密码: 验证码:
软化类芽孢杆菌α-环糊精葡萄糖基转移酶在大肠杆菌中的表达及其产物特异性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精葡萄糖基转移酶(简称CGT酶,EC 2.4.1.19)是一种能够通过分子内转糖基化反应转化淀粉及相关基质合成环糊精的胞外酶。随着环糊精在食品、医药、化妆品、农业等领域的应用越来越广,CGT酶已经成为当今研究的热点。
     为了克服天然菌株的低CGT酶生产能力,cgt基因在大肠杆菌(Escherichia coli)中过量表达被认为是最有效途径之一,然而,以前的报道表明,CGT酶通常在E. coli中形成不溶性包涵体或积累于周质空间,限制了其工业应用,因此,实现重组CGT酶的胞外生产是迫切需要的;另外,用CGT酶生产环糊精最不利的条件之一是产物特异性差,所有已知的野生CGT酶生产的均是α-、β-和γ-环糊精的混合物,不利于下游操作。本论文主要将来源于软化类芽孢杆菌(Paenibacillus macerans) JFB05-01的α-CGT酶基因表达于E. coli中,并通过采用一些培养策略,实现了重组酶的胞外过量生产,同时对该酶的产物特异性进行了一定的分析与改善。主要研究结果如下:
     1.将来源于P. macerans JFB05-01的α-CGT酶基因分别插入质粒pET-20b(+)和pET-22b(+)的pelB信号肽序列下游,构建了表达载体pET-20b(+)/cgt和pET-22b(+)/cgt,并将它们转化宿主E. coli BL21(DE3)。
     对E. coli BL21(DE3)(pET-20b(+)/cgt)进行摇瓶发酵,确定其胞外生产重组α-CGT酶的较优条件为:发酵培养基为TB培养基,诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)浓度为0.01 mM,诱导温度为25°C。在该条件下诱导90 h后,培养基中酶活达到22.5 U/mL,与较优发酵条件下天然菌株P. macerans JFB05-01所产的胞外酶活相比,提高了大约42倍。E. coli BL21(DE3)(pET-22b(+)/cgt)需要更高的IPTG浓度(0.2 mM)进行诱导,且诱导90 h后的胞外酶活仅为17.5 U/mL,因此,E. coli BL21(DE3)(pET-20b(+)/cgt)更适于胞外生产重组α-CGT酶。这是国内外首次报道α-CGT酶在E. coli中的胞外生产。
     2.当诱导温度恒定时,25°C最适合重组α-CGT酶的胞外生产,然而,诱导的前50 h重组酶主要积累于周质空间,而只有少量释放到培养基中。
     较高的诱导温度抑制了重组酶的胞外分泌,可能原因是具有信号肽的前体蛋白合成速率太快,导致它们在细胞内膜内侧聚集而形成大量包涵体,并堵塞了内膜转运通道。
     在较低温度下诱导一段时间后升高温度有利于重组α-CGT酶的胞外生产,尤其是在25°C下诱导32 h后将温度升高到30°C导致胞外酶活明显增加,诱导90 h后的酶活达到32.5 U/mL,相比于恒定在25°C的情况提高了45%。
     3.甘氨酸的添加促进了重组α-CGT酶的胞外分泌并能明显缩短发酵时间,特别是甘氨酸浓度为150 mM时,诱导40 h后的胞外酶活达到23.5 U/mL,相比于对照在相同诱导时间的酶活提高了10倍,而且,诱导36 h后的重组酶生产强度最大,达到0.60 U/mL/h,相比于对照诱导80 h后的最大生产强度提高了1.5倍,其潜在机理是甘氨酸导致E. coli细胞膜透性的明显增加。
     然而,甘氨酸对E. coli细胞的生长有明显的负面影响,这限制了重组酶生产强度的进一步提高。Ca2+能补偿甘氨酸对细胞生长的抑制作用,主要体现在单位体积中的细胞数和活细胞数明显增加、细胞自溶明显减少以及细胞形态修复。当TB培养基中同时添加150 mM甘氨酸和20 mM Ca2+,诱导40 h后的胞外酶活达到35.5 U/mL,诱导36 h后的最大生产强度达到0.90 U/mL/h,相比于只添加甘氨酸的情况均提高了50%。
     4.重组α-CGT酶在C-末端连有6×His-tag,因此能用镍柱进行一步亲合层析,但该方法纯化酶的回收率很低;重组和天然α-CGT酶能通过阴离子交换和疏水色谱两步纯化,纯化酶的回收率较高。
     α-CGT酶在溶液中是单聚体;重组α-CGT酶环化反应的最适温度为45°C,在40°C、45°C和50°C下的半衰期分别为8 h、1.25 h和0.5 h,而天然酶有稍高的最适温度(50°C)和热稳定性(t1/2, 50°C=0.8 h);重组和天然酶环化反应的最适pH均为5.5,且分别在pH 6~9.5和6~10之间相对稳定;α-CGT酶的环化活力不依赖于金属辅因子,Hg2+、Ni2+、Fe2+和Co2+对环化活力有抑制作用,而一些二价金属离子能激活环化活力,特别是Ca2+、Ba2+和Zn2+。
     在酶转化的起始阶段,α-CGT酶生产α-环糊精作为主要产物,随着反应时间的延长,β-环糊精的比例明显增加,最终β-环糊精为主要产物;相比于天然酶,重组酶有更高的α-环糊精特异性。
     α-CGT酶环化反应的动力学性质适合用Hill方程进行描述,Hill常数高于1暗示酶单聚体的底物结合有正协同作用。
     5.亚位点?3处的Asp372和Tyr89的突变能改变P. macerans CGT酶的环化活力和环糊精产物比例,说明这两个残基对环糊精产物特异性具有重要作用,也进一步证实亚位点-3对CGT酶产物特异性来讲是关键位点。
     Asp372突变成赖氨酸和Tyr89突变成精氨酸显著提高了P. macerans CGT酶的α-环糊精特异性,单突变体D372K和Y89R在产物特异性上的改变能累加于双突变D372K/Y89R;相比于野生CGT酶,双突变体D372K/Y89R的α-环糊精产量提高了50%,而β-环糊精产量下降了43%。
     具有更高α-环糊精特异性的突变体比野生酶更适合于α-环糊精的工业化生产。
     6.氨基酸残基47是定位于亚位点?3附近的主要残基之一,不同类型的CGT酶之间残基47的氨基酸种类明显不同,暗示残基47的种类可能与CGT酶的产物特异性有关。Lys47的突变能改变P. macerans CGT酶的环化活力并影响环糊精的生产,说明这个残基对环化反应和环糊精产物特异性具有重要作用。
     Lys47的所有突变降低了P. macerans CGT酶的α-环化活力,暗示Lys47对α-环化反应非常重要,但这些突变能显著增加CGT酶的β-环化活力,尤其是Lys47突变成苏氨酸、丝氨酸或亮氨酸,这三个单突变转化P. macerans CGT酶从α-型到β/α-型,作为结果,所有突变体具有更高的β-环糊精特异性,它们比野生酶更适合于β-环糊精的工业化生产。
Cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) is an extracellular enzyme capable of converting starch or starch derivates into cyclodextrins through an intramolecular transglycosylation reaction. With cyclodextrin applications expanded in the industries related to food, pharmaceuticals, cosmetic, agriculture, etc, CGTase has become the focus of scientific research nowadays.
     To overcome the low CGTase productivity of wild strains, the overexpression of cgt gene in Escherichia coli has been expected. However, previous reports showed that the CGTases expressed in E. coli were usually accumulated in the cytosol as inactive inclusion bodies and/or the periplasm as soluble forms, which limited its industrial utilization. Thus, it is highly desirable to extracellular production of the recombinant CGTase in E. coli. In addition, a major disadvantage of cyclodextrin production by CGTase is that all known wild-type CGTases produce a mixture ofα-,β-, andγ-cyclodextrins, which were not favorable to its downstream processing. In the present study, the gene encodingα-CGTase from Paenibacillus macerans JFB05-01 was expressed in E. coli and the recombinant enzymes were targeted into the culture medium of E. coli through some culture strategies. The product specificity of CGTase was also analyzed and improved. The main results are listed as follows: 1. The cgt gene encodingα-CGTase from P. macerans JFB05-01 was cloned into the downstream of pelB signal sequence in a vector pET-20b(+) and pET-22b(+), respectively. Thus, the expression plasmids pET-20b(+)/cgt and pET-22b(+)/cgt were constructed and transformed into the host E. coli BL21(DE3).
     The culture conditions for extracellular production of the recombinantα-CGTase in E. coli BL21(DE3)(pET-20b(+)/cgt) were optimized in shaking flasks. The E. coli cells were cultured in TB medium at 25°C. After induction with 0.01 mM isopropylβ-D-thiogalactoside (IPTG) for 90 h, the activity ofα-CGTase in the culture medium achieved 22.5 U/ml, which was about 43-fold higher than that of the parent strain, P. macerans JFB05-01. In E. coli BL21(DE3)(pET-22b(+)/cgt), higher IPTG concentration (0.2 mM) was needed to induce the expression ofα-CGTase and, after 90h of induction, the activity ofα-CGTase achieved only 17.5 U/ml. Thus, E. coli BL21(DE3)(pET-20b(+)/cgt) was more suitable for the extracellular production of the recombinantα-CGTase. To the best of our knowledge, this is the first report on the extracellular production ofα-CGTase in E. coli.
     2. The optimum temperature for extracellular production of the recombinantα-CGTase in E. coli was 25°C. However, at 25°C, only very few recombinantα-CGTase was secreted into the culture medium within first 50 h, while most were accumulated in the periplasmic space.
     The extracellular secretion of the recombinant enzyme was suppressed at higher temperatures. The possible reason was that the precursor protein with a signal peptide aggregated as inclusion bodies in the inner side of inner membrane due to too high synthetic rate, which might subsequently block protein translocation across the inner membrane.
     Extracellular production of the recombinantα-CGTase could be stimulated by raising the induction temperature at the later stage of culture. The maximum extracellular production was achieved when the temperature was shifted to 30°C after 32 h of induction at 25°C. After 90 h, the activity was 32.5 U/ml, which is 1.45-fold higher than that at 25°C constant.
     3. The addition of glycine enhanced the extracellular secretion of the recombinantα-CGTase and markedly shortened the culture time. Especially in the culture with 150 mM glycine, theα-CGTase activity in the culture medium reached 23.5 U/ml at 40 h, which was 11-fold higher than that of the control culture at the same time. The productivity of the recombinant enzyme also reached the maximum value of approximately 0.60 U/ml/h at 36 h, which was 2.5-fold higher than that of the control culture at 80 h. The potential mechanism is considered to be the significantly increased membrane permeabilities of E. coli cells.
     However, glycine inhibited the growth of E. coli cells, which prevented further improvement in overall enzyme extracellular productivity. Ca2+ could remedy cell growth inhibition induced by glycine as demonstrated by significantly increased cell number and viability, reduced cell autolysis, and repaired cell morphology. In the culture with 150 mM glycine and 20 mM Ca2+, theα-CGTase activity in the culture medium reached 35.5 U/ml at 40 h of culture, which was 1.5-fold higher than that in the culture with glycine alone. The productivity reached the maximum value of approximately 0.90 U/ml/h at 36 h, which also was 1.5-fold higher than that in the culture with glycine alone.
     4. The recombinantα-CGTase with a C-terminal His-tag could be purified to homogeneity through a nickel affinity chromatography, but the typical yield of purified enzyme was very low. The recombinant and native enzymes were purified by a combination of ion-exchange and hydrophobic interaction chromatography and the relative high yield was obtained.
     The purifiedα-CGTase was a monomer in solution. The optimum cyclization reaction temperature of the recombinantα-CGTase was 45°C. It retained 50% of its initial cyclization activity after incubation for 8 h at 40°C, 1.25 h at 45°C, and 0.5 h at 50°C. The nativeα-CGTase had higher optimum temperature (50°C) and thermostability (t1/2, 50°C=0.8 h). The recombinant and native enzymes both showed the highest cyclization activity at pH 5.5 and were quite stable in the pH ranging from 6 to 9.5 and 6 to 10, respectively. The metal cofactor was not required for the function ofα-CGTase. However, the cyclization activity ofα-CGTase was inhibited by Hg2+, Ni2+, Fe2+ or Co2+, while the enzyme could be activated by some bivalent metal ions, especially Ca2+, Ba2+ or Zn2+.
     At the initial stage of enzyme conversion, the recombinant and nativeα-CGTases producedα-cyclodextrin as a main product. At the later stages, the proportion ofβ-cyclodextrin increased. Finally,β-cyclodextrin was the main product. The recombinant enzyme had a higher preference forα-cyclodextrin production than the native enzyme.
     The kinetics of theα-CGTase-catalyzed cyclization reaction can be fairly well described by the Hill equation and the Hill coefficient was higher than one, indicating the positive cooperativity of substrate binding.
     5. The mutations of Asp372 and Tyr89 at subsite ?3 in P. macerans CGTase could change cyclization activities and cyclodextrin product ratios, which indicated that the two residues at subsite ?3 played important roles in cyclodextrin product specificity and subsites ?3 was a key site for cyclodextrin product specificity.
     The replacement of Asp372 by lysine and Tyr89 by arginine enhanced significantlyα-cyclodextrin specificity of CGTase. Furthermore, the changes in cyclodextrin product specificity for the single mutants D372K and Y89R could be combined in the double mutant D372K/Y89R, which displayed a 1.5-fold increase in the production ofα-cyclodextrin, with a concomitant 43% decrease in the production ofβ-cyclodextrin when compared to the wild-type CGTase.
     These mutants with higherα-cyclodextrin specificity were more suitable for the industrial production ofα-cyclodextrin than the wild-type enzyme.
     6. Amino acid residue is one of the main residues located near subsites ?3. The nature of residue 47 has a clear discrimination between the different groups of CGTase, suggesting that the identity of residue 47 may affect cyclodextrin product specificity.
     The mutations of Lys47 in P. macerans CGTase could change cyclization activities and cyclodextrin productions, indicating the residue had important roles in cyclization reaction and cyclodextrin product specificity.
     All the mutations reducedα-cyclodextrin forming activity of CGTase, suggesting that Lys47 was very important forα-cyclization reaction, while the increase inβ-cyclodextrin forming activity could be achieved. Especially, the mutations of Lys47 into threonine, serine, or leucine converted P. macerans CGTase fromα-type intoβ/α-type. As a result, all the mutants displayed a shift in product specificity towards the production ofβ-cyclodextrin. Thus, these mutants were more suitable for the industrial production ofβ-cyclodextrin than the wild-type enzyme.
引文
[1] Li ZF, Wang M, Wang F, et al.γ-Cyclodextrin: a review on enzymatic production and applications[J]. Appl Microbiol Biotechnol, 2007, 77: 245-255.
    [2] Terada Y, Yanase M, Takata H, et al. Cyclodextrins are not the major cyclicα-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose[J]. J Biol Chem, 1997, 272(25): 15729-15733.
    [3] Del Valle EMM. Cyclodextrins and their uses: a review[J]. Process Biochem, 2004, 39: 1033-1046.
    [4]童林荟.环糊精化学-基础与应用[M].北京:科学出版社, 2001.
    [5] Szejtli J. Cyclodextrin technology[M]. The netherlands: Kluwer academic publishers, 1998.
    [6] Armbruster FC. Proceedings of the 4th International Symposium on Cyclodextrins [M]. Munich, (O Hubet, J Szejtli, Eds) Kluwer, Dordrecht, 1998.
    [7] Bender H. An improved method for the preparation of cyclooctaamylose, using starches and the cyclodextrin glycosyltransferase of Klebsiella pneumoniae M5al[J]. Carbohydr Res, 1983, 124: 225-233.
    [8] Sato M, Yagi Y. Properties of CGTase from three types of Bacillus and production of cyclodextrins by the enzymes[M]. In: Friedman RB (eds) Biotechnology of amylodextrin oligosaccharides, ACS symposium series 458. American Chemical Society, Washington, DC, 1991. 125-137.
    [9] Matioli G, Zanin G, Moraes F. Enhancement of selectiveity for producingγ-cyclodextrin[J]. Appl Biochem Biotech, 2000, 84-86: 955-962.
    [10] Rendleman JJ. Enhanced production of cyclomaltooctaose (γ-cyclodextrin) through selective complexation with C12 cyclic compounds[J]. Carbohyd Res, 1992, 230: 343-359.
    [11] Rendleman JJ. Enhanced production ofγ-cyclodextrin from corn syrup solids by means of cyclododecanone as selective complexant[J]. Carbohydr Res, 1993, 247: 223-237.
    [12] Schmid G. Preparation and industrial production of cyclodextrins[M]. In: Atwood J, Davies ED, MacNicol DD, Vogtle F (eds) Comprehesive supermolecular chemistry, vol 3: Cyclodextrins. Pergamon, Oxford, 1996. 41-56.
    [13] Shieh W. Process for producingγ-cyclodextrin[P]. US Pat, 5550222. 1996.
    [14] Szente L, Szejtli J. Cyclodextrins as food ingredients[J]. Trends Food Sci Tech, 2004, 15(3-4): 137-142.
    [15] Sojo MM, Nu?ez-Delicado E, García-Carmona F, et al. Cyclodextrins as activator and inhibitor of latent banana pulp polyphenol oxidase[J]. Agric Food Chem, 1999, 47(2):518 -523.
    [16] Munro IC, Newberne PM, Young VR, et al. Safety assessment ofγ-cyclodextrin[J]. Regul Toxicol Pharmacol, 2004, 39(Suppl 1): S3-13.
    [17] Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future[J]. Nature reviews, 2004, 3(12): 1023-1035.
    [18] Süvegha K, Fujiwarab K, Komatsub K, et al. Positron lifetime in supramolecularγ- andδ-cyclodextrin-C60 and -C70 compounds[J]. Chem Phys Lett, 2001, 344(3-4): 263-269.
    [19] Moldenhauer J, Cully J. Method for producing a coenzyme Q10/γ-cyclodextrin complex[P]. US Pat, 0012774A1. 2003.
    [20] Lai CS, Chow J, Wolf BW. Method of usingγ-cyclodextrin to control blood glucose and insulin secretion[P]. US Pat, 0215523A1. 2005.
    [21] Holland L, Rizzi G, Malton P. Cosmetic compositions comprising cyclic oligosaccharides and fragrance[P]. WO Pat, 2000/067716. 2000.
    [22] Hedges AR. Industrial applications of cyclodextrins[J]. Chem Rev, 1998, 98(5): 2035-2044.
    [23] Matsumura S, Sakamoto S, Ueno A, et al. Construction ofα-helix peptides withβ-cyclodextrin and dansyl units and their conformational and molecular sensing properties[J]. Chem - Eur J, 2000, 6(10): 1781-1788.
    [24] Lezcano M, Al-Soufi W, Novo M, et al. Complexation of several benzimidazole-type fungicides withαandβ-cyclodextrins[J]. Agric Food Chem, 2002, 50(1): 108-112.
    [25] van der Veen BA, van Alebeek GJ, Uitdehaag JC, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms[J]. Eur J Biochem/FEBS, 2000, 267(3): 658-665.
    [26] Uitdehaag JC, van der Veen BA, Dijkhuizen L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from theα-amylase family[J]. Enzyme Microb Tech, 2002, 30: 295-304.
    [27] van der Veen BA, Uitdehaag JC, Dijkstra BW, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity[J]. Biochim Biophys Acta Protein Struct Mol Enzymol, 2000, 1543(2): 336-360.
    [28] Zheng MY, Endo T, Zimmermann W. Synthesis of large-ring cyclodextrins by cyclodextrin glucanotransferases from bacterial isolates[J]. J Incl Phenom Macrocycl Chem, 2002, 44: 387-390.
    [29] Kometani T, Terada Y, Nishimura T, et al. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties[J]. Biosci Biotechnol Biochem, 1994, 58: 1990-1994.
    [30] Lee YH, Baek SG, Shin HD, et al. Transglycosylation reaction of cyclodextrin glucanotransferase in the attrition coupled reaction system using raw starch as adonor[J]. Kor J Appl Microbiol Biotechnol, 1993, 21: 461-467.
    [31] Qi Q, Zimmermann W. Cyclodextrin glucanotransferase: from gene to applications[J]. Appl Microbiol Biotechnol, 2005, 66(5): 475-485.
    [32] Kometani T, Nishimura T, Nakae T, et al. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species[J]. Biosci Biotechnol Biochem, 1996, 60: 645-649.
    [33] Bruinenberg PM, Hulst AC, Faber A, et al. A process for surface sizing or coating paper[P]. Eur Pat, P1995000201751. 1996.
    [34] Janecek S. Parallelβ/α-barrels ofα-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel ofβ-amylase: evolutionary distance is a reflection of unrelated sequences[J]. FEBS Lett, 1994, 353(2): 119-123.
    [35] Janecek S. New conserved amino acid region ofα-amylases in the third loop of their (β/α)8-barrel domains[J]. Biochem J, 1992, 288(Pt 3): 1069-1070.
    [36] Rimphanitchayakit V, Tonozuka T, Sakano Y. Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity[J]. Carbohydr Res, 2005, 340(14): 2279-2289.
    [37] Penninga D, van der Veen BA, Knegtel RM, et al. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251[J]. J Biol Chem, 1996, 271(51): 32777-32784.
    [38] Strokopytov B, Knegtel RM, Penninga D, et al. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity[J]. Biochemistry, 1996, 35(13): 4241-4249.
    [39] Uitdehaag JC, Kalk KH, van Der Veen BA, et al. The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by aγ-cyclodextrin-CGTase complex at 1.8-A resolution[J]. J Biol Chem, 1999, 274(49): 34868-34876.
    [40] Bender H. Studies of the mechanism of the cyclisation reaction catalysed by the wildtype and a truncatedα-cyclodextrin glycosyltransferase from Klebsiella pneumoniae strain M5al, and theβ-cyclodextrin glycosyltransferase from Bacillus circulans strain 8[J]. Carbohydr Res, 1990, 206(2): 257-267.
    [41] Wind RD, Uitdehaag JC, Buitelaar RM, et al. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1[J]. J Biol Chem, 1998, 273(10): 5771-5779.
    [42] Lawson CL, van Montfort R, Strokopytov B, et al. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form[J]. J Mol Biol, 1994, 236(2): 590-600.
    [43] McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis[J]. Curr Opin Struc Biol, 1994, 4(6): 885-892.
    [44] Strokopytov B, Penninga D, Rozeboom HJ, et al. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases[J]. Biochemistry, 1995, 34(7): 2234-2240.
    [45] Qian M, Haser R, Buisson G, et al. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution[J]. Biochemistry, 1994, 33(20): 6284-6294.
    [46] Brzozowski AM, Davies GJ. Structure of the Aspergillus oryzaeα-amylase complexed with the inhibitor acarbose at 2.0 A resolution[J]. Biochemistry, 1997, 36(36): 10837-10845.
    [47] Parsiegla G, Schmidt AK, Schulz GE. Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing theγ-cyclodextrin production[J]. Eur J Biochem/FEBS, 1998, 255(3): 710-717.
    [48] van der Veen BA, Uitdehaag JC, Penninga D, et al. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increaseα-cyclodextrin production[J]. J Mol Biol, 2000, 296(4): 1027-1038.
    [49] Tonkova A. Bacterial cyclodextrin glucanotransferase[J]. Enzyme Microb Tech, 1998, 22: 678-686.
    [50] Gawande BN, Singh RK, Chauhan AK, et al. Optimization of cyclomaltodextrin glucanotransferase production from Bacillus firmus[J]. Enzyme Microb Tech, 1998, 22(4): 288-291.
    [51] Jin-Bong H, Kim SH, Lee TK, et al. Production of maltodextrin from Bacillus stearothermophilus[J]. Korean J Appl Biotechnol, 1990, 18: 578-584.
    [52] Jamuna R, Saswathi N, Sheela R, et al. Synthesis of cyclodextrin glucosyltransferase by Bacillus cereus for the production of cyclodextrins[J]. Appl Biochem Biotechnol, 1993, 43: 163-176.
    [53] Nakamura N, Horikoshi K. Characterization and some cultural conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp.[J]. Agric Biol Chem, 1976, 40: 753-757.
    [54]陈龙然,袁康培,冯明光,等.一株产环糊精葡萄糖基转移酶的地衣芽孢杆菌的选育、产酶条件及酶学特性[J].微生物学报, 2005, 45(1): 97-101.
    [55] Rosso AM, Ferrarotti SA, Krymkiewicz N, et al. Optimisation of batch culture conditions for cyclodextrin glucanotransferase production from Bacillus circulans DF 9R[J]. Microbial cell factories, 2002, 1(1): 3.
    [56] Baneyx F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
    [57]杨吉吉,李太华,徐维明.大肠杆菌中外源基因表达的研究进展[J].微生物学免疫学进展, 2000, 28(2): 69-72.
    [58] Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli[J]. Appl Microbiol Biotechnol, 2004, 64(5): 625-635.
    [59] Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiol Rev, 1996, 60(3): 512-538.
    [60] Fekkes P, Driessen AJM. Protein targeting to the bacterial cytoplasmic membrane[J]. Microbiol Mol Biol Rev, 1999, 63: 161-173.
    [61] Belin D, Guzman LM, Bost S, et al. Functional activity of eukaryotic signal sequences in Escherichia coli: the ovalbumin family of serine protease inhibitors[J]. J Mol Biol, 2004, 335: 437-453.
    [62] Fekkes P, Driessen A. Protein targeting to the bacterial cytoplasmic membrane[J]. Microbiol Mol Biol Rev, 1999, 63: 161-173.
    [63]马丽艳.海洋细菌褐藻胶裂解酶在大肠杆菌中表达,加工与转运及重组酶的纯化与性质研究[D]: [博士学位论文].青岛:中国海洋大学, 2007.
    [64] Mergulhao F, Monteiro G. Secretion capacity limitations of the Sec pathway in Escherichia coli[J]. J Microb Biotechnol, 2004, 14: 128-133.
    [65] Mergulhao FJ, Taipa MA, Cabral JM, et al. Evaluation of bottlenecks in proinsulin secretion by Escherichia coli[J]. J Biotechnol, 2004, 109: 31- 43.
    [66] Rosenberg H. Isolation of recombinant secretory proteins by limited induction and quantitative harvest[J]. BioTechniques, 1998, 24: 188-191.
    [67] Koster M, Bitter W, Tommassen J. Protein secretion mechanisms in Gram-negative bacteria[J]. Int J Med Microbiol, 2000, 290: 325-331.
    [68] Palacios J, Zaror I, Martinez P, et al. Subset of hybrid eukaryotic proteins is exported by the type I secretion system of Erwinia chrysanthemi[J]. J Bacteriol, 2001, 183: 1346- 1358.
    [69] Khokhlova O, Nesmeyanova M. Interdependent effects of the charge of the N-terminal region of the signal peptide, SecA, and SecB on secretion of alkaline phosphatase in Escherichia coli[J]. Mol Biol (Moscow), 2004, 38: 239-246.
    [70] Nakai K, Kanehisa M. Expert system for predicting protein localization sites in Gram-negative bacteria[J]. Proteins, 1991, 11: 95- 110.
    [71] Kajava AV, Zolov SN, Kalinin AE, et al. The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of Gram-negative bacteria[J]. J Bacteriol, 2000, 182: 2163-2169.
    [72] Leonhartsberger S. E. coli Expression system efficiently secretes recombinant proteins into culture broth[J]. BioProcess Int, 2006, APRIL: 1-4.
    [73] Economou A. Following the leader: bacterial protein export through the Sec pathway[J]. Trends Microbiol, 1999, 7: 315-320.
    [74] Koebnik R, Locher K, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Mol Microbiol, 2000, 37: 239-253.
    [75] Shin HD, Chen RR. Extracellular Recombinant Protein Production From an Escherichia coli lpp Deletion Mutant[J]. Biotechnol Bioeng, 2008, 101(6): 1288-1296.
    [76] Binet R, Letoffe S, Ghigo J, et al. Protein secretion by Gram-negative bacterial ABC exporters-a review[J]. Gene, 1997, 192: 7-11.
    [77] Fernandez L, de Lorenzo V. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway[J]. Mol Microbiol, 2001, 40: 332-346.
    [78] Pugsley AP, Francetic O, Possot OM, et al. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-negative bacteria--a review[J]. Gene, 1997, 192(1): 13-19.
    [79] Sandkvist M. Biology of type II secretion[J]. Mol Microbiol, 2001, 40(2): 271-283.
    [80] Blight MA, Chervaux C, Holland IB. Protein secretion pathway in Escherichia coli[J]. Curr Opin Biotechnol, 1994, 5(5): 468-474.
    [81] Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotechnol, 2005, 115(2): 113-128.
    [82] Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Appl Microbiol Biotechnol, 2005, 67(3): 289-298.
    [83] del Castillo FJ, Moreno F, del Castillo I. Secretion of the Escherichia coli K-12 SheA hemolysin is independent of its cytolytic activity[J]. FEMS Microbiol Lett, 2001, 204(2): 281-285.
    [84] Rinas U, Hoffmann F. Selective leakage of host-cell proteins during high-cell-density cultivation of recombinant and non-recombinant Escherichia coli[J]. Biotechnol Progr, 2004, 20(3): 679-687.
    [85] Hasenwinkle D, Jervis E, Kops O, et al. Very high-level production and export in Escherichia coli of a cellulose binding domain for use in a generic secretion-affinity fusion system[J]. Biotechnol Bioeng, 1997, 55(6): 854-863.
    [86] Slos P, Speck D, Accart N, et al. Recombinant cholera toxin B subunit in Escherichia coli: high-level secretion, purification, and characterization[J]. Protein Expres Purif, 1994, 5(5): 518-526.
    [87] Shokri A, Sanden AM, Larsson G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli[J]. Appl Microbiol Biotechnol, 2003, 60(6): 654-664.
    [88] Mergulhao FJ, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli[J]. Biotechnol Adv, 2005, 23(3): 177-202.
    [89] Yang J, Moyana T, MacKenzie S, et al. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-α) from Escherichia coli caused by the synergistic effects of glycine and triton X-100[J]. Appl Environ Microbiol, 1998, 64(8): 2869-2874.
    [90] Jang KH, Seo JW, Song KB, et al. Extracellular secretion of levansucrase from Zymomonas mobilis in Escherichia coli[J]. Bioproc Biosyst Eng, 1999, 21(5): 453-458.
    [91] Lee KW, Shin HD, Lee YH. Extracellular Overproduction ofβ-Cyclodextrin Glucanotransferase in a Recombinant E. coli Using Secretive Expression System[J]. J Microbiol Biotechnol, 2002, 12(5): 753-759.
    [92] Kim MH, Lee JK, Kim HK, et al. Overexpression of cyclodextrin glycosyltransferase gene from Brevibacillus brevis in Escherichia coli by control of temperature and mannitol concentration[J]. Biotechnol Tech, 1999, 13: 765-770.
    [93] Lo PK, Hassanb O, Ahmadc A, et al. Excretory over-expression of Bacillus sp. G1 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: Optimization of the cultivation conditions by response surface method[J]. Enzyme Microb Technol, 2007, 40(5): 1256-1263.
    [94] Jacob A, Rendleman J. Enhanced production of cyclomaltooctaose (γ-cyclodextrin) through selective complexation with C12 cyclic compounds[J]. Carbohydr Res, 1992, 230: 343-359.
    [95] Kelly RM, Leemhuis H, Dijkhuizen L. Conversion of a cyclodextrin glucanotransferase into anα-amylase: assessment of directed evolution strategies[J]. Biochemistry, 2007, 46(39): 11216-11222.
    [96] van der Veen BA. Engineering reaction and product specificity of cyclodextrin glycosyltransferase from Bacillus circulans strain 251[D]: PhD Thesis. The netherlands: University of Groningen, 2000.
    [97] van der Veen BA, Uitdehaag JC, Dijkstra BW, et al. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity[J]. Eur J Biochem/FEBS, 2000, 267(12): 3432-3441.
    [98] Kim YH, Bae KH, Kim TJ, et al. Effect on product specificity of cyclodextrin glycosyltransferase by site-directed mutagenesis[J]. Biochem Mol Biol Int, 1997, 41: 227-234.
    [99] van der Veen BA, Leemhuis H, Kralj S, et al. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin glycosyltransferase[J]. J Biol Chem, 2001, 276: 44557-44562.
    [100] Penninga D, Strokopytov B, Rozeboom HJ, et al. Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity[J]. Biochemistry, 1995, 34(10): 3368-3376.
    [101] Fujiwara S, Kakihara H, Sakaguchi K, et al. Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability[J]. J Bacteriol, 1992, 174(22): 7478-7481.
    [102] Sin KA, Nakamura A, Masaki H, et al. Replacement of an amino acid residue of cyclodextrin glucanotransferase of Bacillus ohbensis doubles the production ofγ-cyclodextrin[J]. J Biotechnol, 1994, 32(3): 283-288.
    [103] Knegtel RM, Wind RD, Rozeboom HJ, et al. Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1[J]. J Mol Biol, 1996, 256(3): 611-622.
    [104]赵新帅,王占坤,祁庆生.环糊精糖基转移酶产物专一性改造:难题与挑战[J].生物工程学报, 2007, 23(2): 181-188.
    [105] Yamamoto T, Fujiwara S, Tachibana Y, et al. Alteration of product specificity of cyclodextrin glucanotransferase from Thermococcus sp. B1001 by site-directed mutagenesis[J]. J Biosci Bioeng, 2000, 89(2): 206-209.
    [106] Leemhuis H, Uitdehaag JC, Rozeboom HJ, et al. The remote substrate binding subsite -6 in cyclodextrin-glycosyltransferase controls the transferase activity of the enzyme via an induced-fit mechanism[J]. J Biol Chem, 2002, 277(2): 1113-1119.
    [107] van der Veen BA, Leemhuis H, Kralj S, et al. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin glycosyltransferase[J]. J Biol Chem, 2001, 276(48): 44557-44562.
    [108] Nakamura A, Haga K, Yamane K. Four aromatic residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of replacements on substrate binding and cyclization characteristics[J]. Biochemistry, 1994, 33(33): 9929-9936.
    [109] Ishii N, Haga K, Yamane K, et al. Crystal structure of alkalophilic asparagine 233-replaced cyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at 2.0 A resolution[J]. J Biochem, 2000, 127(3): 383-391.
    [110] Nakamura A, Haga K, Ogawa S, et al. Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus andα-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues[J]. FEBS Lett, 1992, 296(1): 37-40.
    [111] Nakagawa Y, Takada M, Ogawa K, et al. Site-directed mutations in alanine 223 and glycine 255 in the acceptor site ofγ-cyclodextrin glucanotransferase from alkalophilic Bacillus clarkii 7364 affect cyclodextrin production[J]. J Biochem, 2006, 140(3): 329-336.
    [112]曹新志,金征宇.环糊精糖基转移酶高产菌株的快速筛选[J].中国粮油学报, 2003, 18(6): 53-55.
    [113]曹新志,金征宇.嗜碱芽孢杆菌产环糊精葡萄糖基转移酶发酵条件的优化[J].食品科学, 2005, 26(2): 122-126.
    [114]段宇珩,王雁萍,秦广雍,等.离子束诱变产生的CGTase高产菌株发酵规律研究[J].河南农业科学, 2005, 5: 15-17.
    [115]王雁萍,王付转,李宗伟,等.β-环糊精葡萄糖基转移酶高产菌株02-5-71的选育及发酵条件研究[J].郑州工程学院学报, 2003, 24(3): 71-73.
    [116]朱伯儒,史作清,何炳林.环糊精葡萄糖基转移酶的性质、应用与固定化研究进展[J].氨基酸和生物资源, 1997, 19(1): 36-39.
    [117]王峰. Bacillus macorous WSH02-06发酵法生产γ-环糊精葡萄糖基转移酶的研究[D]: [博士学位论文].无锡:江南大学, 2005.
    [118]王峰,堵国成,顾正彪,等. Bacillus macorous合成γ-CGT酶过程中阻遏效应与指数流加发酵[J].过程工程学报, 2008, 1: 109-114.
    [119] Wang F, Du G, Li Y, et al. Optimization of cultivation conditions for the production ofγ-cyclodextrin glucanotransferase by Bacillus macorous[J]. Food Biotechnol, 2004, 18(2): 251-264.
    [120] Wang F, Du G, Li Y, et al. Effects of dissolved oxygen concentration and two-stage oxygen supply strategy on the production ofγ-CGTase by Bacillus macorous[J]. Process Biochem, 2005, 40: 3468-3473.
    [121] Wang F, Du G, Li Y, et al. Enhancedγ-CGTase production by Bacillus macorous with membrane active substance[J]. Food Biotechnol, 2006, 20(2): 171-181.
    [122] Wang F, Du G, Li Y, et al. Regulation of CCR in theγ-CGTase production from Bacillus macorous by the specific cell growth rate control[J]. Enzyme Microb Tech, 2006, 39: 1279-1285.
    [123]陈坚,吴敬,李兆丰,等.一种α-环糊精葡萄糖基转移酶基因的克隆与表达[P].中国专利, 200810024162.3. 2008.
    [124]唐上华,冯吉吉,黄蕊新,等.嗜碱性芽孢杆菌N-227β-环状糊精葡基转移酶基因的克隆及其在大肠杆菌中的表达[J].工业微生物, 1990, 20: 1-5.
    [125]唐上华,王磊,周新宇,等.嗜碱性芽孢杆菌N-227环状糊精葡基转移酶基因在枯草杆菌中的整合表达[J].工业微生物, 1995, 25(1): 1-4
    [126]王媛,王荫榆,郭本恒,等.表达环糊精葡基转移酶基因的重组大肠杆菌发酵条件的研究[J].工业微生物, 2007, 37(3): 10-14.
    [127] Kim SG, Kweon DH, Lee DH, et al. Coexpression of folding accessory proteins for production of active cyclodextrin glycosyltransferase of Bacillus macerans in recombinant Escherichia coli[J]. Protein Expres Purif, 2005, 41(2): 426-432.
    [128] Jin HH, Han NS, Kweon DH, et al. Effects of Environmental Factors on In Vivo Folding of Bacillus macerans Cyclodextrin Glycosyltransferase in Recombinant Escherichia coli[J]. J Microbiol Biotechnol, 2001, 11(1): 92-96.
    [129] Jeang CL, Lin DG, Hsieh SH. Characterization of cyclodextrin glycosyltransferase of the same gene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli[J]. J Agri Food Chem, 2005, 53(16): 6301-6304.
    [130] Yanish-Perron C, Viera J, Messing J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13 mp18 and pUC19 vectors[J]. Gene, 1985, 33: 103-119.
    [131] Van De Walle M, Shiloach J. Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation[J]. Biotechnol Bioeng, 1998, 57(1): 71-78.
    [132] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 1989.
    [133]廖鲜艳.重组大肠杆菌-面包酵母耦合系统生物合成谷胱甘肽[D]:[博士学位论文].无锡:江南大学, 2006.
    [134]奥斯伯F,布伦特R,金斯顿RE.精编分子生物学实验指南(第一版)[M].北京:科学出版社, 2001.
    [135] Lejeune A, Sakaguchi K, Imanaka T. A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (α-cyclodextrin) glucanotransferase[J]. Anal Biochem, 1989, 181(1): 6-11.
    [136]刘虹,顾正彪,洪雁,等.甲基橙褪色分光光度法定量测定α-环糊精[J].中国粮油学报, 2008, 23(5): 1773-1776.
    [137] Harrison JS, Keshavarz-Moore E, Dunnill P, et al. Factors affecting the fermentative production of a lysozyme-binding antibody fragment in Escherichia coli[J]. Biotechnol Bioeng, 1997, 53(6): 611-622.
    [138] Kitahata S, Tsuyama, N., Okada, S. Purification and some properties of cyclodextrin glycosyltransferase from a strain of Bacillus species[J]. Agric Biol Chem, 1974, 38: 387-393.
    [139] Takeuchi S, Mandai Y, Otsu A, et al. Differences in properties between humanαA- andαB-crystallin proteins expressed in Escherichia coli cells in response to cold and extreme pH[J]. Biochem J, 2003, 375(Pt 2): 471-475.
    [140] Novagen. Regulating protein expression in the pet system. pET System Manual, 2005, 11th Edition: 44-48.
    [141] Kelly RM, Leemhuis H, Gatjen L, et al. Evolution toward small molecule inhibitor resistance affects native enzyme function and stability, generating acarbose-insensitive cyclodextrin glucanotransferase variants[J]. J Biol Chem, 2008, 283(16): 10727-10734.
    [142] Lehrer R, Barton A, Ganz T. Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry[J]. J Immunol Methods, 1988, 108(1-2): 153-158.
    [143] Loh B, Grant C, Hancock REW. Use of the Fluorescent Probe 1-N-Phenylnaphthylamine to Study the Interactions of Aminoglycoside Antibiotics with the Outer Membrane of Pseudomonas aeruginosa[J]. Antimicrob Agents Ch, 1984, 26(4): 546-551.
    [144] Sambrook J, Russell DW: Molecular cloning: a laboratory manual, 3rd eds[M]. New York: Cold Spring Harbor Press, 2001. .
    [145]郭尧君.蛋白质电泳实验技术(第二版)[M].北京:科学出版社, 2005.
    [146] Wei G, Li Y, Du G, et al. Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis[J]. Biotechnol Lett, 2003, 25: 887-890.
    [147] Zheng M, Du G, Guo W, et al. A temperature-shift strategy in batch microbial transglutaminase fermentation[J]. Process Biochem, 2001, 36: 525-530.
    [148] Jeang CL, Wung CH, Chang BY, et al. Characterization of the Bacillus macerans cyclodextrin glucanotransferase overexpressed in Escherichia coli[J]. Proc Natl Sci Counc ROC(B), 1999, 32(2): 62-68.
    [149] van Klompenburg W, de Kruijff B. The role of anionic lipids in protein insertion and translocation in bacterial membranes[J]. J Membrane Biol, 1998, 162(1): 1-7.
    [150] Tang JB, Yang HM, Song SL, et al. Effect of Glycine and Triton X-100 on secretionand expression of ZZ-EGFP fusion protein[J]. Food Chem, 2008, 108(2): 657-662.
    [151] Sanwal BD. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors III. Control of glucose 6-phosphate dehydrogenase[J]. J Biol Chem, 1970, 245(7): 1626-1631.
    [152] Sandkvist M, Bagdasarian M. Secretion of recombinant proteins by Gram-negative bacteria[J]. Curr Opin Biotechnol, 1996, 7: 505-511.
    [153] Kaderbhai N, Karim A, Hankey W, et al. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli[J]. Biotechnol Appl Biochem, 1997, 25( Pt 1): 53-61.
    [154] Aristidou AA, Yu P, San K-Y. Effects of glycine supplement on protein production and release in recombinant Escherichia coli[J]. Biotechnol Lett, 1993, 15(4): 331-336.
    [155] Hammes W, Schleifer KH, Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan[J]. J Bacteriol, 1973, 116(2): 1029-1053.
    [156] Smith RJ. Calcium and bacteria[J]. Adv Microb Physiol, 1995, 37: 83-133.
    [157] Dominguez DC. Calcium signalling in bacteria[J]. Mol Microbiol, 2004, 54(2): 291-297.
    [158] Norris V, Grant S, Freestone P, et al. Calcium signalling in bacteria[J]. J Bacteriol, 1996, 178(13): 3677-3682.
    [159] Norris V, Chen M, Goldberg M, et al. Calcium in bacteria: a solution to which problem? [J]. Mol Microbiol, 1991, 5(4): 775-778.
    [160] Hartmann R, Bock-Hennig SB, Schwarz U. Murein hydrolases in the envelope of Escherichia coli. Properties in situ and solubilization from the envelope[J]. Eur J Biochem/FEBS, 1974, 41(1): 203-208.
    [161] Leduc M, Kasra R, van Heijenoort J. Induction and control of the autolytic system of Escherichia coli[J]. J Bacteriol, 1982, 152(1): 26-34.
    [162] Leduc M, van Heijenoort J. Autolysis of Escherichia coli[J]. J Bacteriol, 1980, 142(1): 52-59.
    [163] Stavn A, Granum PE. Purification and physiocochemical properties of an extracellular cycloamylose (cyclodextrin) glucanotransferase from Bacillus macerans[J]. Carbohydr Res, 1979, 75: 243-250.
    [164] Kobayashi S, Kainuma K, Suzuki S. Purification and some properties of Bacillus macerans cycloamylose (cyclodextrin) glucanotransferase[J]. Carbohydr Res, 1978, 61: 229-238.
    [165] Larsen KL, Duedahl-Olesen L, Christensen HJS, et al. Purification and characterisation of cyclodextrin glycosyltransferase from Paenibacillus sp. F8[J]. Carbohydr Res, 1998, 310: 211-219.
    [166] Wu J, Patel MA, Sundaram AK, et al. Functional and biochemical characterization of a recombinant Arabidopsis thaliana 3-deoxy-D-manno-octulosonate 8-phosphate synthase[J]. Biochem J, 2004, 381: 185-193.
    [167] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1): 248-254.
    [168] Dauter Z, Dauter M, Brzozowski AM, et al. X-ray structure of Novamyl, the five-domain "maltogenic" alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7A resolution[J]. Biochemistry, 1999, 38(26): 8385-8392.
    [169] Siana HK, Saidb M, Hassanb O, et al. Purification and characterization of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. G1[J]. Process Biochem, 2005, 40: 1101-1111.
    [170] Mori S, Hirose S, Oya T, et al. Purification and properties of cyclodextrin glucanotransferase from Brevibacterium sp. no. 9605[J]. Biosci Biotechnol Biochem, 1994, 58: 1968-1972.
    [171] Yim DG, Sato HH, Park YH, et al. Production of cyclodextrin from starch by cyclodextrin glycosyltransferase from Bacillus firmus and characterization of purified enzyme[J]. J Ind Microbiol Biotechnol, 1997, 18: 402-405.
    [172] Fujita Y, Tsubouchi H, Inagi Y, et al. Purification and properties of cyclodextrin glycosyltransferase from Bacillus sp. AL-6[J]. J Ferment Bioeng, 1990, 70: 150-154.
    [173] Pedersen S, Dijkhuizen L, Dijkstra BW, et al. A better enzyme for cyclodextrins[J]. Chemtech, 1995, 25: 19-25.
    [174] Chang HY, Irwin PM, Nikolov ZL. Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase[J]. J Biotechnol, 1998, 65: 191-202.
    [175] Martins RF, Hatti-Kaul R. A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterisation[J]. Enzyme Microb Tech, 2002, 30: 116-124.
    [176] Schmid G. Cyclodextrin glycosyltransferase production: Yield enhancement by overexpression of cloned genes[J]. Tibtech, 1989, 7: 244-248.
    [177] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling[J]. Bioinformatics(Oxford, England), 2006, 22(2): 195-201.
    [178] Kopp J, Schwede T. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models[J]. Nucleic Acids Res, 2004, 32(Database issue): D230-234.
    [179] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An automated protein homology-modeling server[J]. Nucleic Acids Res, 2003, 31(13): 3381-3385.
    [180] Uitdehaag JC, Mosi R, Kalk KH, et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in theα-amylase family[J]. Nature Struct Biol, 1999, 6 432-436.
    [181] Makela M, Korpela T, Laakso S. Colorimetric determination ofβ-cyclodextrin: two assay modifications based on molecular complexation of phenolphtalein[J]. J Biochem Bioph Meth, 1987, 14(2): 85-92.
    [182] Kato T, Horikoshi K. Colorimetric determination ofγ-cyclodextrin[J]. Anal Chem, 1984, 56: 1738-1740.
    [183] Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalWand ClustalX[M]. Current Protocols in Bioinformatics, 2002, Chapter 2: Unit 2 3
    [184] Andersen C, Nielsen BR, Dijkhuizen L, et al. Cyclomaltodextrin glucanotransferase variants[P]. US Pat, 6271010. 2001.
    [185] Bovetto LJ, Backer DP, Villette JR, et al. Cyclomaltodextrin glucanotransferase from Bacillus circulans E-192.1. Purification and characterization of the enzyme[J]. Biotechnol Appl Biochem, 1992, 15: 48-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700