用户名: 密码: 验证码:
生物分子荷质传递机理及其调控的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子转移、空穴转移和质子转移是生命科学的基本问题。许多生命过程都涉及到质子和电子的传递问题,例如,光合作用、呼吸作用、生物体内信号传导、酶促反应和基因复制及突变等等。那么电子在生物体内怎样有效传递,电子运动和质子运动的关系怎样,生物金属离子对二者的运动怎样调制,蛋白质能否导电,怎样有效参与电子传递?这一系列问题都是目前人们十分关注的生命问题,也是目前生命科学所遇到的难题。本文围绕这些问题,开展了一系列有意义的工作,取得了一些有价值的研究成果。主要成果和创新简述如下:
     (1)水合金属离子调控酰胺单元间的荷质传递:本文第一个突出贡献就是在氧化破坏的酰胺单元间可以通过七元环质子耦合电子转移机制有效地发生质子和电子交换,电子在两个氧原子间发生转移,同时一个质子在两个氮原子之间以相同方向发生转移。众所周知,酰胺单元是蛋白质肽链骨架的一个重要结构单元,同时也广泛存在于其他生物分子中,如天冬酰胺、谷氨酰胺、鸟嘌呤、胸腺嘧啶/尿嘧啶以及黄素等。我们进一步的研究发现这种有效的质子和电子转移反应机制也可以发生在这些生物分子间。更有趣的是金属离子及其水合物与其双氧位结合,能够有效地调节电子转移通道,从而导致不同的反应机制,使反应机制在单通道氢原子转移←→质子耦合双通道电子转移←→质子耦合单通道电子转移中变化,最终控制反应速率。这种调控性主要源自于不同结合能力的水合金属离子导致过渡态两个氧原子的结合强度的改变。总的来说,结合能力较小的水合金属离子支持质子耦合单通道电子转移,结合能力较大的支持氢原子转移,结合能力中等的支持质子耦合双通道电子转移。这是一个普遍的规律,任何一个水合金属离子与底物结合都会使反应机制坐落在这三个不同的区域。我们研究发现底物与金属离子的结合能、反应能垒、自旋密度分布、O...O的距离和水合金属离子的性质之间存在良好的相关性,这种相关性可以很好地解释酰胺单元间的质子/电子转移机制的变化。也就是说电子转移途径与水合物离子的结合能存在着高度的相关性。这一发现不仅为进一步理解生命过程中金属离子调节电子转移机制提供理论依据,而且还为设计纳米分子开关提供理论基础。
     (2)金属离子调控酰亚胺单元的自由基类型(σ或π)和电子通道(σ或π)对酰胺单元间的质子/电子交换反应另一个重大发现就是水合金属离子可以通过改变含酰亚胺单元分子的自由基的类型(σ-或π-自由基),使电子转移通道发生变化,从而调控反应机制。酰亚胺单元存在于许多生物化学物种内,例如,尿嘧啶、苯并尿嘧啶、萘并尿嘧啶、黄嘌呤、氧化黄素和胸腺嘧啶等等。这些生物化学物种可能会在分子探针和纳米电子装置上得到广泛应用;它的自由基是一些辅因子氧化还原活性中心的重要组成部分,是生物酶反应、DNA/蛋白质损伤过程中电子转移的中介。
     尿嘧啶是酰亚胺单元一种有代表性的物种,为此,我们利用密度泛函方法考察了尿嘧啶和N_3-脱氢尿嘧啶自由基耦合结构(UU)的质子/电子转移机理(UU是近平面顺式的结构),并且考察了水合金属离子对其的调控作用。UU是σ-自由基,没有其它影响时,此体系的PT/ET反应是通过七元环质子耦合σ-电子σ-通道转移机理(PC~σE~σT),反应能垒是3.8kcal/mol,质子是由N_3到N_(3')转移,电子是由O_4到O_(4')转移。水合金属离子结合到O_2/O_(2')或O_4/O_4位点会改变UU自由基的类型(σ-或π-自由基)和电子转移通道(σ-或π-通道),从而显著影响PT/ET协同反应,致使反应机理由PC~σE~σT到PC~πE~σT,再到PC~πE~πT变化。这种改变来自于结合水合金属离子导致UU体系的单占有轨道(SOMO)和最高双占居轨道(HOMO)能级发生交错,是三个因素协同变化的结果:反应物的非对称结构、电子云重新分配和金属离子对反应结构框架的固定作用。水合金属离子结合到O_2/O_(2')位点能够轻微促进UU PT/ET反应,并且没有改变自由基类型和PC~σE~σT机理,反应能垒在3.3kcal/mol到4.7kcal/mol之间。然而,水合金属离子结合在O_4/O_(4')位点会抑制反应,使体系自由基类型变为π-型,反应机理变为PC~πE~σT,相应的反应能垒升高(8.5~17.8kcal/mol)。在这种情况下,由于电子转移通道的变化,我们发现两种PC~πE~σT机理:依靠结合金属离子的结合能力,一种电子转移通道是由O_2到O_(2'),反应能垒较低(8.5~12.2kcal/mol);另一种电子转移通道是由O_4到O_(4'),反应能垒高(16.5~17.8kcal/mol)。两个水合金属离子同时结合到O_2/O_(2')和O_4/O_(4')部位也产生类似的抑制影响,反应能垒在8.3~15.4kcal/mol范围内变化。这儿,UU部分被转变为一个π-自由基,依靠水合离子的路易斯酸性不同,从而引起体系的PT/ET反应发生PC~πE~σT或PC~πE~πT机理。一般来说,弱的路易斯酸水合金属离子支持PC~πE~σT机理,电子转移经过O_4到O_(4');强的路易斯酸水合离子支持PC~πE~πT机理,电子通过π-通道发生转移(一个三电子π-键)。水合金属离子的结合能、反应能垒、与反应物的结合位点、水合金属离子的性质和数目存在良好的相关性,这些相关性可以用来解释UU PT/ET反应机理的变化。这一发现为更好地理解PT/ET协同反应机理提供了有价值的信息和为设计酰亚胺单元为基础的分子器件提供了方法,如,设计分子开关和分子导线等。
     (3)单或多质子耦合里德堡电子转移机理众所周知,-NH_2、-CH_2NH_2和-CH_2NHCH_2-是生物体内非常重要的片断,它们在一系列的生命过程中担任着非常重要的角色。在多数情况下,这些碱性片断很容易被质子化成为正电荷中心:-CH_2NH_3~+和-CH_2NH_2~+CH_2-。在生物电子传递过程中,这些质子化的胺单元一个基本的性质就是能够利用它们的里德堡轨道有效地捕获过剩电子。然而,这些电子富有的里德堡自由基片断是不稳定的并且容易向其它基团释放一个氢原子,从而引起蛋白质内的一系列质子/电子转移反应,这一过程与里德堡电子转移相关。研究这些里德堡片断参与电子/质子传递反应可以为进一步理解蛋白质内的电子转移提供有价值的信息。我们利用从头算法研究发现NH_4与NH_3之间发生单质子耦合里德堡电子转移反应,电子转移是通过环绕体系周围的里德堡轨道传递,同时质子在两个氮原子之间以相同方向的发生转移。CH_3NH_3与CH_3NH_2也通过类似机理发生反应。同时我们也考察了较大的胺分子束,NH_4(NH_3)_n(n=2,3)和CH_3NH_3·(NH_3)_n·NH_2CH_3(n=1,2,3),质子/电子沿着胺分子链传递是分步进行的,每一步都发生类似的单质子耦合里德堡电子转移机理,反应能垒都很小(小于5.0kcal/mol)。当CH_3NH_3和NH_2CH_3被水分子链连接,与单纯的胺分子束相比,CH_3NH_3和NH_2CH_3之间的质子/电子转移反应能垒明显升高。这可能是因为在此过程中,单电子的存在形式发生了变化,由里德堡态转化为溶剂化态,这种转化需要消耗一定的能量。更有趣的是溶剂化电子的运动促进两个或者三个质子同时沿着相同方向运动。这种反应机理可以被描述为多质子耦合里德堡电子转移。这一发现也证明了溶剂化电子的电荷传导性。
     (4)蛋白质内酪氨酸与色氨酸之间可能发生的电子转移机制理解酪氨酸与色氨酸之间分子内或分子间电子转移有非常重要的物理、化学和生物意义。因此,我们运用密度泛函和从头算法分子动力学模拟系统研究了酪氨酸到色氨酸之间所有可能的电子传递机理。研究表明,当这两个氨基酸芳香侧链相互靠近时,侧链发生相互碰撞,他们之间发生直接的质子耦合电子转移反应。在Trp~(·+)Gly_nTyrH(n=0,1,2,…)系统中,当酪氨酸和色氨酸的芳香侧链相互远离,并且有一个生物碱(以甲胺为模型)与苯酚以氢键相连接时,这样整个系统发生双向质子耦合长程电子跳跃机理反应。在这个反应中,酪氨酸是电子的给体,色氨酸是电子的受体,酪氨酸是质子的给体,甲胺是质子的受体,酪氨酸的一个电子发生跳跃传给远距离的色氨酸阳离子,同时苯酚的羟基释放一个质子,传给距离较近的甲胺,在这个过程中质子和电子传递的方向不同。更有趣的是,在Trp~(·+)Gly_nTyrH-A(n=0,1,2,…)系统中,甲胺作为质子受体协助从酪氨酸到色氨酸阳离子发生电子转移需要越过的反应能垒比较低(小于5.0 kcal/mol),并且反应能垒受中间甘氨酸的数目影响很小。这一结果能够很好地解释生物酶中酪氨酸与色氨酸之间的长程电子转移,为我们进一步理解蛋白质长程电子转移提供有价值的信息。
     (5)蛋白质中电子空穴迁移的中继站本论文的另一个重大贡献就是对蛋白质电子空穴有效传递的解释,我们提出了在蛋白质中凡是能够产生氧化还原势较低的区域都可能发挥空穴转移的中继站的功能,促进蛋白质内电子转移,这些区域包括一些弱相互作用结构和构成蛋白质的主要形式α-螺旋的尾部。由于以蛋白质为基础的电子转移反应在一系列的生命过程中扮演着十分重要的角色,因此电子空穴沿着肽链骨架的迁移已经是当今科研工作者最感兴趣的课题之一。最近,更多的工作表明一些特殊的弱相互作用可以担任化学和生物氧化还原反应的电子转移通道,这种弱相互作用包括孤电子对与π体系、π体系与π体系、阳离子与π体系、阴离子与π体系、氢键和两中心三电子键相互作用。
     对此,我们认为蛋白质导电与这些弱相互作用相关,这种可能性来源于在蛋白质空穴传递过程中产生的一系列中继站,其中一类就是形成三电子键。研究表明O∴O键(2.16~2.27(?))不仅能够产生于同一主链的两个相邻的肽键单元之间,也可以产生于两个靠近的不同主链上的肽键单元间。这种发现能够很好地解释电子空穴在蛋白质中从一个肽键到下一个肽键的传递过程。显然,这种O∴O键的稳定性强烈依赖于多肽的组成,当有体积大的氨基酸残基侧链出现在多肽时,这种三电子键的稳定性会降低。另外,由于多肽的成分不同,形成O∴O键又和形成其它种类的三电子键产生竞争。当有硫元素出现在多肽的侧链时,相对于形成O∴O键,热力学上更支持或有利于形成O∴S键。同样,当芳香基团出现在多肽侧链时,又容易在芳香基团和相邻的肽键单元间形成O∴π键。因此,我们推测,在蛋白质电子空穴沿着肽键骨架迁移过程中,这种三电子键能够被连续形成并且作为空穴转移的中继站来协助电子空穴传输。
     另外,构成蛋白质的主要形式α-螺旋的尾部区域也很容易形成电子空穴传递的中继站。我们对此做了系统的分析,发现随着α-螺旋的增长,它们的尾部区域的电离能越低,越容易失掉一个电子被氧化形成电子空穴,当α-螺旋的蛋白质残基大于8个时,它们尾部的电离能小于色氨酸侧链的电离能。不仅如此,我们也考虑真正的蛋白质环境下在尾部出现螺旋帽的情况,研究表明不同的螺旋帽会不同程度地影响α-螺旋尾部的电离势,但是总的来说,α-螺旋的电离势都会比蛋白质的其它区域偏低,容易产生电子空穴。而且,在蛋白质电子传递过程中,短时间内螺旋帽的离开螺旋尾部也为电子空穴的形成创造了机会,螺旋帽的恢复又促使着电子空穴的传出,最终导致蛋白质电子空穴有效传递。
Electron transfer,hole transfer and proton transfer are of the fundamental question in life science.Electron transfer and proton transfer take place in a range of biological processes,including photosynthesis,respiration,and signal transduction of biology,enzymatic reactions,gene replication and mutation and so on.Then how are electrons transferred effectively in these biological processes? What is the relationship between electron transfer and proton transfer? How do the biological metal ions regulate the movement of electron and proton? If the peptide chain is a good conductor of electron and how does the amino acid residues take part in the electron transfer in protein? All these questions are of fundamental importance to the unraveling of key biological processes and also are the main difficulties of life science encountered today. We carried out a series of significative work and obtained many valuable results on these issues,which may help us to understand the biological movement.The primary innovations can be described as follows.
     (1) The hydrated metal ions regulate the electron/proton transport in acylamide units.The first outstanding contribution of this paper is that the proton transfer(PT)/electron transfer(ET) in oxidated acylamide units can effectively occur via a seven-center cyclic proton-coupled electron transfer(PCET) mechanism with a N-→N PT and an O→O ET.The acylamide unit is found in many biological species, such as peptide bonds,asparagine,glutamine,guanine,thymine/uracil and Flavin etc.. Our further investigations indicate that the PT/ET reactions between these biological molecules may also occur via this kind of PCET.More interestingly,when different hydrated metal ions are bound to the two oxygen sites of FF,the PT/ET mechanism may significantly change.In addition to their inhibition of PT/ET rate,the hydrated metal ions can effectively regulate the FF PT/ET cooperative mechanism to produce a single pathway Hydrogen Atom Transfer(HAT) or a flexible Proton Coupled Electron Transfer(PCET) mechanism by changing the ET channel.The regulation essentially originates from the change in the O...O bond strength in the transition state,subject to the binding ability of the hydrated metal ions,In general,the high valent metal ions and those with large binding energies can promote HAT,and the low valent metal ions and those with small binding energies favor PCET.Hydration may reduce the Lewis acidity of cations,and thus favor PCET.Good correlations among the binding energies, barrier heights,spin density distributions,O...O contacts and hydrated metal ion properties have been found,which can be used to interpret the transition in the PT/ET mechanism.That is,there is a good correlation between the electron transfer pathway and the ability of hydrated metal ion.These findings regarding the modulation of the PT/ET pathway via hydrated metal ions may provide useful information for a greater understanding of PT/ET cooperative mechanisms,and a possible method for switching conductance in nano-electronic devices.
     (2) The hydrated metal ions regulate the radical type of imide units(σorπ) and electron channels(σorπ).Another outstanding finding on the proton/electron exchange reactions between the acylamide units is that the hydrated metal ions can regulate the radical type of the imide units in some biological molecules and change the type of electron channels among them,which controls the PT/ET mechanisms and reaction rate.Many biological and chemical molecules contain the imide unit,such as, uracil,benzo-fused uracil,naphtho-fused uracil,xanthine,thymine,and so on.These biological and chemical species may find application in molecular probes and nano-electronics.Its radicals are prominent redox-active cofactors and ET intermediates in enzyme reactions and in DNA/protein lesions.
     The mechanism of proton transfer(PT)/electron transfer(ET) in imide units,and its regulation by hydrated metal ions,was explored theoretically using density functional theory in a representative model(a nearly planar and cisoid complex between uracil and its N_3-dehydrogenated radical,UU).In UU(σ-radical),PT/ET normally occurs via a seven-center,cyclic proton-coupledσ-electronσ-channel transfer (PC~σE~σT) mechanism(3.8 kcal/mol barrier height) with a N_3→N_3 PT and an O_4→O_4 ET.Binding of hydrated metal ions to the dioxygen sites(O_2/O_2 or/and O_4/O_4) of UU may significantly affect its PT/ET cooperative reactivity by changing the radical type (σ-radical(?)π-radical) and ET channel(σ-channel(?)π-channel),leading to different mechanisms,ranging from PC~σE~σT,to proton-coupledπ-electronσ-channel transfer (PC~πE~σT) to proton-coupledπ-electronπ-channel transfer(PC~πE~πT).This change originates from an alteration of the ordering of the UU moiety SOMO/HOMO,induced by binding of the hydrated metal ions.It is a consequence of three associated factors:the asymmetric reactant structure,electron cloud redistribution,and fixing role of metal ions to structural backbone.Binding of a hydrated metal ion to the O_2/O_2,site of UU may slightly promote the UU PT/ET reaction without changing its radical type and PC~σE~σT mechanism(3.3-4.7 kcal/mol barrier heights).However, binding of a hydrated metal ion to the O_4/O_4,site may inhibit the reaction,with conversion of the UU moiety to aπ-radical,and a change of the PT/ET mechanism to PC~πE~σT,as characterized by their barrier heights(8,5~17.8 kcal/mol).Two PC~πE~σT mechanisms were observed in this situation,with different ET channels:the favorable O_2→O_2,mechanism,with 8.5-12.2 kcal/mol barrier heights vs.O_4→O_4.with 16.5-17.8 kcal/mol barrier heights,depending on the acidity of the binding metal ions. Synchronous binding of two hydrated metal ions to two dioxygen sites(O_2/O_2 and O_4/O_4.) of UU also yields similar inhibitive effects on the reaction(8.3-15.4 kcal/mol barrier heights).Here,the UU moiety is convened to aπ-radical,and causes the PT/ET reaction to occur via either a PC~πE~σT or PC~πE~πT mechanism,depending also on the Lewis acidity of the hydrated ions.In general,the weakly Lewis acidic hydrated metal ions favor the PC~πE~σT mechanism via the O_4→O_4,ET channel.The strongly acidic ones favor the PC~πE~πT mechanism,occurring via a three-electronπ-bond ET channel,from a doubly occupiedπ-orbital of the U moiety to the singly occupiedπ-orbital of the Ur moiety,in the same direction.Good correlations among the binding energies,barrier heights,the binding sites of substrate,and the properties and number of hydrated metal ions,were found,which can be used to interpret the transitions in the PT/ET mechanisms.The findings regarding the modulation of the PT/ET pathway via hydrated metal ions may provide valuable information for a greater understanding of PT/ET cooperative mechanisms,and an alternative way for designing imide-based molecular devices,such as molecular switches and molecular wires.
     (3) Single-/muli-proton coupled Rydberg state electron transfer mechanisms. It is well-known that -NH_2,-CH_2NH_2,and -CH_2NHCH_2- are the important fragments in biological bodies and play important roles in a range of biological progresses. In most cases,these basic fragments are inclined to be protonated and produce positive sites,-CH_2NH_3~+,and -CH_2NH_2~+CH_2-.A general property of these protonated amine fragments is their ability to efficiently trap excess electrons to form hypervalent radical(-CH_2NH_3~·,and -CH_2NH_2~·CH_2-) with their diffuse Rydberg orbitals during biological electron transfer progresses.However,these electron-rich Rydberg radical species are unstable and are ready to release an H-atom to other fragments,involving a series of proton/electron transfer reactions in proteins.Therefore,the study of these Rydberg species taking part in proton/electron transfer may provide useful information to understand electron transfer in proteins.Our ab initio calculations indicate that the proton/electron transfer from NH_4 to NH_3 via a single-proton-coupled Rydberg-state electron transfer mechanism with an Rydberg-state electron transfer pathway around the outside of the framework of system and a N-H~+→N proton migrating channel.A similar mechanism is found for the reactions between CH_3NH_3 and CH_3NH_2 for their two coupled modes:cis-CH_3NH_3NH_2CH_3 and trans-CH_3NH_3NH_2 CH_3.Besides,in the big amine clusters,NH_4(NH_3)_n(n=2,3) and CH_3NH_3·(NH_3)_n·NH_2CH_3(n=1,2,3),the proton/electron transfer along the amine wires is stepwise and every step takes place via a similar single-proton-coupled Rydberg-state electron transfer mechanism with low energy barrier(<5.0 kcal/mol). When a water chain(H_2O)_n,(n=1,2,3) lies between CH_3NH_3 and NH_2CH_3,the energy barriers(8.5~15.0 kcal/mol) of proton/electron transfer between CH_3NH_3 and NH_2CH_3 are raised significantly as compared to these of the pure amine wires(<5.0 kcal/mol).We attribute this fact to the transformation from a Rydberg orbital to a solvated orbital for the singly occupied molecular orbital of these systems,which consumes more energy.More interestingly,the movement of the solvated electron promotes two or three protons synchronously moving along the water wire at the same direction.This process can be described in terms of a multi-proton-coupled Rydberg-state electron transfer mechanism with two or three protons synchronously moving along the water wire and at the same time a Rydberg-state electron transfer- ring through a solvated molecular orbital in the middle of clusters.This finding also validates the charge conductibility of solvated electron.
     (4) The possible mechanisms for the electron transfer from Tyr to Trp in proteins.Understanding the intramolecular or intermolecular electron transfer between tyrosine and oxidized tryptophan residues has important physical,chemical, and biological implications.Therefore,we have systematically explored all the possible electron transfer mechanisms between them in proteins using density functional theory(DFT) and ab initio molecular dynamics(AIMD) methods.When the two aromatic side-chains of them are approximal,the aromatic tings collide with each other and a straightforward proton-coupled electron transfer reaction occurs between them.When the two aromatic side-chains of them are apart residing in the same main-chain of polypeptide cations(Trp~(·+)Gly_nTyrH,n=0,1,2,…) and an alkaloid(a methylamine) presents near the phenol moiety as a proton acceptor,the proton/electron transfer reactions of these systems take place via a didirectional proton -coupled electron hopping mechanism(dPCEH).For these reactions,the electron donor is tyrosine(TyrH),the electron acceptor is tryptophan cation(Trp~(·+)),the proton donor is TyrH,and the proton acceptor is methylamine(A).An electron of tyrosine hops over a long distance to tryptophan cation and at the same time the hydroxyl of phenol releases a proton to N-atom of methylamine over a short distance in the reverse direction.Not only the energy barriers for the dPCEH reactions in the Trp~(·+)Gly_nTyrH-A(n=0,1,2,…) systems is low but also the change of energy barriers with the increasing number of the center glycine is small,which may provide some significant information for understanding long-range electron transfer in proteins.
     (5) Relay station of electron hole migration in proteins Another outstanding finding of this paper is the interpretation of the electron hole migration in proteins.We have proposed that any region with a low reduction potential in proteins can act as the relay station of electron hole migration to promote electron transfer,which includes a series of weak interactions and tails ofα-helices.Electron hole migration along peptide backbone of proteins has become a general topic of substantial current interest, because the protein-based electron-transfer(ET) reactions play a fundamental role in a variety of biological processes.Recently,more efforts have suggested that some weakly special interactions may serve as electron transfer channels for the redox reactions in chemical and biological processes.There are many such kinds of weak interactions in proteins which includes noncovalent and weak-covalent interactions,such as lone pair…π(1p…π) interactions,π…πinteractions,cation…πinteractions,anion…πinteractions,hydrogen bonds(H-bonds),and two-center,three-electron(2c-3e) bonds
     So,we conjecture that the conduction of proteins has relation with these weak interactions and the possibility originates from the formations of a series of relay stations during the electron hole migration processes in proteins.One of relay stations is the three-electron bond.Our calculations found that the O∴O three-electron(3e) bonds(2.16~2.27(?)) can be formed not only between two neighboring peptide units in a main chain but also between two adjacent peptide units in two different main chains in proteins.This finding may address electron hole migration from one peptide unit to the next in proteins.Evidently,stability of the O∴O 3e bonded species is strongly dependent on the component of the oligopeptides and is reduced owing to the steric hindrance of the side chains when the big chains present in oligopeptides.Besides, formation of the O∴O 3e bonds competes with the formation of the other forms of three-electron bonds depending on the component of the polypeptides.Formation of the O∴S 3e bond is thermodynamically more favorable than that of the O∴O 3e bond for the oligopeptides containing sulfur atom in their side chains.Similarly,formation of the O∴π3e bond between aromatic ring of the side chain and the neighboring peptide unit is more stable than that of the O∴O 3e bond when the aromatic amino acids present in the oligopeptides.We infer that a series of three-electron bonds may be formed during the electron hole migration along the peptide backbone in proteins and assist electron hole transport as relay stations,supporting the peptide chain as a conduction wire.
     Besides,tails ofα-helices(α-helices are the main formations in most proteins) can easily form a new kind of relay station of electron hole migration in proteins.Our systemic analyses indicate that the longerα-helix is,the lower the reduction potential is.When the number of amino acid residues constitutingα-helix is more than eight, the ionization energy of the tail ofα-helix is lower than that of tryptophan residues.In this ease,the tail ofα-helix easily loses an electron to form an electron hole and facilitate the electron hole migration in proteins.Further more,we have also considered the effect of helical capping on the formation of electron hole in the tails ofα-helices. Our investigations indicate that the different helical cappings may increase the ionization energies of the tails ofα-helices in different degree.However,the ionization energies of the tails ofα-helices are lower than that of other fragment in proteins.Further more,the helical cappings may move away from the tails ofα-helices for a short time during proteins electron transfer processes,which can provide a chance for the formation of electron hole in these parts.The return of cappings to the tails can promote the transport of electron hole in proteins.
引文
[1]Long,Y.;Abu-Irhayem,E.;Kraatz,H.Peptide Electron Transfer:More Questions than Answers[J].Chem.Eur.J.2005,11,5186-5194.
    [2]Isied,S.S.;Ogawa,M.Y.;Wishart,J.F.Peptide-mediated intramolecular electron transfer:long-range distance dependence[J].Chem.Rev.1992,92,381-394.
    [3]Cordes,M.;K(o丨¨)ttgen,A.;Jasper,C.;Jacques,O.;Boudebous,H.;Giese,B.Influence of Amino Acid Side Chains on Long-Distance Electron Transfer in Peptides:Electron Hopping via "Stepping Stones"[J].Angew.Chem.Int.Ed.2008,47,3461-3463.
    [4]Stubbe,J.;Nocera,D.G.;Yee,C.S.;Chang,C.Y.Radical Initiation in the Class ⅠRibonucleotide Reductase:Long-Range Proton-Coupled Electron Transfer?[J].Chem.Rev.2003,103,2167-2202.
    [5](a) Aubert,C.;Vos,M.H.;Mathis,P.;Eker,A.P.M.;Brettel,K.Intraprotein radical transfer during photoactivation of DNA photolyase[J].Nature 2000,405,586-590.
    (b) Page,C.C.;Moser,C.C.;Chen,X.X.;Dutton,P.L.Natural engineering principles of electron tunnelling in biological oxidation reduction[J].Nature 1999,402,47-52.
    [6]Utschig,L.M.;Thurnauer,M.C.Metal Ion Modulated Electron Transfer in Photosynthetic Proteins[J].Acc.Chem.Res.2004,37,439-447.
    [7]Fukuzumi,S.;Patz,M.;Suenobu,T.;Kuwahara,Y.;Itoh,S.ESR Spectra of Superoxide Anion-Scandium Complexes Detectable in Fluid Solution[J].J.Am.Chem.Soc.1999,121,1605-1606.
    [8]Rarnachandran,G N.;Sasisekharan,V.Conformation of polypeptides and proteins [J].Adv.Prot.Chem.1968,23,283-437.
    [9]Weiss,M.S.;Jabs,A.;Hilgenfeld,R.Peptide bonds revisited[J].Nat.Struct.Biol.1998,5,676-676.
    [10]Jabs,A.;Weiss,M.S.;Hilgenfeld,R.Non-proline cis peptide bonds in protein[J].J.Mol.Biol.1999,286,291-304.
    [11]Herzberg,O.;Moult,J.Analysis of the steric strain in the polypeptide backbone of protein molecules[J].Proteins:Struct.Funct.Genet.1991,11,223-229.
    [12]Stoddard,B.L.;Pietrokovski,S.Breaking up is hard to do[J].Nat.Struct.Biol.1998,5,3-5.
    [13]Lee,J.M.;Niles,J.C.;Wishnok,J.S.;Tannenbaum,S.R.Peroxynitrite Reacts with 8-Nitropurines to Yield 8-Oxopurines[J].Chem.Res.Toxicol.2002,15,7-14.
    [14]Hulme,A.T.;Johnston,A.;Florence,A.J.;Fernandes,P.;Shankland,K.;Bedford,C.T.;Welch,G.W.A.;Sadiq,G.;Haynes,D.A.;Motherwell,W.D.S.;Tocher,D.A.;Price,S.L.Search for a Predicted Hydrogen Bonding Motif-A Multidisciplinary Investigation into the Polymorphism of 3-Azabicyclo[3.3.1]nonane-2,4-dione[J].J.Am.Chem.Soc.2007,129,3649-3657.
    [15]Chernick,E.T.;Ahrens,M.J.;Scheidt,K.A.;Wasielewski,M.R.Copper -Promoted N-Arylations of Cyclic Imides within Six-Membered Rings:A Facile Route to Arylene-Based Organic Materials[J].J.Org.Chem.2005,70,1486-1489.
    [16](a) Husain,M.;Davidson,V.L.An inducible periplasmic blue copper protein from Paracoccus denitrificans.Purification,properties,and physiological role[J].J.Biol.Chem.1985,260,14626-14629.
    (b) McLendon,G.Long-distance electron transfer in proteins and model systems[J].Acc.Chem.Res.1988,21,160-167.
    (c)Gorren,A.C.;Moenne-Loccoz,P.;Backes,G.;de Vries,S.;Sanders-Loehr,J.;Duine,J.A.Evidence for a methylammonium-binding site on methylamine dehydrogenase of Thiobacillus versutus[J].Biochemistry 1995,34,12926-12931.
    (d)Nocek,J.M.;Zhou,J.S.;DeForest,S.;Priyadarshy,S.;Beratan,D.N.;Onuchic,J.N.;Hoffman,B.M.Theory and Practice of Electron Transfer within Protein -Protein Complexes:Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase[J].Chem.Rev.1996,96,2459-2489.
    (e) Labesse,G.;Ferrari,D.;Chen,Z.-W.;Rossi,G.-L.;Kuusk,V.;Mclntire,W.S.;Mathews,F.S.Crystallographic and Spectroscopic Studies of Native,Aminoquinol,and Monovalent Cation-bound Forms of Methylamine Dehydrogenase from Methylobacterium extorquens AM1[J].J.Biol.Chem.1998,273,25703-25712.
    (f) Niki,K.;Hardy,W.R.;Hill,M.G.;Li,H.;Sprinkle,J.R.;Margoliash,E.;Fujita,K.; Tanimura,R.;Nakamura,N.;Ohno,H.;Richards,J.H.;Gray,H.B.Coupling to Lysine-13 Promotes Electron Tunneling through Carboxylate-Terminated Al-kanethiol Self-Assembled Monolayers to Cytochrome c[J].J.Phys.Chem.B.2003,107,9947-9949.
    [17](a) Zhen,Y.-J.;Hoganson,C.;Babcock,G.T.;Ferguson-Miller,S.Definition of the Interaction Domain for Cytochrome c on Cytochrome c Oxidase[J].J.Biol.Chem.1999,274,38032-38041.
    (b) Fl(o丨¨)ck,D.;Helms,V.Protein-protein docking of electron transfer complexes:cytochrome c oxidase and cytochrome c[J].Proreins 2002,47,75-85.
    (c) Leesch,V.W.;Bujons,J.;Mauk,A.G.;Hoffman,B.M.Cytochrome c Peroxidase-Cytochrome c Complex:Locating the Second Binding Domain on Cytochrome c Peroxidase with Site-Directed Mutagenesis[J].Biochemistry 2000,39,10132-10139.
    [18]Sawicka,A.;Skurski,P.;Hudgins,R.R.;Simons,J.Model Calculations Relevant to Disulfide Bond Cleavage via Electron Capture Influenced by Positively Charged Groups[J].J.Phys.Chem.B 2003,107,13505-13511.
    [19]Chen,Z.;Koh,M.;Van Driessche,G.V.;Beeumen,J.J.V.;Bartsch,R.G.;Meyer,T.E.;Cusanovich,M.A.;Mathews,F.S.The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium[J].Science 1994,266,430-432.
    [20]Weinstein,M.;Alfassi,Z.B.;DeFelippis,M.R.;Klapper,M.H.;Faraggi,M.Long range electron transfer between tyrosine and tryptophan in hen egg-white lysozyme[J].Biochim.Biophys.Acta 1991,1076,173-178.
    [21]Aubert,C.;Mathis,P.;Eker,A.P.M.;Brettel,K.Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans[J].Proc.Natl.Acad Sci.USA 1999,96,5423-5427.
    [22]Mukherjee,T.;Joshi,R.Effect of solvent viscosity,polarity and pH on the charge transfer between tryptophan radical and tyrosine in bovine serum albumin:a pulse radiolysis study[J].Biophys.Chem.2003,103,89-98.
    [23]Bobrowski,K.;Holcman,J.;Poznanski,J.;Wierzchowski,K.L.Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins.7.Trp·→TyrO·radical transformation in hen egg-white lysozyme Effects of pH,temperature,Trp62 oxidation and inhibitor binding[J].Biophys.Chem.1997,63,153-166.
    [24]Stuart-Audette,M.;Blouquit,Y.;Faraggi,M.;Sicard-Roselli,C.;Houee-Leven,C.;Jolles,P.Re-evaluation of intramolecular long-range electron transfer between tyrosine and tryptophan in lysozymes[J].Eur.J.Biochem.2003,270,3565-3571.
    [25](a) Bollinger,J.M.;Tong,W.H.;Ravi,N.;Huynh,B.H.;Edmondson,D.E.;Stubbe,J.Mechanism of Assembly of the Tyrosyl Radical-Diiron(Ⅲ) Cofactorof E.coli Ribonucleotide Reductase.3.Kinetics of the Limiting Fe~(2+) Reaction by Optical,EPR,and Moessbauer Spectroscopies[J].J.Am.Chem.Soc.1994,116,8024-8032.
    (b) Reece,S.Y.;Stubbe,J.;Nocera,D.G.pH dependence of charge transfer between tryptophan and tyrosine in dipeptides[J].Biochim.Biophys.Acta 2005,1706,232-238.
    [26](a) Zumft,W.G.Cell Biology and Molecular Basis of Denitrification[J].Microbiol.Mol.Biol.Rev.1997,61,533-616.
    (b) Yamaguchi,K.;Shuta,K.;Suzuki,S.Roles of Trp144 and Tyr203 in copper-containing nitrite reductase from Achromobacter cycloclastes IAM1013[J].Biochem.Biophys.Res.Commun.2005,336,210-214.
    (27) Shih,C.;Museth,A.K.;Abrahamsson,M.;Blanco-Rodriguez,A.M.;Di Bilio,A.J.;Sudhamsu,J.;Crane,B.R.;Ronayne,K.L.;Towrie,M.;Vlcek,A.;Richards,J.H.;Winkler,J.R.;Gray,H.B.Tryptophan-Accelerated Electron Flow Through Proteins[J].Science 2008,320,1760-1762.
    [28]Bollinger J.M.Jr.Electron Relay in Proteins[J].Science 2008,320,1730-1731.
    [29]Jain,A.;Purohit,C.S.;Verma,S.;Sankararamakrishnan,R.Close Contacts between Carbonyl Oxygen Atoms and Aromatic Centers in Protein Structures:π…πor Lone-Pair…π Interactions?[J].J.Phys.Chem.B 2007,111,8680-8683.
    [30]Egli,M.;Sarkhel,S.Lone Pair-Aromatic Interactions:To Stabilize or Not to Stabilize[J].Acc.Chem.Res.2007,40,197-205.
    [31]Reece,S.Y.;Hodgkiss,J.M.;Stubbe,J.;Nocera,D.G.Proton-coupled electron transfer:the mechanistic underpinning for radical transport and catalysis in biology [J].Phil Trans.R.Soc.B 2006,361,1351-1364.
    [32]Huynh,M.H.V.;Meyer,T.J.Proton-Coupled Electron Transfer[J].Chem.Rev.2007,107,5004-5064.
    [33](a) Cukier,R.I.;Nocera,D.G.Proton-Coupled Electron Transfer[J].Annu.Rev.Phys.Chem.1998,49,337-369.
    (b) Cukier,R.I.A Theory that Connects Proton -Coupled Electron-Transfer and Hydrogen-Atom Transfer Reactions[J].J.Phys.Chem.B 2002,106,1746-1757.
    [34]Hammes-Schiffer,S.Theoretical Perspectives on Proton-Coupled Electron Transfer Reactions[J].Acc.Chem.Res.2001,34,273-281.
    [35]Hatcher,E.;Soudackov,A.V.;Hammes-Schiffer,S.Proton-Coupled Electron Transfer in Soybean Lipoxygenase[J].J.Am.Chem.Soc.2004,126,5763-5775.
    [36]Pratt,R.C.;Stack T.D.P.Intramolecular Charge Transfer and Biomimetic Reaction Kinetics in Galactose Oxidase Model Complexes[J].J.Am.Chem.Soc.2003,125,8716-8717.
    [37]Meunier,B.;de Visser,S.P.;Shaik,S.Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes[J].Chem.Rev.2004,104,3947-3980.
    [38]Tommos,C.;Babcock,G.T.Oxygen Production in Nature:A Light-Driven Metalloradical Enzyme Process[J].Acc.Chem.Res.1998,31,18-25.
    [39]Kobori,Y.;Norris,J.R.1D Radical Motion in Protein Pocket:Proton-Coupled Electron Transfer in Human Serum Albumin[J].J.Am.Chem.Soc.2006,125,4-5.
    [40]朱维良;蒋华良;陈凯先;嵇汝运;曹阳.分子间相互作用的量子化学研究方法[J].化学进展.1999,11,247-253.
    [41](a) Becke,A.D.Density-functional thermochemistry.3.The role of exact exchange [J].J.Chem.Phys.1993,95,5648-5652.
    (b) Lee,C.;Yang,W.;Parr,R.G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B 1988,37,785-789.
    [42]Barone,V.;Adamo,C.;Lelj,F.Conformational behavior of gaseous glycine by a density-functional approach[J].J.Chem.Phys.1995,102,364-370.
    [43](a) Chen,X.;Bu,Y.Transfer vs Proton-Coupled Electron Transfer with a Variable Electron-Transfer Channel in Acylamide Units[J].J.Am.Chem.Soc.2007,129,9713-9720.
    (b) Chen,X.;Zhang,L.;Wang,Z.;Li,J.;Wang,W.;Bu,Y.Relay Stations for Electron Hole Migration in Peptides:Possibility for Formation of Three-Electron Bonds along Peptide Chains[J].J.Phys.Chem.B 2008,112,14302-14311.
    (c) Chen,X.;Xing,D.;Zhang,L.;Cukier,R.I.;Bu,Y.Effect of Metal ions on Radical Type and Proton-Coupled Electron Transfer Channel:σ-radical vs π-radical and σ-Channel vs π-Channel in the Imide Units[J].J.Compu.Chem.2009,In Press.
    [1](a) Osyczka,A.;Moser,C.C.;Daldal,F.;Dutton,P.L.Reversible redox energy coupling in electron transfer chains[J].Nature,2004,427,607-612.
    (b) Liang,Z.X.;Kurnikov,I.V.;Nocek,J.M.;Mauk,A.G.;Beratan,D.N.;Hoffman,B.M.Dynamic Docking and Electron-Transfer between Cytochrome b5 and a Suite of Myoglobin Surface-Charge Mutants.Introduction of a Functional-Docking Algorithm for Protein-Protein Complexes[J].J.Am.Chem.Soc.2004,126,2785-2798.
    (c) Gray,H.B.;Winkler,J.R.Long-Range Electron Transfer Special Feature:Long-range electron transfer[J].Proc.Natl.Acad.Sci.U.S.A.2005,102,3534-3539.
    (d) McLendon,G.;Hake,R.Interprotein electron transfer[J].Chem.Rev.1992,92,481-490.
    (e) Gray,H.B.;Winkler,J.R.Electron tunneling through proteins.[J]Q.Rev.Biophys.2003,36,341-372.(f) Blankenship,R.E.It takes two to tango[J].Nat.Struct.Biol.2001,8,94-95.(g) Tezcan,F.A.;Crane,B.R.;Winkler,J.R.;Gray,H.B.Electron tunneling in protein crystals[J].Proc.Natl.Acad.Sci.U.S.A.2001,95,5002-5006.
    [2]For the many biological and chemical reactions,ET process usually accompanies the proton transfer in the same time,which has been mainly classified as hydrogen atom transfer(HAT) and proton-coupled ET(PCET).~([3-7]) Furthermore,PCET is complicated and can be further subdivided into several distinct types.The two special examples are presented here.The first type is an electron and a proton simultaneously transfer between the same two atoms in the same direction,but the ET and PT occurs through different orbitals,such as the PhO·/PhOH self-change reaction.~([3]) The second type is that a proton transfers between two atoms but an electron migrates between other two atoms at the same time in the same direction,such as the iminoxy/oxime self-exchange reaction.~([6])
    [3]Mayer,J.M.;Hrovat,D.A.;Thomas,J.L.;Borden,W.T.Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene,Methoxyl /Methanol,and Phenoxyl/Phenol Self-Exchange Reactions[J].J.Am.Chem. Soc.2002,124,11142-11147.
    [4](a) Roth,J.P.;Yoder,J.C.;Won,T.-J.;Mayer,J.M.Application of the Marcus Cross Relation to Hydrogen Atom Transfer Reactions[J].Science 2001,294,2524-2526.
    (b) Tanner,C.;Manta,C.;Leutwyler,S.Probing the Threshold to H Atom Transfer Along a Hydrogen-Bonded Ammonia Wire[J].Science 2003,302,1736-1739.
    [5](a) Cukier,R.I.Proton-Coupled Electron Transfer through an Asymmetric Hydrogen -Bonded Interface[J].J.Phys.Chem.1995,99,16101-16115.
    (b) Cukier,R.I.Proton-Coupled Electron Transfer Reactions:Evaluation of Rate Constants [J].J.Phys.Chem.1996,100,15428-15443.
    (c) Trammell,S.A.;Wimbish,J.C.;Odobel,F.;Gallagher,L.A.;Narula,P.M.;Meyer,T.J.Mechanisms of Surface Electron Transfer.Proton-Coupled Electron Transfer[J].J.Am.Chem.Soc.1998,120,13248-13249.
    (d) Cukier,R.I.;Nocera,D.Proton-Coupled Electron Transfer [J].Annu.Rev.Phys.Chem.1998,49,337-369.
    (e) Cukier,R.I.A Theory that Connects Proton-Coupled Electron-Transfer and Hydrogen-Atom Transfer Reactions [J].J.Phys.Chem.B 2002,106,1746-1757.
    (f) Hammes-Schiffer,S.Theoretical Perspectives on Proton-Coupled Electron Transfer Reactions[J].Acc.Chem.Res.2001,34,273-281.
    [6]DiLabio,G.A.;Ingold,K.U.A Theoretical Study of the Iminoxyl/Oxime Self-Exchange Reaction.A Five-Center,Cyclic Proton-Coupled Electron Transfer [J].J.Am.Chem.Soc.2005,127,6693-6699.
    [7]Hammes-Schiffer,S.Comparison of hydride,hydrogen atom,and proton-coupled electron transfer reactions[J].ChemPhysChem 2002,3,33-42.
    [8](a) Marcus,R.A.On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.I[J].J.Chem.Phys.1956,24,966-978.
    (b) Marcus,R.A.On the Theory of Electron-Transfer Reactions.VI.Unified Treatment for Homogeneous and Electrode Reactions[J].J.Chem.Phys.1965,43,679-701.
    (c) Marcus,R.A.Theory of Electron-Transfer Reaction Rates of Solvated Electrons[J].J Chem.Phys.1965,43,3477-3489.
    (d) Marcus,R.A.The second R.A.Robinson Memorial Lecture.Electron,proton and related transfers[J].Faraday Discuss Chem.Soc.1982,74,7-16.
    (e) Anglada,J.M.Complex Mechanism of the Gas Phase Reaction between Formic Acid and Hydroxyl Radical.Proton Coupled Electron Transfer versus Radical Hydrogen Abstraction Mechanisms[J].J.Am.Chem.Soc.2004,126,9809-9820.
    (g) Sumi,H.;Kakitani,T.Unified Theory on Rates for Electron Transfer Mediated by a Midway Molecule,Bridging between Superexchange and Sequential Processes[J].J.Phys.Chem.B.2001,105,9603-9622.
    (h) Brunold,T.C.;Solomon,E.I.Reversible Dioxygen Binding to Hemerythrin.2.Mechanism of the Proton-Coupled Two-Electron Transfer to O_2at a Single Iron Center[J].J.Am.Chem.Soc.1999,121,8288-8295.
    [9](a) Lundberg,M.;Siegbahn,P.E.M.Optimized Spin Crossings and Transition States for Short-range Electron Transfer in Transition Metal Dimers[J].J.Phys.Chem.B 2005,109,10513-10520.
    (b) Bassan,A.;Blomberg,M.R.A.;Borowski,T.;Siegbahn,P.E.M.Oxygen Activation by Rieske Non-Heme Iron Oxygenases,a Theoretical Insight[J].J.Phys.Chem.B 2004,108,13031-13041.
    [10](a) Wagenknecht,H.-A.;Stemp,E.D.A.;Barton,J.K.DNA-Bound Peptide Radicals Generated through DNA-Mediated Electron Transport[J].Biochemistry.2000,39,5483-5491.
    (b) Harriman,A.;Millward,G.R.;Neta,P.;Richoux,M.C.;Thomas,J.M.Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution[J].J.Phys.Chem.1988,92,1286-1290.
    (c) Poluektov,O.G.;Paschenko,S.V.;Utschig,L.M.;Lakshmi,K.V.;Thumauer,M.C.Bidirectional Electron Transfer in Photosystem I:Direct Evidence from High-Frequency Time-Resolved EPR Spectroscopy[J].J.Am.Chem.Soc.2005,127,11910-11911.
    (d) Karki,S.B.;Dinnocenzo,J.P.;Farid,S.;Goodman,J.L.;Gould,I.R.;Zona,T.A.Bond-Coupled Electron Transfer Processes:A New Strategy for High-Efficiency Photoinduced Electron Transfer Reactions [J].J.Am.Chem.Soc.1997,119,431-432.
    (e) Al-Kaysi,R.O.;Goodman,J.L.Bond-Coupled Electron Transfer Processes:Cleavage of Si-Si Bonds in Disilanes [J].J.Am.Chem.Soc.2005,127,1620-1621.
    (f) Sjodin,M.;Styring,S.;Akermark,B.;Sun,L.;Hammarstrom,L.Proton-Coupled Electron Transfer from Tyrosine in a Tyrosine-Ruthenium-tris-Bipyridine Complex:Comparison with TyrosineZ Oxidation in Photosystem II [J]. J. Am. Chem. Soc. 2000, 122, 3932-3936. (g) Abdel Malak, R.; Gao, Z.; Wishart, J. F.; Isied, S. S. Long-Range Electron Transfer Across Peptide Bridges: The Transition from Electron Super-exchange to Hopping [J]. J. Am. Chem. Soc. 2004,126, 13888-13889.
    
    [11] Rhile, I. J.; Mayer, J. M. One-Electron Oxidation of a Hydrogen-Bonded Phenol Occurs by Concerted Proton-Coupled Electron Transfer [J]. J. Am. Chem. Soc. 2004,126, 12718-12719.
    
    [12] Terecek, F.; Syrstad, E. A. Mechanism and Energetics of Intramolecular Hydrogen Transfer in Amide and Peptide Radicals and Cation-Radicals [J]. J. Am. Chem. Soc. 2003,125, 3353-3369.
    
    [13] Page, C. C; Moser, C. C; Chen, X.; Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation/reduction [J]. Nature 1999, 402, 47-52.
    
    [14] (a) Blomberg, M. R. A.; Siegbahn, P. E. M.; Babcock, G. T. Modeling Electron Transfer in Biochemistry: A Quantum Chemical Study of Charge Separation in Rhodobacter sphaeroides and Photosystem II [J]. J. Am. Chem. Soc. 1998, 120, 8812-8824. (b) Hu, Y.-Z.; Tsukiji, S.; Shinkai, S.; Oishi, S.; Hamachi, I. Construction of Artificial Photosynthetic Reaction Centers on a Protein Surface: Vec-torial, Multistep, and Proton-Coupled Electron Transfer for Long-Lived Charge Separation [J]. J. Am. Chem. Soc. 2000, 122, 241-253. (c) Murgida, D. H.; Hildebrandt, P. Proton-Coupled Electron Transfer of Cytochrome c [J]. J. Am. Chem. Soc. 2001, 123, 4062-4068. (d) Sjodin, M.; Styring, S.; Wolpher, H.; Xu, Y; Sun, L.; Hammarstrom, L. Switching the Redox Mechanism: Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan [J]. J. Am. Chem. Soc. 2005, 127, 3855-3863. (e) Kobori, Y; Norris, J. R. 1D Radical Motion in Protein Pocket: Proton-Coupled Electron Transfer in Human Serum Albumin [J]. J. Am. Chem. Soc. 2006,128, 4-5.
    
    [15] Isied, S. S.; Ogawa, M. Y.; Wishart, J. F. Peptide-mediated intramolecular electron transfer: long-range distance dependence [J]. Chem. Rev. 1992, 92, 381-394.
    [16] Antonello, S.; Formaggio, F.; Moretto, A.; Toniolo, C; Maran, F. Anomalous Distance Dependence of Electron Transfer across Peptide Bridges [J]. J. Am. Chem. Soc. 2003,125, 2874-2875.
    
    [17] Watanabe, J.; Morita, T.; Kimura, S. Effects of Dipole Moment, Linkers, and Chromophores at Side Chains on Long-Range Electron Transfer through Helical Peptides [J]. J. Phys. Chem. B 2005,109, 14416-14425.
    
    [18] As known, the acylamide unit extensively exists in biological molecular systems, for example, peptide bond units, the active acylamide side chains in asparagine and glutamine residues, guanine, thymine, and uracil etc. In general, the acylamide units have two conformations: cisoid and transoid, such as the peptide bonds and the asparagine active side-chain, etc., but some only have one conformation, such as guanine and thymine, etc.. The peptide bond conformation is found to be transoid in the majority in protein structures except that the peptide bonds between any amino acid and proline appreciably occur in the cisoid conformation. But there is a survey of the protein data bank structure database to estimate that the occurrence of non-proline cis-peptides is 0.03-0.05%. The cisoid peptide bonds, especially the ones with non-proline residues, are located near the active sites or are implicated to play important roles in the function of the protein molecule (ref 19-21).
    
    [19] Ramachandran, G. N.; Sasisekharan, V. Conformation of polypeptides and proteins [J]. Adv. Prot. Chem. 1968,23, 283-437.
    
    [20] (a) Weiss, M. S.; Jabs, A.; Hilgenfeld, R. Peptide bonds revisited [J]. Nat. Struct. Biol. 1998, 5, 676-676. (b) Jabs, A.; Weiss, M. S.; Hilgenfeld, R. Non-proline cis peptide bonds in protein [J]. J. Mol. Biol. 1999, 286, 291-304.
    
    [21] (a) Herzberg, O.; Moult, J. Analysis of the steric strain in the polypeptide backbone of protein molecules [J]. Proteins: Struct. Fund. Genet. 1991, 11, 223-229. (b) Stoddard, B. L.; Pietrokovski, S. Breaking up is hard to do [J]. Nat. Struct. Biol. 1998, 5, 3-5.
    
    [22] (a) Ireta, J.; Neugebauer, J.; Scheffler, M. On the Accuracy of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality [J]. J. Phys. Chem. A 2004, 108, 5692-5698. (b) Puhovski, Y. P.; Rode, B. M. Molecular Dynamics Simulations of Aqueous Formamide Solution. 1. Structure of Binary Mixtures [J]. J. Phys. Chem. 1995, 99, 1566-1576. (c) Adalsteinsson, H.; Maul-itz, A. H.; Bruice, T. C. Calculation of the Potential Energy Surface for Inter-molecular Amide Hydrogen Bonds Using Semiempirical and Ab Initio Methods [J]. J. Am. Chem. Soc. 1996, 118, 7689-7693. (d) Angela, N. T.; Nancy, S. T. Experimental 1H NMR and Computational Studies of Internal Rotation of Sol-vated Formamide [J]. J. Phys. Chem. A 2000,104, 2985-2993. (e) Wang, M. W.; Wiberg, K. B.; Frisch, M. J. Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study [J]. J. Am. Chem. Soc. 1992,114, 1645-1652. (f) Cabaleito-Lago, E. M.; Rios, M. A. Development of an intermolecular potential function for interactions in formamide clusters based on ab initio calculations [J]. J. Chem. Phys. 1999, 110, 6782-6791.
    
    [23] (a) Johansson, A.; Collman, P.; Rothenberg, S.; Mckelvey, J. Hydrogen bonding ability of the amide group [J]. J. Am. Chem. Soc. 1974, 96, 3794-3800. (b) Hinton, J. F.; Harpool, R. D. An ab initio investigation of (formamide)n and forma-mide-(water)n systems. Tentative models for the liquid state and dilute aqueous solution [J]. J. Am. Chem. Soc. 1977, 99, 349-353. (c) Pullman, A.; Berthod, H.; Giessner-Prettre, C; Hinton, J. F.; Harpool, D. Hydrogen bonding in pure and aqueous formamide [J]. J. Am. Chem. Soc. 1978,100, 3991-3994. (d) Novoa, J. J.; Whangbo, M. H. The nature of intramolecular hydrogen-bonded and non-hydrogen-bonded conformations of simple di- and triamides [J]. J. Am. Chem. Soc. 1991,113,9017-9026.
    
    [24] (a) Neuheuser, T.; Hess, B. A.; Reutel, C; Weber, E. Ab Initio Calculations of Supramolecular Recognition Modes. Cyclic versus Noncyclic Hydrogen Bonding in the Formic Acid/Formamide System [J]. J. Phys. Chem. 1994, 98, 6459-6467. (b) Suhai, S. Density Functional Theory of Molecular Solids: Local versus Periodic Effects in the Two-Dimensional Infinite Hydrogen-Bonded Sheet of Formamide [J]. J. Phys. Chem. 1996, 100, 3950-3958. (c) Florian, J.; Johnson, B. G. Structure, Energetics, and Force Fields of the Cyclic Formamide Dimer: MP2, Hartree-Fock, and Density Functional Study [J]. J. Phys. Chem. 1995, 99, 5899-5908.
    
    [25] Liang, W.; Li, H.; Hu, X.; Han, S. Proton Transfer of Formamide + nH_2O (n = 0-3): Protective and Assistant Effect of the Water Molecule [J]. J. Phys. Chem. A 2004,108, 10219-10224.
    
    [26] (a) Muller, A.; Losada, M.; Leutwyler, S. Ab Initio Benchmark Study of (2-Pyridone)2, a Strongly Bound Doubly Hydrogen-Bonded Dimer [J]. J. Phys. Chem. A 2004,108, 157-165. (b) Watson, T. ML; Hirst, J. D. Density Functional Theory Vibrational Frequencies of Amides and Amide Dimers [J]. J. Phys. Chem. A 2002, 106, 7858-7867. (c) Ireta, J.; Neugebauer, J.; Scheffler, M. On the Accuracy of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality [J]. J. Phys. Chem. A 2004,108, 5692-5698. (d) Mehler, E. L. Ab initio, quantum chemical analysis of noncovalent interactions between peptides as modeled by dimers and a trimer of formamide [J]. J. Am. Chem. Soc. 1980, 102, 4051-4056.
    
    [27] Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bak-ken, V; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Ragha-vachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Ci-oslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gon- zalez,C.;and Pople,J.A.Gaussian 03,Revision C.02;Gaussian,Inc.:Wallingford,CT,2004.
    [28](a) Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange [J].J.Chem.Phys.1993,98,5648-5652.
    (b) Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J].Phys.Rev.B 1988,37,785-789.
    [29](a) Li,P.;Bu,Y.;Ai,H.Conformational Study of Glycine Amide Using Density Functional Theory[J].J.Phys.Chem.A.2003,107,6419-6428.
    (b) Li,P.;Bu,Y.;Ai,H.Density Functional Studies on Conformational Behaviors of Glycinamide in Solution[J].J.Phys.Chem.B 2004,108,1405-1413.
    (c) Li,P.;Bu,Y.;Ai,H.;Cao,Z.Acid-Base Behavior Study of Glycinamide Using Density Functional Theory[J].J.Phys.Chem.A 2004,108,4069-4039.
    (d) Li,P.;Bu,Y.;Ai,H.Theoretical Determinations of Ionization Potential and Electron Affinity of Glycinamide Using Density Functional Theory[J].J.Phys.Chem.A 2004,108,1200-1207.
    [30]Sugisaki,R.;Tanaka,T.;Hirota,E.Microwave spectrum,structure,dipole moment,quadrupole coupling constant,and internal motion of thioformamide[J].J.Mol.Spectrosc.1974,49,241-250.
    [31]Cabaleiro-Lago,E.M.;Otero,J.R.Ab Initio and density functional theory study of the interaction in formamide and thioformamide dimers and trimers[J].J.Chem.Phys.2002,117,1621-1632.
    [32](a) Gonzalez,C.;Schlegel,H.B.Reaction path following in mass-weighted intemal coordinates[J].J.Phys.Chem.1990,94,5523-5527.
    (b) Ishida,K.;Morokuma,K.;Kormomicki,A.The intrinsic reaction coordinate.An ab initio calculation for HNCHCN and H~-+CH_4→CH_4+H~-[J].J.Chem.Phys.1977,66,2153-2156.
    (c) Gonzalez,C.;Schlegel,H.B.An improved algorithm for reaction path following[J].J.Chem.Phys.1989,90,2154-2161.
    [33](a) Ditchfield,R.Self consistent perturbation theory of diamagnetism.I.gauge invariant LCAO method for NMR chemical shifts[J].Mol.Phys.1974,27,789-807.
    (b) Glendening,E.D.;Badenhoop,J.K.;Reed,A.E.;Carpenter,J.E.; Bohmann,J.A.;Weinhold,F.NBO,version 5.0;Theoretical Chemistry Institute,University of Wisconsin:Madison,WI,2000.
    (c)Foresman,J.B.;Frisch,A.E.;Exploring Chemistry With Electronic Structure Methods,2nd ed.;Gaussian,Inc.:Pittsburgh,PA,1996.
    (d) Clark,T.M.;Grandinetti,P.J.Dependence of bridging oxygen ~(17)O quadrupolar coupling parameters on Si-O distance and Si-O-Si angle [J].J.Phys.:Condens.Matter 2003,S2387-S2395.
    [34]Reed,A.E.;Curtiss,L.A.;Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint[J].Chem.Rev.1988,88,899-926.
    [35]Bader,R.F.W.Atoms in Moleculars:A Quantum Theory,Clarendon,Oxford,UK,1990.
    [36]Sun,Q.;Bu,Y.;Qin,M.Theoretical Studies for the Structural Properties and Electron Transfer Reactivity of C_4H_5N/C_4H_5N~+ Coupling System[J].J.Phys.Chem.A 2003,107,1584-1596.
    [37]Yan,S.;Bu,Y.;Sun,L.Theoretical prediction of the contact distance dependence of the electron transfer reactivity of the ClO/ClO- coupling system[J].Int.J.Quantum.Chem.2005,101,305-319.
    [38](a) Pauling,L.;The Normal State of the Helium Molecule-Ions He_2~+ and He_2~(2+)[J].J.Chem.Phys.1933,1,56-59.
    (b) Lewis,G N.The Magnetism of Oxygen and the Molecule O_4[J].J.Am.Chem.Soc.1924,46,2027-2032.
    (c) Ellis,J.W.;Kmeser,H.O.A Combination Relation in the Absorption Spectrum of Liquid Oxygen[J].Phys.Rev.1933,44,420-420.
    (d) Vegard,L.Structure of Solid Oxygen[J].Nature 1935,136,720-721.
    [39](a) Li,P.;Bu,Y.;Ai,H.;Yan,S.;Han,K.Double Proton Transfer and One-Electron Oxidation Behaviors in Double H-Bonded Glycinamide- Formamidine Complex and Comparison with Biological Base Pair[J].J.Phys.Chem.B 2004,108,16976-16982.
    (b) Lavrich,R.J.;Farrar,J.O.;Tubergen,M.J.Heavy-Atom Structure of Alaninamide from Rotational Spectroscopy[J].J.Phys.Chem.A 1999,103,4659-4663.
    [40]Jorgensen,W.L.;Gao,J.Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution[J].J.Am.Chem.Soc.1988,110,4212-4216.
    [41]Olivella,S.;Anglada,J.M;Sole,A.;Bofill,J.M.Mechanism of the Hydrogen Transfer from the OH Group to Oxygen-Centered Radicals:Proton-Coupled Electron-Transfer versus Radical Hydrogen Abstraction[J].Chem.Eur.J.2004,10,3404-3410.
    [42]Larsen,A.S.;Wang,K.;Lockwood,M.A.;Rice,G L.;Won,T.-J.;Lovell,S.;Sadilek,M.;Turecek,F.;Mayer,J.M.Hydrocarbon Oxidation by Bis-μ-oxo Manganese Dimers:Electron Transfer,Hydride Transfer,and Hydrogen Atom Transfer Mechanisms[J].J.Am.Chem.Soc.2002,124,10112-10123.
    [43]Isborn,C.;Hrovat,D.A.;Borden,W.T.;Mayer,J.M.;Carpenter,B.K.A Theoretical Study of the Iminoxyl/Oxime Self-Exchange Reaction.A Five-Center,Cyclic Proton-Coupled Electron Transfer[J].J.Am.Chem.Soc.2005,127,5794-5795.
    [44](a) Chermette,H.;Ciofini,I.;Mariotti,F.;Daul,C.A.Correct dissociation behavior of radical ions such as H in density functional calculations[J]J.Chem.Phys.2001,114,1447-1453.
    (b) Sodupe,M.;Bertran,J.;Rodriguez-Santiago,L.;Baerends,E.J.Ground State of the(H_2O)_2~+ Radical Cation:DFT versus Post-Hartree Fock Methods[J].J.Phys.Chem.A 1999,103,166-170.
    (c) Gr(u|¨)ning,M.;Gritsenko,O.V.;van Gisbergen,S.J.A.;Baerends,E.J.The Failure of Generalized Gradient Approximations(G-GAs) and Meta-GGAs for the Two-Center ThreeElectron Bonds in He_2~+,(H_2O)_2~+,and(NH_3)_2~+[J].J.Phys.Chem.A 2001,105,9211-9218.
    [45](a) Lynch.B.J.Truhlar,D.G.How Well Can Hybrid Density Functional Methods Predict Transition State Geometries and Barrier Heights?[J].J.Phys.Chem.A 2001,105,2936-2941.
    (b) Lundbergl,M.;Siegbahn,Per E.M.Quan- tifying the effects of the self-interaction error in DFT:When do the delocalized states appear?[J].J.Chem.Phys.2005,122,224103-224111.
    [46]Biological residues containing acylamide units include peptide bonds,Asparagine,Glutamine,Guanine,Thymine/Uracil,and Flavin.The acylamide unit has two tautomers:cis-H and trans-H,as in peptide bonds,Asparagine and Glutamine, etc., but some only have a cis-H conformer, as in Guanine, Thymine/Uracil, and Flavin. In many cases, the cis-H tautomers are located near protein active sites, and may play an important role in the functioning of enzymes (refs 2-4).
    
    [47] (a) Weatherly, S. C; Yang, I. V.; Thorp, H. H. Proton-Coupled Electron Transfer in Duplex DNA: Driving Force Dependence and Isotope Effects on Electro-catalytic Oxidation of Guanine [J]. J. Am. Chem. Soc. 2001, 123, 1236-1237. (b) Shafirovich, V.; Dourandin, A.; Geacintov, N. E. Proton-Coupled Electron-Transfer Reactions at a Distance in DNA Duplexes: Kinetic Deuterium Isotope Effect [J]. J. Phys. Chem. B 2001,105, 8431-8435. (c) Milligan, J. R.; Aguilera, J. A.; Hoang, O.; Ly, A.; Tran, N. Q.; Ward, J. F. Repair of Guanyl Radicals in Plasmid DNA by Electron Transfer Is Coupled to Proton Transfer [J]. J. Am. Chem. Soc. 2004,126, 1682-1687.
    
    [48] Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D. Molecular Biology of the Cell; Garland Science. New York, 2002. (a) Cerda, B. A.; Hoyau, S.; Ohanessian, G.; Wesdemiotis, C. Na~+ Binding to Cyclic and Linear Dipep-tides. Bond Energies, Entropies of Na~+ Complexation, and Attachment Sites from the Dissociation of Na~+-Bound Heterodimers and ab Initio Calculations [J]. J. Am. Chem. Soc. 1998,120, 2437-2448. (b) Kohtani, M.; Kinnear, B. S.; Jarrold, M. F. Metal-Ion Enhanced Helicity in the Gas Phase [J]. J. Am. Chem. Soc. 2000, 122, 12377-12378. (c) Wong, C. H. S.; Ma, N. L.; Tsang, C. W. A Theoretical Study of Potassium Cation Binding to Glycyglycine (GG) and Alanylalanine (AA) Dipeptides [J]. Chem. Eur. J. 2002, 8, 4909-4918.
    
    [49] (a) Li, P.; Bu, Y. Investigations of Double Proton Transfer Behavior between Glycinamide and Formamide Using Density Functional Theory [J]. J. Phys. Chem. A 2004, 108, 10288-10295. (b) Sun, L.; Bu, Y. Marked Variations of Dissociation Energy and H-Bond Character of the Guanine-Cytosine Base Pair Induced by One-Electron Oxidation and Li~+ Cation Coupling [J]. J. Phys. Chem. B 2005, 109, 593-600. (c) Li, H.; Bu, Y.; Yan, S.; Li, P.; Cukier, R. I. Proton Character of the Peptide Unit in the Ca~(2+)-Binding Sites of Calcium Pump [J]. J. Phys. Chem. B 2006,110, 11005-11013.
    [50] (a) Fukuzumi, S.; Patz, M.; Suenobu, T.; Kuwahara, Y.; Itoh, S. ESR Spectra of Superoxide Anion-Scandium Complexes Detectable in Fluid Solution [J]. J. Am. Chem. Soc. 1999, 121, 1605-1606. (b) Fukuzumi, S.; Ohkubo, K. Quantitative Evaluation of Lewis Acidity of Metal Ions Derived from the g Values of ESR Spectra of Superoxide: Metal Ion Complexes in Relation to the Promoting Effects in Electron Transfer Reactions [J]. Chem. Eur. J. 2000, 6, 4532-4535. (c) Ohkubo, K.; Suenobu, T.; Imahori, H.; Orita, A.; Otera. J.; Fukuzumi, S. Quantitative Evaluation of Lewis Acidity of Organotin Compounds and the Catalytic Reactivity in Electron Transfer [J]. Chem. Lett. 2001,30, 978-979.
    
    [51] (a) Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Charge Migration in DNA: Ion-Gated Transport [J]. Science, 2001, 294, 567-571. (b) Ponomarev, S. Y.; Thayer, K. M.; Beveridge, D. L. Ion motions in molecular dynamics simulations on DNA [J]. Proc. Natl. Acad. Sci. U.S.A 2004, 101, 14771-14775. (c) Varnai, P.; Zakrzewska, K. DNA and its counterions: a molecular dynamics study [J]. Nucl. Acids Res. 2004, 32, 4269-4280. (d) Savelyev, A.; Papoian, G. A. Electrostatic, Steric, and Hydration Interactions Favor Na~+ Condensation around DNA Compared with K~+ [J]. J. Am. Chem. Soc. 2006, 128, 14506-14518.
    
    [52] Examples of metal ion modulated electron transfer reactions are: Fc-(M_1P)-(M_2P)-C_(60) (?) Fc~+-(M_1P)-(M_2P)-C_(60)~-, where Fc=Ferrocene; P~(2-)=Por-phyrin dianion derivative; M_1 and M_2 may be different metal ions or H~+. The electron exchange between the electron donor Fc and the acceptor C_(60) rnay be modulated by changing the metal ions. See also (a) Fukuzumi, S. New perspective of electron-transfer chemistry [J]. Org. Biomol Chem. 2003, 1, 609-620. (b) Imahori, H.; Guldi, D. M.; Tamaki, K.; Yoshida, Y.; Luo, C; Sakata, Y.; Fukuzumi, S. Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms [J]. J. Am. Chem. Soc. 2001,123, 6617-6628.
    
    [53] (a) Stubbe, J.; van der Donk, W. A. Protein Radicals in Enzyme Catalysis [J]. Chem. Rev. 1998, 98, 705-762. (b) Easton, C. J.; Merrett M. C. Anchimeric Assistance in Hydrogen Atom Transfer Reactions on the Side Chains of Amino Acid Derivatives[J].J.Am.Chem.Soc.1996,115,3035-3036.
    (c) Zhang,J.;Grills,D.C.;Huang,K.W.;Fujita,E.;Bullock,R.M.Carbon-to-Metal Hydrogen Atom Transfer:Direct Observation Using Time-Resolved Infrared Spectroscopy [J].J.Am.Chem.Soc.2005,127,15684-15685.
    [54]Mayer,J.M.Proton-Coupled Electron Transfer:A Reaction Chemist's View[J].Annu.Rev.Phys.Chem.2004,55,363-390.
    [55](a) Mercuri,F.;Mundy,C.J.;Parrinello,M.Formation of a Reactive Intermediate in Molecular Beam Chemistry of Sodium and Water[J].J.Phys.Chem.A 2001,105,8423-8427.
    (b) Buck,U.;Steinbach,C.Formation of Sodium Hydroxyde in Multiple Sodium-Water Cluster Collisions[J].J.Phys.Chem.A 1998,102,7333-7336.
    [56](a) Jernigan,R.;Raghunathan,G.;Bahar,I.Characterization of interactions and metal ion binding sites in proteins[J].Curr.Opin.Struct.Biol.1994,4,256-263.
    (b) Pidcock,E.;Moore,G.R,Structural characteristics of protein · binding sites for calcium and lanthanide ions[J].J.Biol.Inorg.Chem.2001,6,479-489.
    (c)Dudev,T.;Lim,C.A DFT/CDM Study of Metal-Carboxylate Interactions in Metalloproteins:Factors Governing the Maximum Number of Metal-Bound Carboxylates[J].J.Am.Chem.Soc.2006,128,1553-1561.
    [57]Boys,S.F.;Bernardi,F.The calculation of small molecular interactions by the differences total energies.Some procedures with reduced errors[J].Mol.Phys.1970,19,553-559.
    [58]Foster,J.P.;Weinhold,F.Natural hybrid orbitals[J].J.Am.Chem.Soc.1980,102,7211-7218.
    [59]Reed,A.E.;Schleyer,P.v.R.Chemical bonding in hypervalent molecules.The dominance of ionic bonding and negative hyperconjugation over d-orbital participation [J].J.Am.Chem.Soc.1990,112,1434-1445.
    [60](a) McLean,A.D.;Chandler,G.S.Contracted Gaussian basis sets for molecular calculations.I.Second row atoms,Z=11-18[J].J.Chem.Phys.1980,72,5639-5648.
    (b) Krishnan,R.;Binkley,J.S.;Seeger,R.;Pople,J.A.Self-consistent molecular orbital methods.XX.A basis set for correlated wave functions[J].J.Chem.Phys.1980,72,650-654.
    (c) Clark,T.;Chandrasekhar,J.;Spitznagel,G.W.;Schleyer,P.v.R.Efficient diffuse function-augmented basis sets for anion calculations.Ⅲ.The 3-21+G basis set for first-row elements,Li-F [J].J.Comput.Chem.1983,4,294-301.
    (d) Frisch,M.J.;Pople,J.A.,Binkley,J.S.Self-consistent molecular orbital methods 25.Supplementary functions for Gaussian basis sets[J].J..Chem.Phys.1984,80,3265-3269.
    [61]We also estimated the calculational errors for these geometrical parameters and energy quantities by comparing them for FF~(ts) at different levels of theory(see Table S4).The deviations among several methods are within 0.05(?)(O...O),0.01(?)(N...H...N),0.01(?)(N...H),0.5°(A_(NHN)) for geometrical parameters,and 1.3 kcal/mol(ΔE_a),1.5 kcal/mol(ΔE_b),respectively.The deviations of ρN and ρO are almost equal to zero.Together with the calculated geometrical parameters for F(Table S3),all these indicate that B3LYP/6-311++G** can yield the reliable results.
    [62]In formamide,both the N and O atoms satisfy the 8-electron rule for bonding.Dehydrogenation at the amino group may generate a stable ·NH-CH=O radical.But,this radical cannot form the cyclic coupling mode with formamide because the -HN-H...·NH- single electron H-bond is not as strong as its normal one,and the corresponding =O...O= interaction is repulsive.However,the ·NH-CH=O radical may be converted into the NH=CH-O·radical by intramolecular O→N electron transfer,favoring the formation of the cyclic coupling mode with formamide,resulting in a normal -HN-H...NH- two-electron H-bond and a O...O three-electron bond.
    [63]At the transition state FF~(ts),the HOMO is a two-electron π*-antibonding orbital,while the HOMO-2 is a two-electron g-bonding orbital.Both distribute over the whole molecular backbone and may be viewed as linear combinations of two local π orbitals located on two molecular fragments,respectively.The net contribution of their combination to the bonding between two molecular fragments is zero.
    [64] We examined the thermodynamics associating with the ligand exchange process: M~(Z+)(H_2O)_n + FF = FF-M~(Z+)(H_2O)_(n-2) + 2H_2O. The energy changes for three selected hydrated metal ions are exothermic: -18.0 (Ca~(2+)(H_2O)_6), -2.1 (Ca~(2+)(H_2O)_7, and -18.5 (Mg~(2+)(H_2O)_6) kcal/mol, respectively.
    
    [65] Although the oligohydrates of the metal ions are not predominant species, we can use them to model the hydrated metal ions with large binding energies or Lewis acidity. The binding of these kinds of cations with FF favor HAT. To verify this conclusion, we also examined the effect of a trivalent cation Sc~(3+) hydrate, FF-Sc~(3+)(H_2O)_4 (FF+Sc~(3+)(H_2O)_6→FF-Sc~(3+)(H_2O)_4+2H_2O) on the FF PT/ET mechanism. Results (at the transition state, ρN3+N10=0.88, ρO2+O9=0.12) indicate that FF-Sc~(3+)(H_2O)_4 obeys the HAT mechanism.
    [1]Proshlyakov,D.A.;Pressler,M.A.;DeMaso,C.;Leykam,J.F.;DeWitt,D.L.;Babcock,G.T.Oxygen activation and reduction in respiration:Involvement of redox-active tyrosine 244[J].Science 2000,290,1588-1591.
    [2]Roth,J.P.;Yoder,J.C.;Won,T.-J.;Mayer,J.M.Application of the Marcus Cross Relation to Hydrogen Atom Transfer Reactions[J].Science 2001,294,2524-2526.
    [3](a) Stubbe,J.;Nocera,D.G;Yee,C.S.;Chang,C.Y.Radical Initiation in the Class I Ribonucleotide Reductase:Long-Range Proton-Coupled Electron Transfer?[J].Chem.Rev.2003,103,2167-2202.
    (b) Culder,R.I.;Noeera,D.G Proton -Coupled Electron Transfer[J].Annu.Rev.Phys.Chem.1998,49,337-369.
    (c)Huynh,M.H.V.;Meyer,T.J.Proton-Coupled Electron Transfer[J].Chem.Rev.2007,107,5004-5064.
    (d) Meyer,T.J.;Huynh,M.H.V.;Thorp,H.H.The Possible Role of Proton-Coupled Electron Transfer(PCET) in Water Oxidation by Photosystem Ⅱ[J].Angew.Chem.Int.Ed.2007,46,5284-5304.
    [4]Li,B.;Zhao,J.;Onda,K.;Jordan,K.D.;Yang,J.;Petek,H.Ultrafast Interfacial Proton-Coupled Electron Transfer[J].Science 2006,311,1436-1440.
    [5]Belevichl,I.;Verkhovsky,M.I.;Wikstr(o|¨)m,M.Proton-coupled electron transfer drives the proton pump of cytoehrome c oxidase[J].Nature 2006,440,829-832.
    [6](a) Mayer,J.M.;Hrovat,D.A.;Thomas,J.L.;Borden,W.T.Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene,Methoxyl/Methanol,and Phenoxyl/Phenol Self-Exchange Reactions[J].J.Am.Chem.Soc.2002,124,11142-11147.
    (b) Cukier,R.I.A Theory that Connects Proton -Coupled Electron-Transfer and Hydrogen-Atom Transfer Reactions[J].J.Phys.Chem.B 2002,106,1746-1757.
    (c) Skone,J.H.;Soudackov,A.V.;Hammes-Schiffer,S.Calculation of Vibronic Couplings for Phenoxyl/Phenol and Benzyl/Toluene Self-Exchange Reactions:Implications for Proton-Coupled Electron Transfer Mechanisms[J].J.Am.Chem.Soc.2006,128,16655-16663.
    [7](a) Binstead,R.A.;Moyer,B.A.;Samuels,G.J.;Meyer,T.J.Proton-coupled electron transfer between[Ru(bpy)_2(py)OH_2]~(2+) and[Ru(bpy)_2(py)O]~(2+).A solvent isotope effect(k_(H2O)/k_(D2O)) of 16.1[J].J.Am.Chem.Soc.1981,103,2897-2899.
    (b)Lebeau,E.L.;Binstead,R.A.;Meyer,T.J.Mechanistic Implications of Proton Transfer Coupled to Electron Transfer[J].J.Am.Chem.Soc.2001,123,10535-10544.
    (c) For a different view,see:Roth,J.P.;Lovell,S.;Mayer,J.M.Intrinsic Barriers for Electron and Hydrogen Atom Transfer Reactions of Biomimetic Iron Complexes[J].J.Am.Chem.Soc.2000,122,5486-5498.
    [8](a) DiLabio,G.A.;Johnson,E.R.Lone Pair-π and π-π Interactions Play an Important Role in Proton-Coupled Electron Transfer Reactions[J].J.Am.Chem.Soc.2007,129,6199-6203.
    (b)DiLabio,G A.;Ingold,K.U.A Theoretical Study of the Iminoxyl/Oxime Self-Exchange Reaction.A Five-Center,Cyclic ProtonCoupled Electron Transfer[J].J.Am.Chem.Soc.2005,127,6693-6699.
    [9]Chen,X.;Bu,Y.Cation-Modulated Electron-Transfer Channel:H-Atom Transfer vs Proton-Coupled Electron Transfer with a Variable Electron-Transfer Channel in Acylamide Units[J].J.Am.Chem.Soc.2007,129,9713-9720.
    [10]Olivella,S.;Anglada,J.M.;Sole,A.;Bofill,J.M.Mechanism of the Hydrogen Transfer from the OH Group to Oxygen-Centered Radicals:Proton-Coupled Electron-Transfer versus Radical Hydrogen Abstraction[J].Chem.Eur.J.2004,10,3404-3410.
    [11]Isborn,C.;Hrovat,D.A.;Borden,W.T.;Mayer,J.M.;Carpenter,B.K.Factors Controlling the Barriers to Degenerate Hydrogen Atom Transfers[J].J.Am.Chem.Soc.2005,127,5794-5795.
    [12]In HAT,the σ-electron also transfers through a σ-channel,accompanied with proton transfer,but it is via same orbital sets as the transferring proton,which is completely different from the present PC°E°T mechanism in which the electron and the proton transfer via different orbital sets.
    [13]For phenol,the most stable conformer is with the hydroxyl H lying in the plane of the aromatic ring,due to the n_O-π_(Ar) conjugation.After O-dehydrogenation,the radical becomes of π-type due to radical delocalization to the aromatic ring.However,for toluene,it does not have n-π_(Ar) conjugation,rather it is characterized as super-conjugation.After methyl-dehydrogenation,the resulting radical is also of π-type,like phenoxyl.
    [14] Lee, J. M.; Niles, J. C; Wishnok, J. S.; Tannenbaum, S. R. Peroxynitrite Reacts with 8-Nitropurines to Yield 8-Oxopurines [J]. Chem. Res. Toxicol. 2002, 15, 7-14.
    
    [15] Hulme, A. T.; Johnston, A.; Florence, A. J.; Fernandes, P.; Shankland, K.; Bedford, C. T.; Welch, G. W. A.; Sadiq, G; Haynes, D. A.; Motherwell, W. D. S.; Tocher, D. A.; Price, S. L. Search for a Predicted Hydrogen Bonding Motif - A Multidisciplinary Investigation into the Polymorphism of 3-Azabicyclo[3.3.1] nonane-2,4-dione [J]. J. Am. Chem. Soc. 2007,129, 3649-3657.
    
    [16] Chernick, E. T.; Ahrens, M. J.; Scheidt, K. A.; Wasielewski, M. R. Copper-Promoted N-Arylations of Cyclic Imides within Six-Membered Rings: A Facile Route to Arylene-Based Organic Materials [J]. J. Org. Chem. 2005, 70, 1486-1489.
    
    [17] Sessler, J. L.; Brown, C. T.; O'Connor, D.; Springs, S. L.; Wang, R.; Sathio-satham, M.; Hirose, T. A Rigid Chlorin-Naphthalene Diimide Conjugate. A Possible New Noncovalent Electron Transfer Model System [J]. J. Org. Chem. 1998, 63, 7370-7374.
    
    [18] (a) Nunez, M. E.; Noyes, K. T.; Gianolio, D. A.; McLaughlin, L. W.; Barton, J. K. Long-Range Guanine Oxidation in DNA Restriction Fragments by a Triplex-Directed Naphthalene Diimide Intercalator [J]. Biochemistry 2000, 39, 6190-6199. (b) Dixon, D. W.; Thornton, N. B.; Steullet, V.; Netzel, T. Effect of DNA Scaffolding on Intramolecular Electron Transfer Quenching of a Photoexcited Ruthe-nium(II) Polypyridine Naphthalene Diimide [J]. Inorg. Chem. 1999, 38, 5526-5534. (c) Hodgkiss, J. M.; Damrauer, N. H.; Presse, S.; Rosenthal, J.; Nocera, D. G Electron Transfer Driven by Proton Fluctuations in a Hydrogen-Bonded Donor-Acceptor Assembly [J]. J. Phys. Chem. B 2006,110,18853-18858.
    
    [19] Mokhir, A.; Kramer, R.; Wolf, H. Zn~(2+)-Dependent Peptide Nucleic Acids Probes [J]. J. Am. Chem. Soc. 2004,126, 6208-6209.
    
    [20] Rogers, J. E.; Kelly, L. A. Nucleic Acid Oxidation Mediated by Naphthalene and Benzophenone Imide and Diimide Derivatives. Consequences for DNA Redox Chemistry [J]. J. Am. Chem. Soc. 1999,121, 3854-3861.
    [21] (a) Fukuzumi, S. In Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; Vol. 4, pp 3-67. (b) Fukuzumi, S.; Itoh, S. In Advances in Photochemistry; Neckers, D. C; Volman, D. H.; von Bunau, G; Eds.
    Wiley: New York, 1998; Vol. 25, pp 107-172.
    
    [22] Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994.
    
    [23] For example, Zn(II) can influence ET by altering the conformation of a local protein domain, thereby limiting protein motions which are necessary for efficient ET in the photosynthetic bacterial reaction center. See refs (a) Utschig, L. M; Greenfield, S. R; Tang, J.; Laible, P. D.; Thurnauer, M. C. Influence of Iron-Removal Procedures on Sequential Electron Transfer in Photosynthetic Bacterial Reaction Centers Studied by Transient EPR Spectroscopy [J]. Biochemistry 1997, 36, 8548-8558. (b) Utschig, L. M.; Ohigashi, Y.; Thumauer, M. C; Tiede, D. M. A New Metal-Binding Site in Photosynthetic Bacterial Reaction Centers That Modulates Q_A to Q_B Electron Transfer [J]. Biochemistry 1998, 37, 8278-8281. (c) Utschig, L. M.; Thurnauer, M. C. Metal Ion Modulated Electron Transfer in Photo- synthetic Proteins [J]. Acc. Chem. Res. 2004,37, 439-447.
    
    [24] (a) Adelroth, P.; Paddock, M. L.; Sagle, L. B.; Feher, G; Okamura, M. Y. Identification of the proton pathway in bacterial reaction centers: Both protons associated with reduction of Q_B to Q_BH_2 share a common entry point [J]. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13086-13091. (b) Gerencser, L.; Taly, A.; Baciou, L.; Maroti, P.; Sebban, P. Effect of Binding of Cd~(2+) on Bacterial Reaction Center Mutants: Proton-Transfer Uses Interdependent Pathways [J]. Biochemistry 2002, 41,9132-9138.
    
    [25] Berg, J. M.; Shi, Y The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc [J]. Science 1996,271, 1081-1085.
    
    [26] Axelrod, H. L.; Abresch, E. C; Paddock, M. L.; Okamura, M. Y.; Feher, G. Determination of the binding sites of the proton transfer inhibitors Cd~(2+) and Zn~(2+) in bacterial reaction centers [J]. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1542-1547.
    
    [27] (a) Fukuzumi, S.; Okamoto, T. Magnesium perchlorate-catalyzed Diels-Alder reactions of anthracenes with p-benzoquinone derivatives: catalysis on the electron transfer step [J]. J. Am. Chem. Soc. 1993, 115, 11600-11601. (b) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. Energetic comparison between photo-induced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives [J]. J. Am. Chem. Soc. 1987, 109, 305-316. (c) Fukuzumi, S.; Okamoto K.; Imahori, H. Thermal Intramolecular Electron Transfer in a Ferrocene-Naphthoquinone Linked Dyad Promoted by Metal Ions [J]. Angew. Chem. Int. Ed. 2002, 41, 620-622. (d) Okamoto, K.; Fukuzumi, S. An Yttrium Ion-Selective Fluorescence Sensor Based on Metal Ion-Controlled Photoinduced Electron Transfer in Zinc Porphy-rin-Quinone Dyad [J]. J. Am. Chem. Soc. 2004, 126, 13922-13923. (e) Wu, H.; Zhang, D.; Su, L.; Ohkubo, K.; Zhang, C; Yin, S.; Mao, L.; Shuai, Z.; Fukuzumi, S.; Zhu, D. Intramolecular Electron Transfer within the Substituted Tetrathiaful-valene-Quinone Dyads: Facilitated by Metal Ion and Photomodulation in the Presence of Spiropyran [J]. J. Am. Chem. Soc. 2007,129, 6839-6846.
    
    [28] For example, Sc~(3+) ion binding at the electron acceptor can change the ET mechanism in CoTPP-O_2 from a one-step hydride transfer (H~-) to three separate steps of hydride-transfer reactions in an e~--H~+-e~- sequence. However, changing Sc~(3+) to other metal ions may yield different effects on the cooperativity of these (2e + H~+) migrations. See refs (a) Fukuzumi, S.; Patz, M.; Suenobu, T.; Kuwahara, Y; Itoh, S. ESR Spectra of Superoxide Anion-Scandium Complexes Detectable in Fluid Solution [J]. J. Am. Chem. Soc. 1999, 121, 1605-1606. (b) Fukuzumi, S.; Ohkubo, K. Quantitative Evaluation of Lewis Acidity of Metal Ions Derived from the g Values of ESR Spectra of Superoxide: Metal Ion Complexes in Relation to the Promoting Effects in Electron Transfer Reactions [J]. Chem. Eur. J. 2000, 6, 4532-4535. (c) Ohkubo, K.; Suenobu, T.; Imahori, H.; Orita, A.; Otera. J.; Fukuzumi, S. Quantitative Evaluation of Lewis Acidity of Organotin Compounds and the Catalytic Reactivity in Electron Transfer [J]. Chem. Lett. 2001, 30, 978-979. (d) Fukuzumi, S. New perspective of electron transfer chemistry [J]. Org. Biomol. Chem. 2003,1, 609-620.
    
    [29] (a) Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Charge Migration in DNA: Ion-Gated Transport [J]. Science, 2001, 294, 567-571.
    (b) Ponomarev,S.Y.;Thayer,K.M.;Beveridge,D.L.Ion motions in molecular dynamics simulations on DNA[J].Proc.Natl.Acad Sci.U.S.A.2004,101,14771-14775.
    (c) Varnai,P.;Zakrzewska,K.DNA and its counterions:a molecular dynamics study[J].Nuc.Acids Res.2004,32,4269-4280.
    (d) Savelyev,A.;Papoian,G.A.Electrostatic,Steric,and Hydration Interactions Favor Na~+ Condensation around DNA Compared with K~+[J].J.Am.Chem.Soc.2006,128,14506-14518.
    [30](a) Ferguson-Miller,S.;Babcock,G.T.Heme/Copper Terminal Oxidases[J].Chem.Rev.1996,96,2889-2908.
    (b) Westphal,K.L.;Lydakis-Simantiris,N.;Cukier,R.I.;Babcock,G.T.Effects of Sr~(2+)-Substitution on the Reduction Rates of y~(z·).in PSII MembranesEvidence for Concerted Hydrogen-Atom Transfer in Oxygen Evolution[J].Biochemistry 2000,39,16220-16229.
    (c) Westphal,K.L.;Tommos,C.;Cukier,R.I.;Babcock,G.T.Concerted hydrogen-atom abstraction in photosynthetic water oxidation[J].Curr.Opin.Plant Bio.2000,3,236-242.
    (d)Mukhopadhyay,S.;Mandal,S.K.;Bhaduri,S.;Armstrong,W.H.Concerted hydrogen -atom abstraction in photosynthetic water oxidation[J].Chem.Rev.2004,104,3981-4026.
    (e) Yang,J.Y.;Nocera,D.G Catalase and Epoxidation Activity of Manganese Salen Complexes Bearing Two Xanthene Scaffolds[J].J.Am.Chem.Soc.2007,129,8192-8198.
    (f) Klinman,J.P.How Do Enzymes Activate Oxygen without Inactivating Themselves?[J].Acc.Chem.Res.2007,40,325-333.
    (g) Reece,S.Y.;Hodgldss,J.M.;Stubbe,J.;Nocera,D.G.Proton -coupled electron transfer:the mechanistic underpinning for radical transport and catalysis in biology[J].Phil.Trans.R.Soc.B 2006,361,1351-1364.
    [31]Uracil(U) can serve as a good model for thymine(T),uric acid,xanthine,flavin etc.,and represents a benchmark system for both theoretical and experimental studies.
    (a) Kryachko,E.S.;Nguyen,M.T.;Zeegers-Huyskens,T.Theoretical Study of Tautomeric Forms of Uracil.1.Relative Order of Stabilities and Their Relation to Proton Affinities and Deprotonation Enthalpies[J].J.Phys.Chem.A 2001,105,1288-1295.
    (b) Dabkowska,I.;Gutowski,M.;Rak,J.Interaction with Glycine Increases Stability of a Mutagenic Tautomer of Uracil.A Density Functional Theory Study[J].J.Am.Chem.Soc.2005,127,2238-2248.
    (c) Gustavsson,T.;Banyasz,A.;Lazzarotto,E.;Markovitsi,D.;Scalmani,G;Frisch,M.J.;Barone,V.;Improta,R.Singlet Excited-State Behavior of Uracil and Thymine in Aqueous Solution: A Combined Experimental and Computational Study of 11 Uracil Derivatives [J]. J. Am. Chem. Soc. 2006, 128, 607-619. (d) Choi, M. Y.; Miller, R. E. Infrared Laser Spectroscopy of Uracil and Thymine in Helium Nanodroplets: Vibrational Transition Moment Angle Study [J]. J. Phys. Chem. A. 2007, 111, 2475-2479. (e) Santoro, F.; Barone, V; Gustavsson, T; Improta, R. Solvent Effect on the Singlet Excited-State Lifetimes of Nucleic Acid Bases: A Computational Study of 5-Fluorouracil and Uracil in Acetonitrile and Water [J]. J. Am. Chem. Soc. 2006,128, 16312-16322.
    
    [32] The U radical may be important in RNA damage~((a)). It readily abstracts hydrogen atoms from surrounding nucleobases or amino acid residues ~((b)). Therefore, it is of interest to explore the possible reactions between U radicals and their surrounding nucleobases or amino acid residues. For U, there are four dehydroge-nated radicals in which two are the C-dehydrogenated and other two are the N-dehydrogenated. In nucleobases, the N_1 site is covalently bonded to the sugar ring, that is, no H_1 exists. Therefore, only three dehydrogenated radicals can exist. (a) von Sonntag, C. In Physical and Chemical Mechanism in Molecular Radiation Biology; Glass, W. A.; Varma, M. N.; Eds. Plenum Press: New York, 1991; pp 287-321. (b) Turecek, F.; Wolken, J. K. Energetics of Uracil Cation Radical and Anion Radical Ion- Molecule Reactions in the Gas Phase [J]. J. Phys. Chem. A 2001,105, 8740-8747.
    
    [33] The N_1 site is linked to the ribose sugar ring in the nucleotide/nucleoside acid bases. Thus, it is not considered to be a H-bond active site, although it is linked by a hydrogen in uracil, U, and Ur.
    
    [34] (a) Yano, S.; Otsuka, M. In Metal Ions in Biological Systems: Interactions of metal ions with nucleotides, nucleic acids, and their constituents; Sigel, A.; Sigel, H.; Eds. Marcel Dekker: New York, 1996; Vol. 32. pp 27-60. (b) Joyce, G. F. Directed evolution of nucleic acid enzymes [J]. Annu. Rev. Bioche. 2004, 73, 791-836. (c) Noguera, M.; Bertran, J.; Sodupe, M. A Quantum Chemical Study of Cu~(2+) Interacting with Guanine-Cytosine Base Pair. Electrostatic and Oxidative Effects on Intermolecular Proton-Transfer Processes [J]. J. Phys. Chem. A 2004, 108, 333-341. (d) Lippert, B. Multiplicity of metal ion binding patterns to nucleobases [J]. Coord Chem. Rev. 2000, 200-202, 487-516.
    
    [35] (a) Mercuri, F.; Mundy, C. J.; Parrinello, M. Formation of a Reactive Intermediate in Molecular Beam Chemistry of Sodium and Water [J]. J. Phys. Chem. A 2001,105,8423-8427.
    (b)Buck,U.;Steinbach,C.Formation of a Reactive Intermediate in Molecular Beam Chemistry of Sodium and Water[J].J.Phys.Chem.A 1998,102,7333-7336.
    (c) Wong,C.H.S.;Ma,N.L.;Tsang,C,W.A Theoretical Study of Potassium Cation Binding to Glycylglycine(GG) and Alanylalanine (AA) Dipeptides[J].Chem.Eur.J.2002,8,4909-4918.
    [36](a) Bock,C.W.;Katz,A.K.;Glusker,J.P.Hydration of Zinc Ions:A Comparison with Magnesium and Beryllium Ions[J].J.Am.Chem.Soc.1995,117,3754-3765.
    (b) Hartmann,M.;Clark,T.;van Eldik,R.Hydration and Water Exchange of Zinc(Ⅱ) Ions.Application of Density Functional Theory[J].J.Am.Chem.Soc.1997,119,7843-7850.
    [37](a) Jernigan,R.;Raghunathan,G;Bahar,I.Characterization of interactions and metal ion binding sites in proteins[J].Curr.Opin.Struct.Biol.1994,4,256-263.
    (b) Pidcock,E.;Moore,G.R.Structural characteristics of protein binding sites for calcium and lanthanide ions[J].J.Biol.Inorg.Chem.2001,6,479-489.
    (c) Dudev,T.;Lim,C.A DFT/CDM Study of Metal-Carboxylate Interactions in Metalloproteins:Factors Governing the Maximum Number of Metal-Bound Carboxylates[J].J.Am.Chem.Soc.2006,128,1553-1561.
    [38]Rudolph,W.W.;Pye,C.C.Raman Spectroscopic Measurements of Scandium(Ⅲ)Hydration in Aqueous Perchlorate Solution and ab Initio Molecular Orbital Studies of Scandium(Ⅲ) Water Clusters:Does Sc(Ⅲ) Occur as a Hexaaqua Complex?[J].J.Phys.Chem.A 2000,104,1627-1639.
    [39](a) Sanyal,I.;Strange,R.W.;Blackburn,N.J.;Karlin,K.D.Formation of a copper-dioxygen complex(Cu2-O2) using simple imidazole ligands[J].J.Am.Chem.Soc.1991,113,4692-4693.
    (b) Sanyal,I.;Karlin,K.D.;Strange,R.W.;Blackburn,N.J.Chemistry and structural studies on the dioxygen-binding copper -1,2-dimethylimidazole system[J].J.Am.Chem.Soc.1993,115,11259-11270.
    (c) Clerac,R.;Cotton,F.A.;Daniels,L.M.;Gu,J.;Murillo,C.A.;Zhou,H.-C.An Infinite Zigzag Chain and the First Linear Chain of Four Copper Atoms;Still No Copper-Copper Bonding[J].Inorg.Chem.2000,39,4488-4493.
    (e) Himes,R.A.;Park,G.Y.;Barry,A.N.;Blackburn,N.J.;Karlin,K.D.Synthesis and X-ray Absorption Spectroscopy Structural Studies of Cu(Ⅰ) Complexes of Histidyl-Histidine Peptides:The Predominance of Linear 2-Coordinate Geometry [J].J.Am.Chem.Soc.2007,129,5352-5353.
    [40](a) Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange [J].J.Chem.Phys.1993,98,5648-5652.
    (b) Lee,C.;Yang,W.;Parr,R.G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B 1988,37,785-789.
    [41](a) Gonzalez,C.;Schlegel,H.B.Reaction path following in mass-weighted intemal coordinates[J].J.Phys.Chem.1990,94,5523-5527.
    (b) Ishida,K.;Morokuma,K.;Kormornicki,A.The intrinsic reaction coordinate.An ab initio calculation for HNCHCN and H~-+CH_4→CH_4+H~-[J].J.Chem.Phys.1977,66,2153-2156.
    (c) Gonzalez,C.;Schlegel,H.B.An improved algorithm for reaction path following[J].J.Chem.Phys.1989,90,2154-2161.
    [42](a) Ditchfield,R.Self consistent perturbation theory of diamagnetism.I.gauge invariant LCAO method for NMR chemical shifts[J].Mol.Phys.1974,27,789-807.
    (b) Glendening,E.D.;Badenhoop,J.K.;Reed,A.E.;Carpenter,J.E.;Bohmann,J.A.;Weinhold,F.NBO,version 5.0;Theoretical Chemistry Institute,University of Wisconsin:Madison,WI,2000.
    (c) Foresman,J.B.;Frisch,A.E.;Exploring Chemistry With Electronic Structure Methods,2nd ed.;Gaussian,Inc.:Pittsburgh,PA,1996.
    (d) Clark,T.M.;Grandinetti,P.J.Dependence of bridging oxygen ~(17)O quadrupolar coupling parameters on Si-O distance and Si-O-Si angle [J].J.Phys.:Condens.Matter 2003,15,S2387-S2395.
    [43]Reed,A.E.;Curtiss,L.A.;Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint[J].Chem.Rev.1988,88,899-926.
    [44]Frisch,M.J.,et al.Gaussian 03,revision D.01;Gaussian Inc.:Wallingford,CT,2004.
    [45]In this two-center three-electron bond,O_4 provides two electrons and O_4.provides only one electron.Thus the electron cloud of this bond contains a large proportion of O_4,and is closer to the O_4 region.
    [46]The strengthening of O_4∴ O_4,bond is attributed to the decrease of the antibonding electron density,while that of the N_3-H...N_(3') H-bond is due to the increase of the electron density of the N_(3') site(in the in-plane sp~2 hybrid orbital), which favors the H-bond.
    
    [47] The binding of different hydrated metal ions to the O_4/O_4 site leads to lower the SOMO in different degree to HDMO-n because of the different binding ability of mental ions. For example, Na~+(H_2O)_2 and K~+(H_2O)2 make SOMO→HDMO-3; Mg~(2+)(H_2O)_4 and Ca~(2+)(H_2O)_4 make SOMO→HDMO-4.
    
    [48] For UU+2M~(Z+)(H_2O)_n systems, their reaction energies are in the range of -22 ~32 kcal/mol for the corresponding UU + 2M~(Z+)(H_2O)_n→ UU-2M(Z+)(H_2O)_(n-2)...4H_2O (M~(Z+)=Li~+, Na~+, Mg~(2+), Ca~(2+), Zn~(2+)) processes in which four inner-sphere water ligands of two hydrated metal ions are replaced by UU and move to the outer-sphere. Although the reaction energies are slightly positive and thermody-namically non-spontaneous for the divalent cation cases, the reaction processes mentioned above can really occur under normal thermodynamic conditions (heating or thermal fluctuation) (see Table S7 and remark).
    [49] In these transition state structures, because the O_2...O_(2') distance is long, the repulsion between the O_2 and O_(2') electron pairs is relatively small, and the effect of the metal ion binding to pull O_2 and O_(2') closer dominates. Further, the O4...O_(4') site binding of another metal ion may decrease the electron density in the O_2...O_(2') zone, and thus reduces the electronic repulsion between O_2 and O_(2'). Overall, the O_2...O_(2') distance is the shortest among the three cases mentioned in the text.
    
    [50] In the initial reactant complexes, the SOMO (π-orbital) is almost localized on the Ur fragment, while the corresponding HDMO (a π-orbital, too) is localized on the U fragment, indicating that no π-π conjugation exists between the two fragments. However, at the TS, the contraction produces a π-π interaction between these two fragments, and then the SOMO becomes delocalized equiva-lently on the two fragments, with a π~*-antibonding character, as does the HDMO, but with π-bonding character. Further combination of the SOMO and HDMO generates a three-electron π-bond between the two fragments. In addition, in both the initial reactant and transition state complexes, the π orbitals are always localized on the outside part of each U fragment (see Figure S14), and no atomic or- bital components of the atoms at the contact faces(ONO) are involved.Thus the actual π-π overlap distance is far larger than the O...O or N...N distances,the closest U...Ur contacts.As a result,this π-π overlap across their ONO contact zone is very small.
    [51]In order to elucidate the relation of reaction barrier heights with the binding energies for the double metal-cation complexes,the bindings of two magnesium cations without water ligands and with two water ligands to UU(AB-2Mg~(2+) and AB-2Mg~(2+)W)_2) were also considered.The reaction barrier heights of these two complexes are 17.6 and 13.7 kcal/mol,respectively,and their corresponding binding energies are 394.4 and 275.2 kcal/mol,respectively.For both AB-2Mg~(2+)and AB-2Mg~(2+)W_2,the UU PT/ET reactions take place via the PC~πE~πT mechanism.
    (1)(a) Huynh,M.H.V.;Meyer,T.J.Proton-Coupled Electron Transfer[J].Chem.Rev.2007,107,5004-5064.
    (b) Stubbe,J.;Nocera,D.G.;Yee,C.S.;Chang,C.Y.Radical Initiation in the Class I Ribonucleotide Reductase:Long-Range Proton -Coupled Electron Transfer?[J].Chem.Rev.2003,103,2167-2202.
    (c) Alstrum -Acevedo,J.H.;Brennaman,M.K.;Meyer,T.Chemical Approaches to Artificial Photosynthesis.2[J].Inorg.Chem.2005,44,6802-6827.
    (d) Terecek,F.;Syrstad,E.A.Mechanism and Energetics of Intramolecular Hydrogen Transfer in Amide and Peptide Radicals and Cation-Radicals[J].J.Am.Chem.Soc.2003,125,3353-3369.
    (e) Cukier,R.I.;Nocera,D.G Proton-Coupled Electron Transfer [J].Annu.Rev.Phys.Chem.1998,49,337-369.
    (f) Stubbe,J.;van der Donk,W.A.Protein Radicals in Enzyme Catalysis[J].Chem.Rev.1998,95,705-762.
    (g)Mayer,J.M.;Rhile,I.J.Thermodynamics and Kinetics of Proton-Coupled Electron Transfer:Stepwise vs.Concerted Pathways[J].Biochim.Biophys.Acta 2004,1655,51-58.
    (2) Belevich,I.;Verkhovsky,M.I.;Wikstrom,M.Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase[J].Nature 2006,440,829-832.
    (3) Hatcher,E.;Soudackov,A.V.;Hammes-Schiffer.S.Proton-Coupled Electron Transfer in Soybean Lipoxygenase[J]J.Am.Chem.Soc.2004,126,5763-5775.
    (4)(a) Brunold,T.C.;Solomon,E.I.Reversible Dioxygen Binding to Hemerythrin.2.Mechanism of the Proton-Coupled Two-Electron Transfer to O_2 at a Single Iron Center[J].J.Am.Chem.Soc.1999,121,8288-8295.
    (b) Pang,J.;Hay,S.;Scrutton,N.S.;Sutcliffe,M.J.Deep Tunneling Dominates the Biologically Important Hydride Transfer Reaction from NADH to FMN in Morphinone Reductase [J].J.Am.Chem.Soc.2008,130,7092-7097.
    (5)(a) Rhile,I.J.;Mayer,J.M.One-Electron Oxidation of a Hydrogen-Bonded Phenol Occurs by Concerted Proton-Coupled Electron Transfer[J].J.Am.Chem.Soc.2004,126,12718-12719.
    (b) Anglada,J.M.Complex Mechanism of the Gas Phase Reaction between Formic Acid and Hydroxyl Radical.Proton Coupled Electron Transfer versus Radical Hydrogen Abstraction Mechanisms[J].J.Am.Chem.Soc.2004,126,9809-9820.
    (6) DiLabio,G.A.;Ingold,K.U.A Theoretical Study of the Iminoxyl/Oxime Self-Exchange Reaction.A Five-Center,Cyclic Proton-Coupled Electron Transfer [J].J.Am.Chem.Soc.2005,127,6693-6699.
    (7) Mayer,J.M.;Hrovat,D.A.;Thomas,J.L.;Borden,W.T.Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene,Methoxyl /Methanol,and Phenoxyl/Phenol Self-Exchange Reactions[J].J.Am.Chem.Soc.2002,124,11142-11147.
    (8) Skone,J.H.;Soudackov,A.V.;Hammes-Schiffer,S.Calculation of Vibronic Couplings for Phenoxyl/Phenol and Benzyl/Toluene Self-Exchange Reactions:Implications for Proton-Coupled Electron Transfer Mechanisms[J].J.Am.Chem.Soc.2006,128,16655-16663.
    (9) Olivella,S.;Anglada,J.M.;Sole,A.;Bofill,J.M.Mechanism of the Hydrogen Transfer from the OH Group to Oxygen-Centered Radicals:Proton-Coupled Electron-Transfer versus Radical Hydrogen Abstraction[J].Chem.Eur.J.2004,10,3404-3410.
    (10) Chen,X.;Bu,Y.Cation-Modulated Electron Transfer Channel:H-atom Transfer vs Proton-Coupled Electron Transfer with Variable Electron Transfer Channel in Acylamide Units[J].J.Am.Chem.Soc.2007,129,9713-9720.
    (11) DiLabio,G.A.;Johnson,E.R.Lone Pair-π and π-π Interactions Play an Important Role in Proton-Coupled Electron Transfer Reactions[J].J.Am.Chem.Soc.2007,129,6199-6203.
    (12)(a) Jain,A.;Purohit,C.S.;Verma,S.;Sankararamakrishnan,P,.Close Contacts between Carbonyl Oxygen Atoms and Aromatic Centers in Protein Structures:π…π or Lone-Pair…π Interactions?[J].J.Phys.Chem.B 2007,111,8680-8683.
    (b)Egli,M.;Sarkhel,S.Lone Pair-Aromatic Interactions:To Stabilize or Not to Stabilize[J].Acc.Chem.Res.2007,40,197-205.
    (13) de Rege,P.J.;Williams,S.A.;Therien,M.J.Direct evaluation of electronic coupling mediated by hydrogen bonds:implications for biological electron transfer[J].Science 1995,269,1409-1413.
    (14)(a) Carra,C.;Iordanova,N.;Hammes-Schiffer,S.Proton-Coupled Electron Transfer in a Model for Tyrosine Oxidation in Photosystem Ⅱ[J].J.Am.Chem.Soc.2003,125,10429-10436.
    (b) Sjodin,M.;Styring,S.;Wolpher,H.;Xu,Y.;Sun,L.;Hammarstrom,L.Switching the Redox Mechanism:Models for Proton -Coupled Electron Transfer from Tyrosine and Tryptophan[J].J.Am.Chem.Soc.2005,127,3855-3863.
    (c) Sjodin,M.;Irebo,T.;Utas,J.E.;Lind,J.;Merenyi,G;Akermark,B.;Hammarstrom,L.Kinetic Effects of Hydrogen Bonds on Proton-Coupled Electron Transfer from Phenols[J].J.Am.Chem.Soc.2006,125,13076-13083.
    (d) Concepcion,J.J.;Brennaman,M.K.;Deyton,J.R.;Lebedeva,N.V.;Forbes,M.D.E.;Papanikolas,J.M.;Meyer,T.J.Excited-State Quenching by Proton-Coupled Electron Transfer[J].J.Am.Chem.Soc.2007,129,6968-6969.
    (15) Eustis,S.N.;Radisic,D.;Bowen,K.H.;Bachorz,R.A.;Haranczyk,M.;Schenter,G K.;Gutowski,M.Protein Structures Forming the Shell of Primitive Bacterial Organdies[J].Science 2008,309,936-939.
    (16) Tanner,C.;Manta,C.;Leutwyler,S.Probing the Threshold to H Atom Transfer Along a Hydrogen-Bonded Ammonia Wire[J].Science 2003,302,1736-1739.
    (17)(a) Daigoku,K.;Miura,N.;Hashimoto,K.Electronic states of NH_4(NH_3)_n (n=0-4) cluster radicals[J].Chem.Phys.Let.2001,346,81-88.
    (b) Signorell,R.;Palm,H.;Merkt,F.Structure of the ammonium radical from a rotationally resolved photoelectron spectrum[J].J.Chem.Phys.1997,106,6523-6533.
    (c)Herzberg,G Rydberg spectra of triatomic hydrogen and of the ammonium radical [J].Faraday Discuss.Chem.Soc.1981,71,165-173.
    (d) Sattelmeyer,K.W.;Schaefer,H.F.;Stanton,J.F.The equilibrium structure of the ammonium radical Rydberg ground state[J].J.Chem.Phys.2001,114,9863-9865.
    (e) Wright,J.S.;Mckay,D.Stability of the Rydberg Dimer(NH_4)_2[J].J.Phys.Chem.1996,100,7392-7397.
    (18)(a)Pino,G;Gregoire,G;Dedonder-Lardeux,C.;Jouvet,C.;Martrenchard S.;Solgadi,D.A forgotten channel in the excited state dynamics of phe- nol-(ammonia)_n clusters:hydrogen transfer[J].Phys.Chem.Chem.Phys.2000,2,893-900.
    (b) Pino,G A.;Dedonder-Lardeux,C.;Gregoire,G.;Jouvet,C.;Martrenchard,S.;Solgadi,D.Intracluster hydrogen transfer followed by dissociation in the phenol-(NH_3)_3 excited state:PhOH(S_1)→(NH_3)_3PhO +(NH_4)(NH_3)_2[J].J.Chem.Phys.1999,111,10747-10749.
    (c) Ishiuchi,S.;Daigoku,K.;Hashimoto,K.;Fujii,M.Four-color hole burning spectra of phenol /ammonia 1:3 and 1:4 clusters[J].J.Chem.Phys.2004,120,3215-3220.
    (d)Daigoku,K.;Ishiuchi,S.;Sakai,M.;Fujii,M.;Hashimoto,K.Photochemistry of phenol-(NH_3)_n clusters:Solvent effect on a radical cleavage of an OH bond in an electronically excited state and intracluster reactions in the product NH_4(NH_3)_(n-1)(n<5)[J].J.Chem.Phys.2003,119,5149-5158.
    (19)(a) Domcke,W.;Sobolewski,A.L.Unraveling the Molecular Mechanisms of Photoacidity[J].Science 2003,302,1693-1694.(b) Fernandez-Rarnos,A.;Martinez -Nunez,E.;Vazquez,S.A.;Rios,M.A.;Estevez,C.M.;Merchan,M.;Serrano-Andres,L.Hydrogen Transfer vs Proton Transfer in 7-Hydroxy- quinoline·(NH_3)_3:A CASSCF/CASPT2 Study[J].J.Phys.Chem.A.2007,111,5907-5912.
    (c) Manta,C.;Tanner,C.;Leutwyler,S.Excited state hydrogen atom transfer in ammonia-wire and water-wire dusters[J].Int.Rev.Phys.Chem.2005,24,457-488.
    (20)(a) Cheshnovsky,O.;Leutwyler,S.Proton transfer in neutral gas-phase clusters:Naphthol.(NH_3)_n[J].J.Chem.Phys.1988,88,4127-4138.
    (b) Droz,T.;Knochenmuss,R.;Leutwyler,S.Excited-state proton transfer in gas-phase clusters:2-Naphthol·(NH_3)_n[J].J.Chem.Phys.1990,93,4520-4532.
    (c) Breen,J.J.;Peng,L.W.;Willberg,D.M.;Heikal,A.;Cong,P.;Zewail,A.H.Real-time probing of reactions in clusters[J].J.Chem.Phys.1990,92,805-807.
    (d) Hineman,M.F.;Brucker,G.A.;Kelley,D.F.;Bernstein,E.R.Excited-state proton transfer in 1-naphthol/ammonia clusters[J].J.Chem.Phys.1992,97,3341-3347.
    [21](a) Husain,M.;Davidson,V.L.An inducible periplasmic blue copper protein from Paracoccus denitrificans.Purification,properties,and physiological role[J].J.Biol.Chem.1985,260,14626-14629.
    (b) McLendon,G Long-distance elec- tron transfer in proteins and model systems [J]. AcC. Chem. Res. 1988, 21, 160-167. (c) Gorren, A. C; Moenne-Loccoz, P.; Backes, G; de Vries, S.; Sand-ers-Loehr, J.; Duine, J. A. Evidence for a methylammonium-binding site on me-thylamine dehydrogenase of Thiobacillus versutus [J]. Biochemistry 1995, 34, 12926-12931. (d) Nocek, J. M.; Zhou, J. S.; DeForest, S.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; Hoffman, B. M. Theory and Practice of Electron Transfer within Protein-Protein Complexes: Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase [J]. Chem. Rev. 1996, 96, 2459-2489. (e) Labesse, G; Ferrari, D.; Chen, Z.-W.; Rossi, G.-L.; Kuusk, V; McIntire, W. S.; Mathews, F. S. Crystallographic and Spectroscopic Studies of Native, Aminoquinol, and Monovalent Cation-bound Forms of Methylamine Dehydrogenase from Methylobacterium extorquens AMI [J]. J. Biol Chem. 1998, 273, 25703-25712. (f) Niki, K.; Hardy, W. R.; Hill, M. G; Li, H.; Sprinkle, J. R.; Margoliash, E.; Fujita, K.; Tanimura, R.; Nakamura, N.; Ohno, H.; Richards, J. H.; Gray, H. B. Coupling to Lysine-13 Promotes Electron Tunneling through Car-boxylate-Terminated Alkanethiol Self-Assembled Monolayers to Cytochrome c [J]. J. Phys. Chem. B. 2003,107, 9947-9949.
    
    [22] (a) Zhen, Y.-J.; Hoganson, C; Babcock, G T.; Ferguson-Miller, S. Definition of the Interaction Domain for Cytochrome c on Cytochrome c Oxidase [J]. J. Biol. Chem. 1999, 274, 38032-38041. (b) Flock, D.; Helms, V. Protein-protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c [J]. Proteins 2002, 47, 75-85. (c) Leesch, V. W.; Bujons, J.; Mauk, A. G; Hoffman, B. M. Cytochrome c Peroxidase-Cytochrome c Complex: Locating the Second Binding Domain on Cytochrome c Peroxidase with Site-Directed Mutagenesis [J]. Biochemistry 2000,39, 10132-10139.
    
    [23] Sawicka, A.; Skurski, P.; Hudgins, R. R.; Simons, J. Model Calculations Relevant to Disulfide Bond Cleavage via Electron Capture Influenced by Positively Charged Groups [J]. J. Phys. Chem. B 2003,107, 13505-13511.
    
    (24) (a) Anusiewicz, I.; Berdys-Kochanska, J.; Simons, J. Electron Attachment Step in Electron Capture Dissociation (ECD) and Electron Transfer Dissociation (ETD) [J].J.Phys.Chem.A 2005,109,5801-5813.
    (b) Anusiewicz,I.;Berdys-Kochanska,J.;Skurski P.;Simons,J.Simulating Electron Transfer Attachment to a Positively Charged Model Peptide[J].J.Phys.Chem.A 2006,110,1261-1266.
    (c) Sobczyk,M.;Simons,J.The Role of Excited Rydberg States in Electron Transfer Dissociation[J].J.Phys.Chem.B 2006,110,7519-7527.
    (25) Frisch,M.J.;et al.Gaussian 03,Revision C.02;Gaussian,Inc.:Wallingford,CT,2004.
    (26)(a) Moiler,C.;Plesset,M S.Note on an Approximation Treatment for Many-Electron Systems[J].Phys.Rev.1934,46,618-622.
    (b) Head-Gordon,M.;Pople,J.A.;Frisch,M.J.MP2 energy evaluation by direct methods[J].Chem.Phys.Lett.1988,153,503-506.
    (c) Frisch,M.J.;Head-Gordon,M.;Pople,J.A.A direct MP2 gradient method[J].Chem.Phys.Lett.1990,166,275-280.
    (d)Frisch,M.J.;Head-Gordon,M.;Pople,J.A.Semi-direct algorithms for the MP2energy and gradient[J].Chem.Phys.Lett.1990,166,281-289.
    (e) Head-Gordon,M.;Head-Gordon,T.Analytic MP2 frequencies without fifth-order storage.Theory and application to bifurcated hydrogen bonds in the water hexamer[J].Chem.Phys.Lett.1994,220,122-128.
    (f) Saebo,S.;Almlof,J.Avoiding the integral storage bottleneck in LCAO calculations of electron correlation[J].Chem.Phys.Lett.1989,154,83-89.
    (27) Pople,J.A.;Krishnan,R.;Schlegel,H.B.;Binkley,J.S.Electron correlation theories and their application to the study of simple reaction potential surfaces[J].Int.J.Quant.Chem.1978,14,545-560.
    (28) Purvis,G.D.;Bartlett,R.J.A full coupled-cluster singles and doubles model:The inclusion of disconnected triples[J].J.Chem.Phys.1982,76,1910-1918.
    (29)(a) Gonzalez,C.;Schlegel,H.B.Reaction path following in mass-weighted intemal coordinates[J].J.Phys.Chem.1990,94,5523-5527.
    (b) Ishida,K.;Morokuma,K.;Kormornicki,A.The intrinsic reaction coordinate.An ab initio calculation for HNC→HCN and H~-+CH_4→CH_4+H~-[J].J.Chem.Phys.1977,66,2153-2156.
    (c) Gonzalez,C.;Schlegel,H.B.An all-electron numerical method for solving the local density functional for polyatomic molecules[J].J.Chem. Phys.1989,90,2154-2161.
    (30)(a) Gellene,G.I.;Cleary,D.A.;Porter,R.F.An improved algorithm for reaction path following[J].J.Chem.Phys.1982,77,3471-3477.
    (b) Gellene,G I.;Porter,R.F.;Jeon,S.J.;Raksit,A.B.;Gellene,G I.;Porter,R.E Formation of hypervalent ammoniated radicals by neutralized ion beam techniques[J].J.Am.Chem.Soc.1985,107,4129-4133.
    (c) Misaizu,F.;Houston,P.L.;Nishi,N.;Shinohara,H.;Kondow,T.;Kinoshita,M.Formation of protonated ammonia cluster ions:Two-color two-photon ionization study[J].J.Chem.Phys.1993,98,336-341.
    (d) Wei,S.;Purnell,J.;Buzza,S.A.;Gastleman.A.W.Jr.Ultrafast reaction dynamics of electronically excited state of ammonia clusters[J].J.Chem.Phys.1993,99,755-757.
    (e) Kassab,E.;Evleth,E.M.Theoretical study of the ammoniated NH_4 radical and related structures[J].J.Am.Chem.Soc.1987,109,1653-1661.
    (31)(a) Paik,D.H.;Lee,I-R.;Yang,D-S.;Baskin,J.S.;Zewail,A.H.Electrons in Finite-Sized Water Cavities:Hydration Dynamics Observed in Real Time[J].Science 2004,306,672-675.
    (b) Skurski,P.;Rak,J.;Simons,J.;Gutowski,M.Quasidegeneracy of Zwitterionic and Canonical Tautomers of Arginine Solvated by an Excess Electron[J].J.Am.Chem.Soc.2001,123,11073-11074.
    (c)Tauber,M.J.;Mathies,R.A.Structure of the Aqueous Solvated Electron from Resonance Raman Spectroscopy:Lessons from Isotopic Mixtures[J].J.Am.Chem.Soc.2003,125,1394-1402.
    (d) Turi,L.;Sheu,W.-S.;Rossky,P.J.Characterization of Excess Electrons in Water-Cluster Anions by Quantum Simulations [J].Science,2005,309,914-917.
    (32) We inferred that there was an intermediate in which the transferring hydrogen is localized one of H_2O.But all attempts failed to find this intermediate.
    (1) Butler,J.;Land,E.J.;Pr(u|¨)tz,W.A.;Swallow,A.J.Charge transfer between tryptophan and tyrosine in proteins[J].Biochim.Biophys.Acta 1982,705,150-162.
    (2) Faraggi,M.;DeFilippis,M.R.;Klapper,M.H.Long-range electron transfer between tyrosine and tryptophan in peptides[J].J.Am.Chem.Soc.1989,111,5141-5145.
    (3) Lee,C.-Y.A possible biological role of the electron transfer between tyrosine and tryptophan:Gating of ion channels[J].FEBS Lett.1992,299,119-123.
    [4]Chert,Z.-W.;Koh,M.;Van Dfiessche,G V.;Beeumen,J.J.V.;Bartsch,R.G;Meyer,T.E.;Cusanovich,M.A.;Mathews,F.S.The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophie bacterium[J].Science 1994,266,430-432.
    [5]Weinstein,M.;Alfassi,Z.B.;DeFelippis,M.R.;Klapper,M.H.;Faraggi,M.Long range electron transfer between tyrosine and tryptophan in hen egg-white lysozyme[J].Biochim.Biophys.Acta 1991,1076,173-178.
    [6]Aubert,C.;Mathis,E;Eker,A.E M.;Brettel,K.Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans[J].Proc.Natl.Acad.Sci.USA 1999,96,5423-5427.
    [7]Mukherjee,T.;Joshi,R.Effect of solvent viscosity,polarity and pH on the charge transfer between tryptophan radical and tyrosine in bovine serum albumin:a pulse radiolysis study[J].Biophys.Chem.2003,103,89-98.
    [8]Bobrowski,K.;Holcman,J.;Poznanski,J.;Wierzchowski,K.L.Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins.7.Trp ·→TyrO" radical transformation in hen egg-white lysozyme Effects of pH,temperature,Trp62 oxidation and inhibitor binding[J].Biophys.Chem.1997,63,153-166.
    [9]Stuart-Audette,M.;Blouquit,Y.;Faraggi,M.;Sicard-Roselli,C.;Houee-Leven,C.;Jolles,E Re-evaluation of intramolecular long-range electron transfer between tyrosine and tryptophan in lysozymes[J].Eur J.Biockem.2003,270, 3565-3571.
    
    [10] (a) Bollinger, J. M.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofac-torof E. coli Ribonucleotide Reductase. 3. Kinetics of the Limiting Fe~(2+) Reaction by Optical, EPR, and Moessbauer Spectroscopies [J]. J. Am. Chem. Soc. 1994,116, 8024-8032. (b) Reece, S. Y; Stubbe, J.; Nocera, D. G pH dependence of charge transfer between tryptophan and tyrosine in dipeptides [J]. Biochim. Biophys. Acta 2005,1706,232-238.
    
    [11] (a) Zumft, W. G. Cell Biology and Molecular Basis of Denitrification [J]. Mi-crobiol. Mol. Biol. Rev. 1997, 61, 533-616. (b) Yamaguchi, K.; Shuta, K.; Suzuki, S. Roles of Trp144 and Tyr203 in copper-containing nitrite reductase from Achromobacter cycloclastes IAM1013 [J]. Biochem. Biophys. Res. Commun. 2005, 336, 210-214.
    
    (12) (a) Sancar, A. Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors [J]. Chem. Rev. 2003,103, 2203-2238. (b) Aubert, C; Brettel, K.; Mathis, P.; Eker, A. P. M.; Boussac, A. EPR Detection of the Transient Tyrosyl Radical in DNA Photolyase from Anacystis nidulans [J]. J. Am. Chem. Soc. 1999, 121, 8659-8660. (c) Reece, S. Y; Hodgkiss, J. M.; Stubbe, J.; Nocera, D. G Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology [J]. Phil. Trans. R. Soc. B 2006, 361, 1351-1364.
    
    (13) (a) Sneeden, J. L.; Loeb, L. A. Mutations in the R2 Subunit of Ribonucleotide Reductase That Confer Resistance to Hydroxyurea [J]. J. Biol. Chem. 2004, 279, 40723-40728. (b) Baldwin, J.; Krebs, C; Ley, B. A.; Edmondson, D. E.; Huynh, B. H.; Bollinger, J. M., Jr. Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit of Escherichia coli Ribonucleotide Reductase. 1. Evidence for a Transient Tryptophan Radical [J]. J. Am. Chem. Soc. 2000,122, 12195-12206. (c) Bollinger, J. M.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Ed-monson, D. E.; Stubbe, J. Mechanism of Assembly of the Tyrosyl Radi-cal-Diiron(III) Cofactor of E. coli Ribonucleotide Reductase. 2. Kinetics of the Excess Fe~(2+) Reaction by Optical,EPR,and Moessbauer Spectroscopies[J].J.Am.Chem.Soc.1994,116,8015-8023.
    (14) Long Y.-T.;Abu-Irhayem E.;Kraatz H.-B.Peptide Electron Transfer:More Questions than Answers[J].Chem.Eur.J.2005,I1,5186-5194.
    (15) Isied,S.S.;Ogawa,M.Y.;Wishart,J.F.Peptide-mediated intramoleeular elec-tron transfer:long-range distance dependence[J].Chem.Rev.1992,92,381-394
    (16)(a) Petrov,E.G;Shevchenko,Y.V.;Teslenko,V.I.;May,V.Nonadiabatic do-nor-aceeptor electron transfer mediated by a molecular bridge:A unified theoretical description of the superexchange and hopping mechanism[J].J.Chem.Phys.2001,115,7107-7122.
    (b) Ostapenko,M.G;Petrov,E.G The donor -aceeptor electron transfer with participation of short polymer chains[J].Phys.Status Solidi B 1989,152,239-247.
    (17)(a) DeFelippis,M.R.;Faraggi,M.;Klapper M.H.Evidence for through-bond long-range electron transfer in peptides[J].J.Am.Chem.Soc.1990,112,5640-5642.
    (b) Bobrowski,K.;Holcman,J.;Poznanski,J.;Ciurak,M.;Wierz-ehowski,K.L.Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins.5.Trp.bul..fwdarw.Tyr.bul.radical transformation in H-Trp-(Pro)_n-Tyr-OH series of peptides[J].J.Phys.Chem.1992,96,10036-10043.
    (c) Mishra,A.K.;Chandrasekar,R.;Faraggi,M.;Klapper,M.H.Long-range electron transfer in peptides.Tyrosine reduction of the indolyl radical :reaction mechanism,modulation of reaction rate,and physiological considerations [J].J.Am.Chem.Soc.1994,116,1414-1422.
    (18) Polo,F.;Antonello,S.;Formaggio,F.;Toniolo,C.;Maran,F.Evidence Against the Hopping Mechanism as an Important Electron Transfer Pathway for Conformationally Constrained Oligopeptides[J].J Am.Chem.Soc.2005,127,492-493.
    (19) Aubert,C.;Vos,M.H.;Mathis,P.;Eker,A.P.M.;Brettel,K.Intraprotein radical transfer during photoactivation of DNA photolyase[J].Nature 2000,405,586-590.
    (20) Stubbe,J.;Nocera,D.G;Yee,C.S.;Cha,ng,M.C.Y.Radical Initiation in the Class I Ribonucleotide Reductase:Long-Range Proton-Coupled Electron Transfer?[J].Chem.Rev.,2003,103,2167-2202.
    (21)(a) Shih,C.;Museth,A.K.;Abrahamsson,M.;Blanco-Rodriguez,A.M.;Di Bilio,A.J.;Sudhamsu,J.;Crane,B.R.;Ronayne,K.L.;Towrie,M.;Vlcek,A.;Richards,J.H.;Winkler,J.R.;Gray,H.B.Tryptophan-Accelerated Electron Flow Through Proteins[J].Science 2008,320,1760-1762.
    (b) Bollinger J.M.Jr.Electron Relay in Proteins[J].Science 2008,320,1730-1731.
    (22).Jovanovic,S.V.;Harriman,A.;Simic,M.G Electron-transfer reactions of tryptophan and tyrosine derivatives[J].d.Phys.Chem.1986,90,1935-1939.
    (23)(a) Pond,A.E.;Ledbetter,A.P.;Sono,M.;Goodin,D.B.;Dawson,J.H.In Electron transfer in chemistry,Weinheim,Germany:Wiley-VCH.2001;vol.3.1.4(ed.V.Balzani),pp.56-104.
    (b) Ferreira,K.N.;Iverson,T.M.;Maghlaoui,K.;Barber,J.;Iwata,S.Architecture of the Photosynthetic Oxygen-Evolving Center[J].Science 2004,303,1831-1838
    (24) Mayer,J.M.;Hrovat,D.A.;Thomas,J.L.;Borden,W.T.Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene,Methoxyl/Methanol,and Phenoxyl/Phenol Self-Exchange Reactions[J].d.Am.Chem.Soc.2002,124,11142-11147.
    (25)(a) DiLabio,G.A.;Ingold,K.U.A Theoretical Study of the Iminoxyl/Oxime Self-Exchange Reaction.A Five-Center,Cyclic Proton-Coupled Electron Transfer [J].J.Am.Chem.Soc.2005,127,6693-6699.(b) DiLabio,G.A.;Johnson,E.R.Lone Pair-π and π-π Interactions Play an Important Role in Proton-Coupled Electron Transfer Reactions[J].J.Am.Chem.Soc.2007,129,6199-6203.
    (26) Skone,J.H.;Soudackov,A.V.;Hammes-SchiiTer,S.Calculation of Vibronic Couplings for Phenoxyl/Phenol and Benzyl/Toluene Self-Exchange Reactions:Implications for Proton-Coupled Electron Transfer Mechanisms[J].J.Am.Chem.Soc.2006,128,16655-16663.
    (27) Chen,X.;Bu,Y.Cation-Modulated Electron-Transfer Channel:H-Atom Transfer vs Proton-Coupled Electron Transfer with a Variable Electron-Transfer Channel in Acylamide Units[J].J.Am.Chem.Soc.2007,129,9713-9720.
    (28) Tishchenko, O.; Truhlar, D. G; Ceulemans, A.; Nguyen; M. T. A Unified Perspective on the Hydrogen Atom Transfer and Proton-Coupled Electron Transfer Mechanisms in Terms of Topographic Features of the Ground and Excited Potential Energy Surfaces As Exemplified by the Reaction between Phenol and Radicals [J]. J. Am. Chem. Soc., 2008,130, 7000-7010.
    
    (29) Hatcher, E.; Soudackov, A. V; Hammes-Schiffer, S. Proton-Coupled Electron Transfer in Soybean Lipoxygenase [J]. J. Am. Chem. Soc. 2004,126, 5763-5775.
    
    (30) Pratt, R. C; Stack T. D. P. Intramolecular Charge Transfer and Biomimetic Reaction Kinetics in Galactose Oxidase Model Complexes [J]. J. Am. Chem. Soc. 2003,125, 8716-8717.
    
    (31) (a) Carra, C; Iordanova, N.; Hammes-Schiffer, S. Proton-Coupled Electron Transfer in a Model for Tyrosine Oxidation in Photosystem II [J]. J. Am. Chem. Soc. 2003, 125, 10429-10436. (b) Sjodin, M.; Styring, S.; Wolpher, H.; Xu, Y; Sun, L.; Hammarstrom, L. Switching the Redox Mechanism: Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan [J]. J. Am. Chem. Soc. 2005, 127, 3855-3863. (c) Sjodin, M; Irebo, T; Utas, J. E.; Lind, J.; Mer-enyi, G; Akermark, B.; Hammarstrom, L. Kinetic Effects of Hydrogen Bonds on Proton-Coupled Electron Transfer from Phenols [J]. J. Am. Chem. Soc. 2006, 128, 13076-13083. (d) Concepcion, J. J.; Brennaman, M. K.; Deyton, J. R.; Le-bedeva, N. V; Forbes, M. D. E.; Papanikolas, J. M.; Meyer, T. J. Excited-State Quenching by Proton-Coupled Electron Transfer [J]. J. Am. Chem. Soc. 2007, 129, 6968-6969.
    
    (32) Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes [J]. Chem. Rev. 2004,104, 3947-3980.
    
    (33) (a) Nocek, J. M.; Zhou, J. S.; De Forest, S.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; Hoffman, B. M. Theory and Practice of Electron Transfer within Protein-Protein Complexes: Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase [J]. Chem. Rev., 1996, 96, 2459-2490. (b) Tanaka, M.; Ishimori, K.; Mukai, M.; Kitagawa, T.; Morishima, I. Catalytic Ac- tivities and Structural Properties of Horseradish Peroxidase Distal His42→Glu or Gin Mutant[J].Biochemistry 1997,36,9889-9898.
    (34)(a) Tommos,C.;Babcock,G T.Oxygen Production in Nature:A Light-Driven Metalloradical Enzyme Process[J]Acc.Chem.Res.1998,31,18-25.
    (c) Loll,B.;Kern,J.;Saenger,W.;Zouni,A.;Biesiadka,J.Towards complete cofactor arrangement in the 3.0(?)...resolution structure of photosystem Ⅱ[J].Nature 2005,438,1040-1044.
    (35)(a) Volbeda,A.;Fontecilla-Camps,J.C.Structure-function relationships of nickel-iron sites in hydrogenase and a comparison with the active sites of other nickel-iron enzymes[J].Coord.Chem.Rev.2005,249,1609-1619.
    (b) Peters,J.W.;Lanzilotta,W.N.;Lemon,B.J.;Seefeldt,L.C.X-ray Crystal Structure of the Fe-Only Hydrogenase(CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution[J].Science 1998,282,1853-1858.
    (36) Frisch,M.J.;et al.Gaussian 03,Revision C.02;Gaussian,Inc.:Wallingford,CT,2004.
    (37)(a) Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange [J].J.Chem.Phys.1993,98,5648-5652.Co) Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B 1988,37,785-789.
    (38)(a) Ditchfield,R.;Hehre,W.J.;Pople,J.A.Self-Consistent Molecular-Orbital Methods.IX.An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules[J].J.Chem.Phys.1971,54,724-728.
    (b) Hehre,W.J.;Ditchfield,R.;Pople,J.A.Self-Consistent Molecular Orbital Methods.Ⅻ.Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules[J].J.Chem.Phys.1972,56,2257-2261.
    (c)Hariharan,P.C.;Pople,J.A.Influence of polarization functions on MO hydrogenation energies[J].Theor Chim.Acta 1973,28,213-222.
    (d) Hariharan,P.C.;Pople,J.A.Accuracy of AI-In equilibrium geometries by single determinant molecular orbital theory[J].Mol.Phys.1974,27,209-214.
    (e) Gordon,M S.The isomers of silacydopropane[J].Chem.Phys.Lett.19,80,76,163-168.
    (f) Francl,M.M.;Pietro,W.J.;Hehre,W.J.;Binkley,J.S.;Gordon,M.S.;Defrees,D.J.;Pople,J.A.Self-consistent molecular orbital methods.ⅩⅫⅠ.A polarization -type basis set for second-row elements[J].J.Chem.Phys.1982,77,3654-3665.
    (39) Kendall,R.A.;Dunning,T.H.;Harrison,R.J.Electron affnifies of the first-row atoms revisited.Systematic basis sets and wave functions[J].J.Chem.Phys.1992,96,6796-6806.
    (40)(a) Gonzalez,C.;Schlegel,H.B.Reaction path following in mass-weighted internal coordinates[J].J.Phys.Chem.1990,94,5523-5527.
    (b) Ishida,K.;Morokuma,K.;Kormornicki,A.The intrinsic reaction coordinate.An ab initio calculation for HNC→HCN and H~-+CH_4→CH_4+H~-[J].J.Chem.Phys.1977,66,2153-2156.
    (c) Gonzalez,C.;Schlegel,H.B.An all-electron numerical method for solving the local density functional for polyatomic molecules[J].J.Chem.Phys.1989,90,2154-2161.
    (41) Delley,B.An all-electron numerical method for solving the local density func-tional for polyatomic molecules[J].J.Chem.Phys.1990,92,508-517.
    (42) Cerius2.BIOSYM/Molecular Simulations:San Diego,CA,1996.
    (43) Beche,A.D.A multicenter numerical integration scheme for polyatomic molecules [J].J.Chem.Phys.1988,$$,2547-2553.
    (44)(a) Liu,Y.;Tuckerman,M.E.Generalized Gaussian moment thermostatting:A new continuous dynamical approach to the canonical ense[J].J.Chem.Phys.2000,112,1685-1700.
    (b) Windiks,R.;Delley,B.Massive thermostatting in isothermal density functional molecular dynamics simulations[J].J.Chem.Phys.2003,119,2481-2487.
    (45)(a) Adir,N.;Lemer,N.The Crystal Structure of a Novel Unmethylated Form of C-phycocyanin,a Possible Connector Between Cores and Rods in Phycobilisomes [J].J.Biol.Chem.2003,278,25926-25932.(b) Schmidt,M.;Krasselt,A.;Reuter,W.Local protein flexibility as a prerequisite for reversible chromophore isomerization in α-phycoerythrocyanin[J].Biochim.Biophys.Acta 2006,1764,55-62.
    (c) Schmidt,M.;Patel,A.;Zhao,Y.;Reuter,W.Structural Basis for the Photochemistry of α-Phycoerythrocyanin[J].Biochemistry,2007,46,416-423.
    (d) Stec,B.;Troxler,R.F.;Teeter,M.M,Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly [J].Biophys.J.1999,76,2912-2921.
    (46) Galian,R.E.;Pastor-Perez,L.;Miranda,M.A.;Perez-Prieto,J.Intramolecular Electron Transfer between Tyrosine and Tryptophan Photosensitized by a Chiral π,π~* Aromatic Ketone[J].Chem.Eur.J.2005,11,3443-3448.
    (47)(a) Morozova,O.B.;Yurkovskaya,A.V.;Vieth,H.-M.;Sagdeev,R.Z.Intramolecular Electron Transfer in Tryptophan-Tyrosine Peptide in Photoinduced Reaction in Aqueous Solution[J].J.Phys.Chem.B 2003,107,1088-1096.
    (b)Morozova,O.B.;Yurkovskaya,A.V.;Sagdeev,R.Z.Reversibility of Electron Transfer in Tryptophan-Tyrosine Peptide in Acidic Aqueous Solution Studied by Time-Resolved CIDNP[J].J.Phys.Chem.B 2005,109,3668-3675.
    (48) Chert,X.;Zhang,L.;Wang,Z.;Li,J.;Wang,W.;Bu,Y.Relay Stations for Electron Hole Migration in Peptides:Possibility for Formation of Three-Electron Bonds along Peptide Chains[J].J.Phys.Chem.B,2008,112,14302-14311.
    (49) It is necessary to point out that the structure of the product(TrpGly_nTyr-AH)obtained by DFT optimizations is not the completely same as that in the dynamic processes.This is because that the result ofDFT optimizations is a minimum on the potential energy surface and AIMD simulations give a transient conformational state to favor proton/electron transfer.
    (50) Seyedsayamdost,M.R.;Yee,C.S.;Reece,S.Y.;Nocera,D.G;Stubbe,J.pH Rate Profiles of F_nY_(356)-R2s(n = 2,3,4) in Escherichia coli Ribonucleotide Reductase:Evidence that Y_(356) IS a Redox-Active Amino Acid along the Radical Propagation Pathway[J].J.Am.Chem.Soc.2006,128,1562-1568.
    (1) Page,C.C.;Moser,C.C.;Chen,X.X.;Dutton,P.L.Natural engineering principles of electron tunnelling in biological oxidation-reduction[J].Nature 1999,402,47-52.
    (2) Wishart,J.F.;Nocera,D.G.,Eds.Photochemistry and Radiation Chemistry,Complementary Methods for the Study of Electron-Transfer.ACS Advances in Chemistry Series 254,American Chemical Society:Washington,DC 1998.
    (3) Prytkova,T.R.;Kurnikov,I.V.;Beratan,D.N.Coupling Coherence Distinguishes Structure Sensitivity in Protein Electron Transfer[J].Science 2007,315,622-625.
    (4) Yang,H.;Luo,G.B.;Karnchanaphanurach,P.;Louie,T.M.;Rech,I.;Cova,S.;Xun,L.Y.;Xie,X.S.Protein Conformational Dynamics Probed by Single -Molecule Electron Transfer[J].Science 2003,302,262-266.
    (5) Osyczka,A.;Moser,C.C.;Daldal,F.;Dutton,P.L.Reversible redox energy coupling in electron transfer chains[J].Nature 2004,427,607-612.
    (6) Belevich,I.;Verkhovsky,M.I.;Wikstrom,M.Proton-coupled electron transfer drives the proton pump of cytochrome oxidase[J].Nature 2006,440,829-832.
    (7) Bauer,A.;Westkamper,F.;Grimme,S.;Bach,T.Catalytic enantioselective reactions driven by photoinduced electron transfer[J].Nature 2005,436,1139-1140.
    (8) Wasielewski,M.R.Distance dependencies of electron transfer reactions.In Photoinduced Electron Transfer.Fox,M.A.,Chanon,M.,Eds.;Amsterdam:Elsevier 1988,Vol.A.pp 161-206.
    (9) Pujols-Ayala,I.;Sacksteder,C.A.;Barry,B.A.Redox-Active Tyrosine Residues:Role for the Peptide Bond in Electron Transfer[J].J.Am.Chem.Soc.2003,125,7536-7538.
    (10) Shin,Y.G.;Newton,M.D.;Isied,S.S.Redox-Active Tyrosine Residues:Role for the Peptide Bond in Electron Transfer[J].J.Am.Chem.Soc.2003,125,3722-3732.
    (11) Malak,R.A.;Gao,Z.;Wishart,J.E;Isied,S.S.Long-Range Electron Transfer Across Peptide Bridges:The Transition from Electron Superexchange to Hop-ping[J].J.Am.Chem.Soc.2004,126,13888-13889.
    (12) Weinkauf,R.;Aicher,E;Wesley,G;Grotemeyer,J.;Schlag,E.W.Femtosecond versus Nanosecond Multiphoton Ionization and Dissociation of Large Molecules[J].J.Phys.Chem.1994,98,8381-8391.
    (13) Weinkauf,R.;Schanen,P.;Yang,D.;Soukara,S.;Schlag,E.W.Elementary Processes in Peptides:Electron Mobility and Dissociation in Peptide Cations in the Gas Phase[J].J.Phys.Chem.1995,99,11255-11265.
    (14) Weinkauf,R.;Schanen,P.;Metsala,A.;Schlag,E.W.;Burgle,M.;Kessler,H.Highly Efficient Charge Transfer in Peptide Cations in the Gas Phase:Threshold Effects and Mechanism[J].J.Phys.Chem.1996,100,18567-18585.
    (15) Remacle,E;Levine,R.D.;Schlag,E.W.;Weinkauf,R.Ion Transport in a Chemically Prepared Polypyrrole/Poly(styrene-4-sulfonate) Composite[J].J.Phys.Chem.1999,103,10143-10158.
    (16) Schlag,E.W.;Sheu,S.Y.;Yang,D.Y.;Selzle,H.L.;Lin,S.H.Theory of Charge Transport in Polypeptides[J].J.Phys.Chem.B 2000,104,7790-7794.
    (17) Petrov,E.G;Shevchenko,Y.V.;Teslenko,V.I.;May,V.Nonadiabatic donor -acceptor electron transfer mediated by a molecular bridge:A unified theoretical description of the superexchange and hopping mechanism[J].J.Chem.Phys.2001,115,7107-7122.
    (18) Morita,T.;Kimura,S.Long-Range Electron Transfer over 4 nm Governed by an Inelastic Hopping Mechanism in Self-Assembled Monolayers of Helical Peptides[J].J.Am.Chem.Soc.2003,125;8732-8733.
    (19) Giese,B.;Napp,M.;Jacques,O.;Boudebous,H.;Taylor,A.M.;Wirz,J.Multistep Electron Transfer in Oligopeptides:Direct Observation of Radical Cation Intermediates[J].Angew.Chem.lnt.Ed 2005,44,4073-4075.
    (20) Schlag,E.W.;Sheu,S.Y.;Yang,D.Y.;Selzle,H.L.;Lin,S.H.Charge conductivity in peptides:Dynamic simulations of a bifunctional model supporting experimental data[J].Proc.Natl.Acad.Sci.USA 2000,97,1068-1072.
    (21) Woutersen,S.;Mu,Y.;Stock,G;Harem,P.Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy [J].Proc.Natl.Acad.Sci.USA 2001,98,11254-11258.
    (22) Schlag,E.W.;Sheu,S.Y.;Yang,D.Y.;Selzle,H.L.;Lin,S.H.Distal Charge Transport in Peptides[J].Angew.Chem.Int.Ed.2007,46,3196-3210.
    (23) DiLabio,G A.;Ingold,K.U.A Theoretical Study of the Iminoxyl/Oxime Self-Exchange Reaction.A Five-Center,Cyclic Proton-Coupled Electron Transfer[J].J.Am.Chem.Soc.2005,127,6693-6699.
    (24) DiLabio,G A.;Johnson,E.R.Lone Pair-π and π-π Interactions Play an Important Role in Proton-Coupled Electron Transfer Reactions[J].J.Am.Chem.Soc.2007,129,6199-6203.
    (25) Chen,X.;Bu,Y.Cation-Modulated Electron-Transfer Channel:H-Atom Transfer vs Proton-Coupled Electron Transfer with a Variable Electron-Transfer Channel in Acylarnide Units[J].d.Am.Chem.Soc.2007,129,9713-9720.
    (26) Jain,A.;Purohit,C.S.;Verma,S.;Sankararamakrishnan,R.Close Contacts between Carbonyl Oxygen Atoms and Aromatic Centers in Protein Structures:π…π or Lone-Pair…π Interactions?[J]J.Phys.Chem.B 2007,111,8680-8683.
    (27) Egli,M.;Sarkhel,S.Lone Pair-Aromatic Interactions:To Stabilize or Not to Stabilize[J].Acc.Chem.Res.2007,40,197-205.
    (28) Burley,S.K.;Petsko,G A.Aromatic-aromatic interaction:a mechanism of protein structure stabilization[J].Science 1985,229,23-28.
    (29) Dougherty,D.A.Cation-π Interactions in Chemistry and Biology:A New View of Benzene,Phe,Tyr,and Trp[J].Science 1996,271,163-168.
    (30) Quinonero,D.;Garau,C.;Rotger,C.;Frontera,A.;Ballester,P.;Costa,A.;Deya,P.M.Anion-π Interactions:Do They Exist?[J].Angew.Chem.Int.Ed.2002,41,3389-3392.
    (31) de Rege,P.J.;Williams,S.A.;Therien,M.J.Direct evaluation of electronic coupling mediated by hydrogen bonds:implications for biological electron transfer[J].Science 1995,269,1409-1413.
    (32) Sch(o|¨)neich,C.;Pogocki,D.;Hug,G L.;Bobrowski,K.Free Radical Reactions of Methionine in Peptides:Mechanisms Relevant to β-Amyloid Oxidation and Alzheimer's Disease[J].J.Am.Chem.Soc.2003,125,13700-13713.
    (33) Chatgilialoglu,C.;Asmus,K.-D.,Sulfur-Centered Reactive Intermediates in Chemistry and Biology Penum Press,New York 1991,pp.389-399.
    (34) Clark,T.Odd-dectron sigma bonds[J].J.Am.Chem.Soc.1988,110,1672-1678.
    (35) Braida,B.;Hazebroucq,S.;Hiberty,P.C.Methyl Substituent Effects in[H_nX∴XH_n]~+ Three-Electron-Bonded Radical Cations(X = F,O,N,CI,S,P;n = 1-3).An ab Initio Theoretical Study[J].J.Am.Chem.Soc.2002,124,2371-2378.
    (36) Braida,B.;Thogersen,L.;Wu,W.;Hiberty,P.C.Stability,Metastability,and Unstability of Three-Electron-Bonded Radical Anions.A Model ab Initio Theoretical Study[J].J.Am.Chem.Soc.2002,124,11781-11790.
    (37) Pauling,L.THE NATURE OF THE CHEMICAL BOND.Ⅱ.THE ONE-ELECTRON BOND AND THE TI-/REE-ELECTRON BOND[J].J.Am.Chem.Soc.1931,53,3225-3237.
    (38) James,M.A.;McKee,M.L.;lilies,A.J.Gas-Phase Bond Strength and Atomic Connectivity Studies of the Unsymmetrical Two-Center Three-Electron Ion,[Et_2S∴SMe_2]~+[J].J.Am.Chem.Soc.1996,118,7836-7842.
    (39) Gauduel,Y.;Gelabert,H.;Guilloud,F.J.Real-Time Probing of a Three-Electron Bonded Radical:Ultrafast One-Electron Reduction of a Disulfide Biomolecule[J].J.Am.Chem.Soc.2000,122,5082-5091.
    (40) Goez,M.;Rozwadowski,J.;Marciniak,B.CIDNP Spectroscopic Observation of(S:.+N) Radical Cations with a Two-Center Three-Electron Bond During the Photooxidation ofMethionine[J].Angew.Chem.Int.Ed.1998,37,628-630.
    (41) Sch(o|¨)neich,C.;Pogocki,D.;Hug,G.L.;Bobrowski,K.Real-Time Probing of a Three-Electron Bonded Radical:Ultrafast One-Electron Reduction of a Disulfide Biomolecule[J].J.Am.Chem.Soc.2003,125,13700-13713.
    (42) Pogocki,D.;Serdiuk,K.;Sch(O|¨)neich,C.Static and Time-Resolved Spectroscopic Studies of Low-Symmetry Ru(II) Polypyridyl Complexes[J].d.Phys.Chem.A 2003,107,7032-7042.
    (43) Bobrowski,K.;Hug,G.L.;Pogocki,D.;Marciniak,B.;Sch(o|¨)neich,C.Sulfur Radical Cation-Peptide Bond Complex in the One-Electron Oxidation of S-Methylglutathione[J].J.Am.Chem.Soc.2007,129,9236-9245.
    (44) Sch(o|¨)neich,C.Redox processes of methionine relevant to beta-amyloid oxidation and Alzheimer's disease[J].Arch.Biochem.Biophys.2002,397,370-376.
    (45) Sch(o|¨)neich,C.Methionine oxidation by reactive oxygen species:Reaction mechanisms and relevance to Alzheimer's disease[J].Biochim.Biophys.Acta 2005,1703,111-119.
    (46) Rauk,A.;Armstrong,D.A.;Faidie,D.P.Is Oxidative Damage by β-Amyloid and Prion Peptides Mediated by Hydrogen Atom Transfer from Glycine α-Carbon to Methionine Sulfur within 13-Sheets?[J].J.Am.Chem.Soc.2000,122,9761-9767.
    (47) In this work,the amino acids will be represented by their three-letter abbrevia-tions:Gly for glycine,Ala for alanine,Val for valine,Asp for asparagine,Cys for cysteine,Met for methionine,His for histidine,Phe for phenylalanine,Try for tyrosine,and Trp for tryptophan.
    (48) Boys,S.F.;Bernardi,E The calculation of small molecular interactions by the differences total energies.Some procedures with reduced errors[J].Mol.Phys.1970,19,553-559.
    (49) Rappe,A.K.;Bernstein,E.R.Ab Initio Calculation of Nonbonded Interactions:Are We There Yet?[J].J.Phys.Chem.A 2000,104,6117-6128.
    (50) Frisch,M.J.;et al.Gaussian 03,Revision C.02;Gaussian,Inc.:Wallingford,CT,2004.
    (51)(a) Becke,A.D.Density-functional thermochemistry,Ⅲ.The role of exact ex-change[J].J.Chem.Phys.1993,95,5648-5652.(b) Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J].Phys.Rev.B 1988,37,785-789.
    (52)(a) McLean,A.D.;Chandler,G.S.Contracted Gaussian basis sets for molecular calculations.Ⅰ.Second row atoms,Z=11-18[J].J.Chem.Phys.1980,72,5639-5648.
    (b) Krishnan,R.;Binkley,J.S.;Seeger,R.;Pople,J.A. Self-consistent molecular orbital methods.ⅩⅩ.A basis set for correlated wave functions[J].J.Chem.Phys.1980,72,650-654.
    (c) Clark,T.;Chandrasekhar,J.;Spitznagel,G.W.;Schleyer,P.v.R.Efficient diffuse function-augmented basis sets for anion calculations.Ⅲ.The 3-21+G basis set for first-row elements,Li-F[J].J.Comput.Chem.1983,4,294-301.(d) Frisch,M.J.;Pople,J.A.;Binkley,J.S.Self-consistent molecular orbital methods 25.Supplementary functions for Gaussian basis sets[J].J.Chem.Phys.1984,80,3265-3269.
    (53) Kendall,R.A.;Dunning,T.H.;Harrison,R.J.Electron affinities of the first-row atoms revisited.Systematic basis sets and wave functions[J].J.Chem.Phys.1992,96,6796-6806.
    (54) Casida,M.E.;Jamorski,C.;Casida,K.C.;Salahub,D.R.Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold[J].J.Chem.Phys.1998,108,4439-4449.
    (55) Cerius2.BIOSYM/Molecular Simulations:San Diego,CA,1996.
    (56) Delley,B.An all-electron numerical method for solving the local density functional for polyatomic molecules[J].J.Chem.Phys.1990,92,508-517.
    (57) In native charge-transfer systems an electron is transported between donor and acceptor through large peptides and the electron migration is driven by electromotive potential between donor and acceptor.In this work,only the electron transfer bridges-polypeptide cations without additional donor and acceptor units attached were investigated and "at 1000 K" is to add a voltage(0.085 eV) in the systems(Ref.20).
    (58) The Mulliken spin density analysis indicates that the spin density mainly distributes on the two trans carbonyl O-atoms of the peptide bonds(0.64 versus 0.25) for Gly-GIy~(·+)_H_2.GIy-Gly~(·+)_H_2 mounts only a lower barrier high(1.0kcal/mol) to yield Gly-Gly~(·+)_O∴ O(Figure $5) and the GIy-X~(·+)_H_2 conformer can not come into being in all other dipeptide radical cation if there are no other stabilization factors,such as,hydrogen bonds and 3e bonds.
    (59) The plot of spin density surface is in excellent agreement with that of SOMO (Figure 2),which is antibonding between the close O and N atoms.Besides,it is clear that HOMO-1(here named as DOMO) of GIy-GIy~(·+)_O∴ N is a bonding MO between these two close atoms.Therefore,there is a 2c-3e bond between the close O and N atoms arising from the interaction between the SOMO and the DOMO.
    (60) It is worth noting that there is an especial example,Gly-Asp~(·+)_H,whose relative energy(-0.3 kcal/mol) is bigger than that of Gly-Ala~(·+)_H(-0.02 kcal/mol).However,the ability of electron-denoting of-CH3COOH in the side chain of Asp is weak relative to-CH_3 in the side chain of Ala.One of the plausible reasons is that the spin densities delocalize not only over the main chain but also on the carbonyl O-atom of-CH_3COOH in Gly-Asp~(·+)_H(Figure $8),which well disperses the positive charge compared to GIy-Ala~(·+)_H and increases the stability.
    (61) Gannett,P.M.;Garrett,C.;Lawson,T.;Toth,B.Chemical oxidation and metabolism of N-methyl-N-formylhydrazine.Evidence for diazenium and radical intermediates[J].Food Chem.Toxicol.1991,29,49-56.
    (62) Hong,J.;Sch(o|¨)neich,C.The metal-catalyzed oxidation of methionine in peptides by Fenton systems involves two consecutive one-electron oxidation processes [J].Free Radic.Biol.Med.2001,31,1432-1441.
    (63) Bobrowski,K.;Hug,G.L.;Pogocki,D.;Marciniak,B.;Sch(o|¨)neich,C.Stabilization of Sulfide Radical Cations through Complexation with the Peptide Bond:Mechanisms Relevant to Oxidation of Proteins Containing Multiple Methionine Residues[J].d.Phys.Chem.B 2007,111,9608-9620.
    (64) Bobrowski,K.;Hug,G.L.;Marciniak,B.;Sch(o|¨)neich,C.;Wioeniowski,P."Intramolecular Hydrogen Transfer During Oxidation of b-Hydroxysulfides and a-(Methyl)thioacetamide.Pulse Radiolysis and Flash Photolysis Studies[J].Res.Chem.Intermed.1999,25,285-297.
    (65) Bobrowski,K.;Hug,G.L.;Marciniak,B.;Miller,B.L.;Sch(o|¨)neich,C.Mechanism of One-Electron Oxidation of β-,γ-,and δ-Hvdroxyalkvl Sulfides.Cataly- sis through Intramolecular Proton Transfer and Sulfur-Oxygen Bond Formation [J]. J. Am. Chem. Soc. 1997,119, 8000-8011.
    
    (66) Marciniak, B.; Bobrowski, K.; Hug, G. L.; Rozwadowski. J. Photoinduced Electron Transfer between Sulfur-Containing Carboxylic Acids and the 4-Carboxybenzophenone Triplet State in Aqueous Solution [J]. J. Phys. Chem. 1994, 98, 4854-4860.
    
    (67) Steffen, L. K.; Glass, R. S.; Sabahi, M.; Wilson, G. S.; Schoeneich, C; Mahling, S.; Asmus, K. D. Hydroxyl radical induced decarboxylation of amino acids. Decarboxylation vs bond formation in radical intermediates [J]. J. Am. Chem. Soc. 1991,113, 2141-2145.
    
    (68) Schoneich, C; Pogocki, D.; Wisniowski, P.; Hug, G L.; Bobrowski, K. Elec-trooxidative Generation and Accumulation of Alkoxycarbenium Ions and Their Reactions with Carbon Nucleophiles [J]. J. Am. Chem. Soc. 2000, 122, 10224-10225.
    
    (69) Glass, R. S. Neighbouring group participation: General principles and application to sulfur-centered reactive species. In Sulfur-Centered ReactiVe Intermediates in Chemistry and Biology. Chatgilialoglu, C, Asmus, K.-D., Eds.; Plenum Press: New York 1990, 97, 213-226.
    
    (70) Bagheri-Majdi, E.; Ke, Y; Orlova, G; Chu, I. K.; Hopkinson, A. C; Siu, K. W. M. Copper-Mediated Peptide Radical Ions in the Gas Phase [J]. J. Phys. Chem. 5.2004,108, 11170-11181.
    
    (71) It is well known that Trp and Tyr are easily oxidized in the processes of the protein redox reactions because both have the lowest ionization energies (IEs) among the natural a-amino acids. Their lowest IEs come from the special characters of their side chains, indole moiety in Trp and phenol moiety in Tyr. Our calculations indicate that the vertical IEs of 3-methylindole and 4-methylphenol are 7.40 and 7.96 eV, respectively, which are in well agreement with previously results (ref.65). For the side chains of His and Phe, the vertical IEs of 2-methylimidazole and toluene are 8.55 and 9.00 eV, respectively, which are bigger than these of 3-methylindole and 2-methylphenol.
    (72) Meyer,E.A.;Castellano,R.K.;Diederich,F.Interactions with Aromatic Rings in Chemical and Biological Recognition[J].Angew.Chem.,lnt.Ed.2003,42,1210-1250.
    (73) Qian,X.;Xu,X.;Li,Z.;Frontera,A.Intramolecular noncovalent force in cyclic amidines:nonbonded interaction between carbon atoms and heteroatoms[J].Chem.Phys.Lett.2003,372,489-496.
    (74) Lovell,S.;Davis,I.;Arendall,W.,I11;De Bakker,P.;Word,J.;Prisant,M.;Richardson,J.;Richardson,D.Structure Validation by Cα Geometry:(?),ψ and Cβ Deviation[J].Proteins:Struct.,Funct.,Genet.2003,50,437-450.
    (75) Gung,B.W.;Zou,Y.;Xu,Z.;Amicangelo,J.C.;Irwin,D.G;Ma,S.;Zhou,H.-C.Quantitative Study of Interactions between Oxygen Lone Pair and Aromatic Rings:Substituent Effect and the Importance of Closeness of Contact[J]J.Org.Chem.2008,73,689-693.
    [76]McLendon,G Long-distance electron transfer in proteins and model systems[J].Acc.Chem.Res.1988,21,160-167.
    [77]Lopez-Castillo,J.-M.;Filali-Mouhim,A.;Van Binh-Otten,E.N.;Jay-Cretin,J.-P.Electron Transfer in Proteins:Structural and Energetic Control of the Electronic Coupling[J].J.Am.Chem.Soc.1997,119,1978-1980.
    [78]King,B.C.;Hawkridge,F.M.;Hoffman,B.M.Electrochemical studies of cyanometmyoglobin and metmyoglobin:implications for long-range electron transfer in proteins[J].J.Am.Chem.Soc.1992,114,10603-10608.
    [79]Beratan,D.N.;Betts,J.N.;Onuchic,J.N.Protein electron transfer rates set by the bridging secondary and tertiary structure[J].Science 1991,252,1285-1288.
    [80]Faraggi,M.;Steiner,J.P.;Klapper,M.H.Intramolecular electron and proton transfer in proteins:formate(CO2-) reduction of riboflavin binding protein and ribonuclease A[J].Biochemistry,1985,24,3273-3279.
    [81]Long,Y.;Abu-Irhayem,E.;Kraatz,H.-B.Peptide Electron Transfer:More Questions than Answers[J].Chem.Eur.J.2005,11,5186-5194.
    [82]Yachandra,V.K.;Sauer,K.;Klein,M.P.Manganese Cluster in Photosynthesis:Where Plants Oxidize Water to Dioxygen[J].Chem.Rev.1996,96,2927-2950.
    [83] Huynh, M. H. V; Meyer, T. J. Proton-Coupled Electron Transfer [J]. Chem. Rev. 2007,107, 5004-5064.
    
    [84] Graziewicz, M. A.; Longley, M. J.; Copeland, W. C. DNA Polymerase y in Mi-tochondrial DNA Replication and Repair [J]. Chem. Rev. 2006,106, 383-405.
    
    [85] Rossi, M. L.; Purohit, V; Brandt, P. D.; Bambara, R. A. Lagging Strand Replication Proteins in Genome Stability and DNA Repair [J]. Chem. Rev. 2006,106, 453-473.
    
    [86] Howard, J. B.; Rees, D. C. Structural Basis of Biological Nitrogen Fixation [J]. Chem. Rev. 1996, 96, 2965-2982.
    
    [87] Ahn, T. K.; Avenson, T. J.; Ballottari, M.; Cheng, Y.; Niyogi, K. K.; Bassi, R.; Fleming, G. R. Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein [J]. Science 2008, 320, 794-797.
    
    [88] Stubbe, J.; Nocera, D. G; Yee, C . S.; Chang, C . Y. Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer? [J]. Chem. Rev. 2003,103, 2167-2202.
    
    [89] Cordes, M.; Kottgen, A.; Jasper, C; Jacques, O.; Boudebous, H.; Giese, B. Tryptophan-Accelerated Electron Flow Through Proteins [J]. Angew. Chem. Int. Ed. 2008, 47, 3461-3463.
    
    [90] Shih, C; Museth, A. K.; Abrahamsson, M.; Bianco-Rodriguez, A. M; Bilio, A. J. D.; Sudhamsu, J.; Crane, B. R.; Ronayne, K. L.; Towrie, M.; Vlcek, A. Jr.; Richards, J. H.; Winkler, J. R.; Gray, H. B. Tryptophan-Accelerated Electron Flow Through Proteins [J]. Science 2008, 320, 1760-1762.
    
    [91] Bollinger, J. M. Electron Relay in Proteins [J]. Science 2008, 320, 1730-1731.
    
    [92] Chen, X.; Zhang, L.; Wang, Z.; Li, J.; Wang, W.; Bu, Y. Relay Stations for Electron Hole Migration in Peptides: Possibility for Formation of Three-Electron Bonds along Peptide Chains [J]. J. Phys. Chem. B 2008,112, 14302-14311.
    
    [93] Topol, I. A.; Burt, S. K.; Deretey, E.; Tang, T.; Perczel, A. Rashin, A.; Csiz-madia, I. G. α- and 3_(10)-Helix Interconversion: A Quantum-Chemical Study on Polyalanine Systems in the Gas Phase and in Aqueous Solvent [J]. J. Am. Chem. Soc. 2001,123, 6054-6060.
    [94]Wu,Y.;Zhao,Y.A Theoretical Study on the Origin of Cooperativity in the Formation of 3_(10)-and a-Halites[J].d.Am.Chem.Soc.2001,123,5313-5319.
    [95]Harper,E.T.;Rose,G.D.Helix stop signals in proteins and peptides:The capping box[J].Biochemistry,1993,32,7605-7609.
    [96]Doig,A.J.;Chakrabartty,A.;Klingler,T.M.;Baldwin,R.L.Determination of Free Energies of N-Capping in.alpha.-Helixes by Modification of the Lifson -Roig Helix-Coil Theory To Include N-and C-Capping[J].Biochemistry,1994,33,3396-3403.
    [97]Lassila,J.;Keeffe,J.R.;Kast,P.;Mayo,S.L.Exhaustive Mutagenesis of Six Secondary Active-Site Residues in Escherichia coli Chorismate Mutase Shows the Importance of Hydrophobic Side Chains and a Helix N-Capping Position for Stability and Catalysis[J].Biochemistry,2007,46,6883-6891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700