用户名: 密码: 验证码:
二元化合物半导体的晶格动力学和热力学性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Ⅲ-Ⅴ族半导体中,由于氮化物(BN,AlN和GaN)具有优良的机械和热学性质,例如:高硬度、高熔点、高热导和大的体模量,因此近些年在科学研究和技术应用上引起了人们极大的兴趣。这些材料已被广泛用在短波发光二极管、激光二极管、光学探测器和其它的高温、高能、和高频装置上。Ⅱ-Ⅵ族半导体ZnS和ZnSe属于宽带隙半导体,它们在图像显示装置上具有广泛的应用。
     本文基于密度函数理论和密度函数扰动理论,用第一性原理计算了:(1)闪锌矿结构和纤锌矿结构AlN和GaN的电子结构、晶格动力学和介电性质。这些性质包括晶格常数、体弹模量和弹性常数;以及利用线性响应方法计算的波恩有效电荷、高频介电常数和声子频率。(2)闪锌矿结构和纤锌矿结构AlN和GaN的弹性、介电和动力学性质与压力的关系。(3)闪锌矿结构BN的热力学性质,包括PTV状态方程,不同压力下的热膨胀系数等;纤锌矿结构GaN的热膨胀系数和定压摩尔比热随温度的变化关系。(4)闪锌矿结构ZnS和ZnSe的声子频率与压力的关系,以及热膨胀系数和定压比热随温度的变化关系。
     本文的研究结果表明:
     1.本次计算的闪锌矿结构和纤锌矿结构AlN和GaN的晶格常数、弹性常数、波恩有效电荷、介电常数与可利用的实验结果有比较好的一致。由于元素Al和Ga具有不同的电负性和原子半径,使AlN和GaN具有不同的共价键强度,这导致了闪锌矿结构和纤锌矿结构AlN和GaN的基态性质的差异。
     2.闪锌矿结构AlN和GaN的C_(11)、C_(12),以及C_(11)、C_(12)、C_(13)和C_(33)随着压力的变化发生明显的变化,但无论闪锌矿结构还是纤锌矿结构,C_(44)都不如其它弹性张量对压力敏感。通过Martin变换,可以从闪锌矿结构的弹性常数得到纤锌矿结构的弹性常数。比较通过Martin变换和密度函数扰动理论得到的弹性常数,发现此次通过密度函数扰动理论得到的结果优于Martin变换结果。
     3.除了纤锌矿结构AlN与c轴平行的波恩有效电荷有一例外外,其它的闪锌矿结构和纤锌矿结构的介电张量和波恩有效电荷张量均随着压力的增加单调的减小。这个例外可能是由于四角相变形的退杂化造成。总的来说,GaN的压力依赖性更明显,这是因为在AIN中有更强的共价键。
     4.闪锌矿结构和纤锌矿结构AlN和GaN布里渊区中心Γ点的横向光学声子频率(TO)和纵向声学声子频率(LO)均随着压力的增加而单调的增加。光学声子支的所有振动模相当相似,并不与AlN和GaN的结构有关。
     5.利用声子频率,从自由能得到了闪锌矿结构BN的压力-温度-体积(PTV)状态方程。从状态方程得到的295K下晶格常数与实验值之间的差异小于计算的基态晶格常数与实验值之间的差异。通过计算得到压力作用可用来减小热膨胀系数。
     6.用密度函数理论计算了各向异性的纤锌矿结构GaN热膨胀系数,计算表明沿a轴方向的热膨胀系数在整个温区范围内高于沿c轴方向的热膨胀系数。无论对纤锌矿结构GaN,还是闪锌矿结构ZnS和ZnSe,在极低温状态下它们的热膨胀系数均为负,这可能是由于在极低温条件,激发的声子模主要是横向声学声子模,而这类声子模具有负的Gr(u|¨)neisen参数,导致热膨胀系数为负值。
     7.本次计算了闪锌矿结构ZnS和ZnSe,以及纤锌矿结构GaN的定压摩尔热容。总的来说,在低温范围,计算的结果与实验值有比较好的一致,但在高温范围,计算值和实验值相差较大,这是由于非谐作用,以及样品本身在高温会产生较多的缺陷等原因所致。
Among theⅢ-Ⅴsemiconductors,the nitrides(BN,AlN,and GaN) have attracted both scientific and technological interest in recent years. This is due to the fascinating mechanical properties of them,such as hardness,high melting point,high thermal conductivity,large bulk modules.These materials can therefore be used for short-wavelength light-emitting diodes,laser diodes,and optical detectors,as well as for high-temperature,high-power,and high-frequency devices,zinc-blende zinc sulfide(ZnS) and zinc selenide(ZnSe) are wide bandⅡ-Ⅵsemiconductor.They are extremely useful in the manufacture of semiconductor devices.They are also the most important materials for image display applications.
     Based on the density-function theory(DFPT) and density-function perturbation theory(DFPT),we report first-principles calculation of structure,lattice-dynamical and dielectric properties for zinc-blende and wurtzite AlN and GaN,i.e.(1) the lattice constants,the bulk moduli,and the elastic constants.A linear-response approach is used to derive the Born effective charge,the high-frequency dielectric constant,and the frequencies in ground state.(2) the structure,elastic properties and lattice-dynamical properties under hydrostatic pressure for zinc-blende and wurtzite AlN and GaN.(3) the thermodynamic properties of zinc-blende BN including the PTV equation of state and thermal expansion coefficient and heat capacity at constant pressure with temperature for wurtzite GaN.(4) the phonon frequencies with pressure, the thermal expansion coefficient and heat capacity at constant pressure with pressure for zinc-blende ZnS and ZnSe.Above these properties are performed using a pseudopotential plane wave method。
     The results of this paper show that:
     (1) The results for lattice constants,elastic constants,Born effective charges,dielectric constant are in good agreement with the experimental data available.Owing to different electronegative and atomic radius for atom Al and Ga,which resulting in different relative and absolute strengths of the ionic versus the covalent bonding,this results in different properties for zinc-blende and wurtzite AlN and GaN in ground state.
     (2) The C_(11),C_(12) in zinc-blende AlN and GaN,and the C_(11),C_(12),C_(13) and C_(33) in wurtzite AlN and GaN depend significantly on hydrostatic pressure.Much weaker dependence on pressure has been observed for C_(44) elastic constant in both zinc-blende and wurtzite phases.It is possible to obtain elastic constants of wurtzite material from the zinc-blende ones applying the so-call Murtin's transformation.Comparing the results of Murtin's transformation and DFPT,the result using DFPT in this calculation is advantages to one of Martin's transformation.
     (3) Except for the Born effective charge along c axis for wurtzite AlN, the other Born effective charges and high-frequency dielectric constants for both zinc-blende and wurtzite AlN and GaN decrease with rising pressure.This exception is likely due to the dehybridization that accompanies the tetrahedron deformation.In general,the pressure(and hence,volume)dependence is more pronounce for GaN because of stronger covalent bonding in AlN.
     (4) The longitudinal optic(LO) and transverse optic(TO) phonon frequencies in Brillouin zone center for the zinc-blende and wurtzite AlN and GaN are monotonic increase with rising hydrostatic pressure.The pressure dependences of all vibrational modes related to optical phonon branches are rather similar and independent of the polytype of the nitride. Small deviation between GaN and AlN can be traced back to stronger covalent bonding in AlN.
     (5) We obtain the PTV equation of state of zinc-blende BN from the free energy using phonon dispersion.The room temperature values of lattice constant is in better agreement with the experimental than T=0Kcalculated value.The effect of pressure is to reduce the thermal expansion coefficient.
     (6) The anisotropic thermal expansion of wurtzite GaN is studied by density-function perturbation theory.The thermal expansion coefficient along a axis is always larger than one along c axis.For zinc-blende ZnS and ZnSe,wurtzite GaN,the thermal expansion coefficient are negative at low temperature,which can be explained as follow:in the quasiharmonic approximation(DHA),the thermal expansion coefficient at low temperature,the excited phonon modes are predominantly of transverse acoustic type which have negative Gr(u|¨)neisen parameter, giving negative values of thermal expansion coefficient.
     (7) The calculated result of heat capacity at constant pressure of zinc-blende ZnS,ZnSe and wurtzite GaN are compared with the available experimental data in a wide temperature range.Generally in low temperature range,they have good agreement.But in high temperature range,due to anharnonic effect and the samples themselves forming more defects,lead to large errors between theoretical results and available experimental data.
引文
[1]熊家炯.材料设计.天津.天津大学出版社,2000
    [2]Hobenberg P,Kohn W.Inhomogeneous electron gas.Phys.Rev.B,1964;136(3B):864-871
    [3]Andersen O K.Linear method in band theory.Phys.Rev.B,1975;12(8):3036-3083
    [4]Blaha P,Schwarz K,Sorantin P,Trickey S B.Full-potential,linearized augmented plane wave programs for crystalline systems.Comput.Phys.Commun.,1990;59(2):399-415
    [5]Car R,Parrinello M.Unified Approach for Molecular Dynamics and Density-Functional Theory.Phys.Rev.Lett.,1985;55:2471-2474
    [6]Michael Spingborg,Ole Korgh Andersen.Method for calculating the electronic structures of large molecules;helical polymers.J.Chem.Phys.,1987 87:7125-7145
    [7]Slater J C.Intensities of X-Ray Reflections from Bismuth Crystals Between 25°and 530° Abs.Phys.Rev.,1937;51:151-159
    [8]Levine Z H,Allan D.Quasiparticle calculation of the dielectric response of silicon and germanium.Phys.Rev.B,1991;43:4187-4207
    [9]Levine Z H,Allan D.Calculation of the nonlinear susceptibility for optical second-harmonic generation in Ⅲ-Ⅴ semiconductors.Phys.Rev.Lett.,1991;66:41-44
    [10]Godby R W,et al.Metal-insulator transition in Kohn-Sham theory and quasiparticle theory.Phys.Rev.Lett.,1989;62:1169-1172
    [11]Shirley L,Louie S G.Core polarization in solids:Formulation and application to semiconductors.Phys.Rev.B,1997;56:6648-6661
    [12]Hamarm D R,Schluter M,Ching C.Norm-Conserving Pseudopotential.Phys.Rev.Lett.,1979;43:1494-1497
    [13]Ordejon P.Order-N tight-binding methods for electronic-structure and molecular dynamics.Comput.Matter.Sci.,1998;12:157-191
    [14]Kohn W.Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms. Phys. Rev. Lett., 1996; 76: 3168-3171
    [15] Rubio A, Alonso J A, Blase X, Balbas L C, Louie S G. Ab Initio Photoabsorption Spectra and Structures of Small Semiconductor and Metal Clusters. Phys. Rev. Lett., 1996; 77: 247-250
    [16] Pacheco J M, Martin J L. Ab initio pseudopotential calculation of the photo-response of metal clusters. J. Chem. Phys., 1997; 106: 6039-6044
    [17] Anisimov V I , Zaanen J , Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 1991; 44 : 943-954
    [18] Anisimov V I, Aryasetiawan F, Lichtenstein A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J . Phys. Condens. Matter, 1997 , 9 : 767-808
    [19] Lichtenstein A I, Katsnelson M I. Ab initio of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B, 1998; 57 : 6884-6895
    [20] Segall M D. Applications of ab initio atomistic simulations to biology. J. Phys.: Condens. Matter, 2002.; 14: 2957-2973
    [21] Murphy R B, Philipp D M, Friesner R A. Frozen orbital QM/MM methods for density functional theory. Chem. Phys. Lett., 2002.21; 321: 113-120
    [22] Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids. Phys. Rev. Lett., 1987; 58(18): 1861-1864
    [23] Giannozzi P, de Gironcoli S, Pavone P, Baroni S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 1991; 43(9): 7231-7242
    [24] Xu Y -N, and Ching W Y. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B, 1993; 48: 4335-4351
    [25] Bei der Kellen S, Freeman A J. Self-consistent relativistic full-potential Korringa-Kohn-Rostoker total-energy method and applications. Phys. Rev. B,1996; 54: 11187-11198
    [26] Davis R F. Thin films and devices of diamond, silicon carbide and gallium nitride. Physica B, 1993; 185:1-15
    [27] Wright A F, Nelson J S. Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method. Phys. Rev. B, 1994; 50: 2159-2465
    [28] Surh M P, Louie S G, Cohen M L. Quasiparticle energies for cubic BN, BP, and Bas. Phys. Rev. B, 1991; 43: 9126-9132
    [29] Pandey R, Jaffe J E, Harrison N M. Ab initio study of high pressure phase transition in GaN. J. Phys. Chem. Solids, 1994; 55: 1357-1361
    [30] Fiorentini V, Methfessel M, Scheffler M. Electronic and structural properties of GaN by the full-potential linear muffin-tin orbitals method: The role of the d electrons. Phys. Rev. B, 1993; 47: 13353-13362
    [31] Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys., 2002; 74: 601-659
    [32] Hedin L. New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem. Phys. Rev., 1965; 139: A796-A823
    [33] Sham L J; Rice T M. Many-Particle Derivation of the Effective-Mass Equation for the Wannier Exciton. Phys. Rev., 1966; 144: 708-714
    [34] Hanke W, Sham L J. Many-Particle Effects in the Optical Excitations of a Semiconductor. Phys. Rev. Lett., 1979; 43; 387-390
    [35] Hanke W, Sham L J. Many-particle effects in the optical spectrum of a semiconductor. Phys. Rev. B, 1980; 21: 4656-4673
    [36] Corrigan F R, Bundy F P. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures. J. Chem. Phys., 1975; 63: 3812-3820
    [37] Bohr S, Haubner R, Lux, B. Comparative aspects of c-BN and diamond CVD. Diamond Relat. Mater., 1995; 4: 714-719
    [38] Hultman L, Benhenda S, Radnoczi G, Sundgren J -E, Greene J E, Petrov I. Interfacial reactions in single-crystal-TiN (100)/Al/polycrystalline-TiN multilayer thin films. Thin Solid Films, 1992; 215: 152-161
    [39] Ueno M, Onodera A, Shimomura O, Takemura K. X-ray observation of the structural phase transition of aluminum nitride under high pressure. Phys. Rev. B,1992; 45: 10123-10126
    [40] Xia Q, Xia H, Ruoff A L. High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition. Phys. Rev. B, 1993; 47: 12925 - 12928
    [41] Uehara S, Masamoto T, Onodera A, Ueno M, Shimomura O, Takemura K. Equation of state of the rocksalt phase of Ⅲ-Ⅴ nitrides to 72 GPa or higher. J.Phys. Chem. Solids, 1997; 58: 2093-2099
    [42] Gorczyca I, Christensen N E, Perlin P, Grzegory I, Jun J, Bockowski M. High pressure phase transition in aluminium nitride. Solid State Commun., 1991; 79:1033-1034
    [43] Perlin P, Polian A, Itie J P, Grzegory I, Litwin-Staszewska E, Suski T. Physical properties of GaN and A1N under pressures up to 0.5 Mbar. Physica B, 1993; 185:426-427
    [44]Van Camp P E,Van Doren V E,Devreese J T.High-pressure properties of wurtzite-and rocksalt-type aluminum nitride.Phys.Rev.B,1991;44:9056-9059
    [45]Christensen N E,Gorczyea I.Calculated structural phase transitions of aluminum nitride under pressure.Phys.Rev.B,1993;47:4307-4314
    [46]Serrano J,Rubio A,Hernandez E,Munoz A,Mujica A.Theoretical study of the relative stability of structural phases in group-Ⅲ nitrides at high pressures.Phys.Rev.B,2000;62:16612-16623
    [47]Powell R,Lee N,Kim Y,Greene J.Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ion molecular-beam epitaxy:Growth kinetics,microstructure,and properties.J.Appl.Phys.,1993;73:189-204
    [48]Fuchs M,Da Silva J L F,Stampfl C,Neugebauer J,Scheffler M.Cohesive properties of group-Ⅲ nitrides:A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation.Phys.Rev.B,2002;65:245212-245225
    [49]Boucher D E,DeLeo G G,Fowler W B.Simulations of GaN using an environment-dependent empirical tight-binding model.Phys.Rev.B,1999;59:10064-10070
    [50]Kioseoglou J,Komninou Ph,Dimitrakopulos G P,Kehagias Th,Polatoglou H M,Nouet G,Karakostas Th.Microstructure of planar defects and their interactions in wurtzite GaN films.Solid State Electron,2003;47:553-557
    [51]Gorczyca I,Christensen N E,Peltzer y Blanca' E L,Rodriguez C O.Optical phonon modes in GaN and AlN.Phys.Rev.B,1995;51:11936-11939
    [52]Perlin P,Polian A,Suski T.Quasiparticle distribution in a superconductor-normal-material-superconductor junction in the clean limit.Phys.Rev.B,1993;47:287-294
    [53 Weinstein B A,Zallen R.in Light Scattering in Solids Ⅳ,edited by Cardona M and G(u|¨)ntherodt G.(Springer,Berlin,1984),p.463
    [54]Klotz S,Besson J M,Braden M,et al.Pressure Induced Frequency Shifts of Transverse Acoustic Phonons in Germanium to 9.7 GPa.Phys.Rev.Lett.,1997;79:1313-1316
    [55]Weinstein B A.Phonon dispersion of zinc chalcogenides under extreme pressure and the metallic transformation.Solid State Commun.,1977;24:595-598
    [56]Perlin P,Suski T,Ager Ⅲ J W,Conti G,Polian A,Christensen N E,Gorczyca I, Grzegory I, Weber E R, Haller E E. Transverse effective charge and its pressure dependence in GaN single crystals. Phys. Rev. B, 1999; 60: 1480-1483
    [57] Go(?)i A R, Siegle H, Syassen K, Thomsen C, Wagner J -M. Effect of pressure on optical phonon modes and transverse effective charges in GaN and A1N. Phys. Rev. B, 2001; 64: 035205-035210
    [58] Mao H K, Bell P M, J. Shaner W, Steinberg D J. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R\ fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys., 1978; 49: 3276-3283
    [59] Chijioke A D, Nellis W J, Soldatov A, Silvera I F. The ruby pressure standard to 150 GPa. J. Appl. Phys., 2005; 98: 114905-114913
    [60] Anderson O L, Isaak D G, Yamamoto S. Anharmonicity and the equation of state for gold. J. Appl. Phys., 1989; 65: 1534-1543
    [61] Alexander F. Goncharov, Jonathan C. Crowhurst, John K. Dewhurst, Sangeeta Sharma, Chrystele Sanloup. Phys. Rev. B, 2001; 64: 035205
    [62] Kremer R K, Cardona M, Schmitt E. Heat capacity of a-GaN: Isotope effects. Phys. Rev. B, 2005; 72: 075209-075214
    [63] Leitner J, Strejc A, Sedmidubsky D, Ruzicka K. Phase relations in the Ga-Mn-N system. Thermochimica Acta, 2003; 401: 169-175
    [64] Koshchenko V I, Demidenko A F, Sabanova I D, Yachmenev V E, Gran Yu M, Rad-chenko A F. Chemical aspects of the ⅢA nitride epitaxial growth by MOVPE. Inorg. Mater., 1979; 15: 1329-1333
    [65] Nipko J C, Loong C -K, Balkas C M, Davis R F. Phonon density of states of bulk gallium nitride. Appl. Phys. Lett., 1998; 73: 34-36
    [66] Hasse M A, Qui J, De Puydt J M, Cheng H. Blue-green laser diodes. Appl. Phys. Lett., 1991; 59: 1272-1274
    [67] Chang S K, Lee D, Nakata H, Nurmikko A V, Kolodziejski L A, Gunshor R L. Magnetic properties of FeAlMnC steels. J. Appl. Phys., 1987; 62: 4835-4837
    [68] Furdyna J K. Diluted magnetic semiconductors. J. Appl. Phys., 1988; 64: R29-R64
    [69] Bylsma R B, Becker W M, Kossut J, Debska U, Yoder-Short D. Dependence of energy gap on x and T in Zn_(1-x)Mn_xSe: The role of exchange interaction. Phys.Rev. B, 1986; 33: 8207-8215
    [70] Prinz G A, Jonker B T, Krebs J J, Ferrari J M, Kovanic F. Growth of single crystal bcc α-Fe on ZnSe via molecular beam epitaxy. Appl. Phys. Lett., 1986; 48: 1756-1758
    [71] Tiong S R, Hiramatsu M, Matsushima Y, Ito E. The Phase Transition Pressures of Zincsulfoselenide Single Crystals. Jpn. J. Appl. Phys., 1989; 28: 291-292
    [72] Yu S C, Spain I L, Skelton E F, High pressure phase transitions in tetrahedrally coordinated semiconducting compounds. Solid State Commun., 1978; 25: 49-52
    [73] Qadri S B, Skelton E F, Dinsmore A D, Hu J Z, Kim W J, Nelson C, Ratna B R. Phys. Rev. B, 2001 89:115
    [74] Causa M, Dovesi R, Pisani C, Roetti C. Electronic structure and stability of different crystal phases of magnesium oxide. Phys. Rev. B, 1986; 33: 1308-1316
    [75 Qteish A. Self-interaction-corrected local density approximation pseudopotential calculations of the structural phase transformations of ZnO and ZnS under high pressure. J. Phys.: Condens. Matter, 2000; 12: 5639-5653
    [76] Smelyansky V I, Tse J S. Theoretical study on the high-pressure phase transformation in ZnSe. Phys. Rev. B, 1995; 52: 4658-4661
    [77] Ves S, Strossner K, Christensen N E, Kim C K, Cardona M. Pressure dependence of the lowest direct absorption edge of ZnSe. Solid State Commun., 1985; 56: 479-483
    [78] Karzel H, Potzel W, K(?)fferlein M, Schiessl W, Steier M, Hiller U, Kalvius G M, Mitchell D W, Das T P, Blaha P, Schwarz K, Pasternak M P. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev.B, 1996; 53: 11425-11438
    [79] Cheliokowsky J R, Cohen M L. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B, 1976; 14: 556-582
    [80] Wang C S, Klein B M, First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. I. Self-consistent energy bands, charge densities, and effective masses. Phys. Rev. B, 1981; 24: 3393-3416
    [81] Jansen RW, Sankey O F. Ab initio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: Results for ten materials.Phys. Rev. B, 1987; 36: 6520-6531
    [82] Christensen N E, Christensen O B. Electronic structure of ZnTe and CdTe under pressure. Phys. Rev. B, 1986; 33:4739-4746
    [83] Ghahramani E D, Moss D J, Sipe J E. Full-band-structure calculation of first-, second-, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe. Phys. Rev. B, 1991; 43: 9700-9710
    [84] Jaffe J E, Pandey R, Seel M J. Ab initio high-pressure structural and electronic properties of ZnS. Phys. Rev. B, 1993; 47: 6299-6303
    [85] R(?)nnow D, Christensen N E, Cardona M. Deformation potentials of the E_1 transition in Ge, GaAs, InP, ZnSe, and ZnTe from ab initio calculations. Phys. Rev. B, 1999; 59: 5575-5580
    [86] Oshikiri M, Aryasetiawan F. Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation. Phys. Rev. B, 1999; 60: 10754-10757
    [87] Shen S -G. Calculation of the elastic properties of semiconductors. J. Phys.: Condens. Matter, 1994; 6: 8733-8743
    [88] Casali R A, Christensen N E. Elastic constants and deformation potentials of ZnS and ZnSe under pressure. Solid State Commun., 1998; 108: 793-798
    [89] Ding Y, Wang X D, Wang Z L. Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem. Phys. Lett., 2004; 398: 32-36
    [90] Yin L W, Bando Y, Zhan J H, Li M S, Goldberg D. Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. Adv. Mater., (Weinheim, Ger.) 2005; 17:1972-1978
    [91] Moruzzi V L, Janak J, Schwarz K. Calculated thermal properties of metals. Phys. Rev. B, 1988; 37:790-799
    [92] Wang S Q. First-principles study of the anisotropic thermal expansion of wurtzite ZnS. Appl. Phys. Lett., 2006; 88: 061902-061904
    [93] Hennion H, Moussa F, Pepy G, Kunc K. Kinetic theory of hopping conductivity in amorphous solids. Phys. Lett. A, 1971; 35: 75-76
    [94] Talwar D N, Vandevyver M, Kunc K, Zigone M. Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Gr(?)neisen, and thermal expansion. Phys. Rev. B, 1981; 24: 741-753
    [95] Rajput B D, Browne D A. Lattice dynamics of Ⅱ-Ⅵ materials using the adiabatic bond-charge model. Phys. Rev. B, 1996; 53: 9052-9058
    [96] Agrawal B K, Yadav P S, Agrawal S. Ab initio calculation of the electronic, structural, and dynamical properties of Zn-based semiconductors. Phys. Rev. B,1994; 50:14881-14887
    [97] Postnikov A V, Pages O, Hugel J. Lattice dynamics of the mixed semiconductors (Be,Zn)Se from first-principles calculations. Phys. Rev. B, 2005; 71:115206-115215
    [98] Dal Corso A, Baroni S, Resta R, de Gironcoli S. Ab initio calculation of phonon dispersions in Ⅱ-Ⅵ semiconductorsPhys. Rev. B, 1993; 47: 3588-3592
    [99] von Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case. J. Phys. C, 1972; 5: 1629-1642
    [100] Vosko S J, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 1980; 58: 1200-1211
    [101] Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 1980; 45: 566-569
    [102]谢希德,陆栋,固体能带理论,复旦大学出版社, 1998
    [103] Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992; 46: 6671-6687
    [104] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996; 77: 3865-3868
    [105] Mattsson A E. DENSITY FUNCTIONAL THEORY: In Pursuit of the "Divine" Functional. Science, 2002; 298: 759-760
    [106] Perdew J P, Kurth S, Zupan A. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation.Phys. Rev. Lett., 1999; 82: 2544-2547
    [107] Tao J, Perdew J P, Staroverov V N. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett., 2003; 91(14): 146401-146404
    [108] Gunnarsson O, Jonson M, Lundqvist B I. Descriptions of exchange and correlation effects in inhomogeneous electron systems. Phys. Rev. B, 1979; 20:3136-3164
    [109] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990; 41(11): 7892-7895
    [110] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992; 45(23): 13244-13249
    [111] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, Paolo Giannozzi. Phonons and related crystal properties from density-functional perturbation theory.Revs.Mod.Phys.,2001;73:515-557
    [112]Kresse G D,Furthm(u|¨)ller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput.Mat.Sci.,1996;6(1):15-50
    [113]Kresse G D,Furthm(u|¨)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B,1996;54(16):11169-11186
    [114]Gonze x,Beuken J M,Caracas R,et al.First-principles computation of material properties:the ABINIT software project.Comput.Mat.Sci.,2002;25(3):478-492
    [115]Troullier N,Martins J L.Efficient pseudopotentials for plane-wave calculations.Phys.Rev.B,1991;43(3):1993-2006
    [116]T(u|¨)t(u|¨)nc(u|¨) H M,Ba(?)ci S,Srivastava G P,Albudak A T,U(?)ur G.Structural and dynamical properties of zinc-blende GaN,AlN,BN,and their(110) surfaces.Phys.Rev.B,2005;71(19):195309-195318
    [117]Petrov I,Mojab E,Powell R.C,Greene J E,Hultman L,Sundgren J -E.Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction.Appl.Phys.Lett.,1992;60:2491-2493
    [118]Schulz H,Thiemann K H.Crystal structure refinement of AlN and GaN.Solid State Commun.,1977;23:815-819
    [119]Wright A,Nelson J.Consistent structural properties for AlN,GaN,and InN.Phys.Rev.B,1995;51:7866-7869
    [120]Claudia Bungaro,Krzysztof Rapcewicz,Bernholc J.Ab initio phonon dispersions of wurtzite AlN,GaN,and InN.Phys.Rev.B,2000;61(10):6720-6725
    [121]Siegel A,Parlinski K,Wdowik U D.Ab initio calculation of structural phase transitions in AlN crystal.Phys.Rev.B,2006;74(10):104116-104121
    [122]Jorge Serrano,Angel Rubio.Theoretical study of the relative stability of structural phases in group-Ⅲ nitrides at high pressures.Phys.Rev.B,2000;62:16612-16623
    [123]Ueno M,Yoshida M.Onodera A,Shimomura O.Takemura K.Stability of the wurtzite-type structure under high pressure:GaN and InN.Phys.Rev.B,1994;49:14-21
    [124] Nielsen 0 H, Martin R M. First-Principles Calculation of Stress. Phys. Rev. Lett., 1983; 50: 697-700
    [125] Hamann D R, Wu Xifan Rade, Karin M. et al. Metric tensor formulation of strain in density-functional perturbation theory. Phys. Rev. B, 2005; 71: 035117-035129
    [126] Pavone P, Karch K, Schiitt O, Windl W, Strauch D, Giannozzi P, Baroni S. Ab initio lattice dynamics of diamond. Phys. Rev. B, 1993; 48: 3156-3163
    [127] Krystian Karch, Friedhelm Bechstedt. Ab initio lattice dynamics of BN and A1N: Covalent versus ionic forces. Phys. Rev. B, 1997; 56(12): 7404-7415
    [128] Kim K, Lambrecht W R L, Segall B. Elastic constants and related properties of tetrahedrally bonded BN, A1N, GaN, and InN. Phys. Rev. B, 1996; 53:16310-16326
    [129] Tsubouchi K, Sugai K, Mikoshiba N. in 1981 Ultrasonic Symposia Proceedings, edited by McAvoy B R.(IEEE, New York, 1981), p. 375
    [130] Kazuhiro Shimada, Takayuki Sota, Katsuo Suzuki. First-principles study on electronic and elastic properties of BN, A1N, and GaN. J. Appl. Phys., 1998; 84(9): 4951-4958
    [131] Schwarz R B, Khachaturyan K, Weber E R. Elastic moduli of gallium nitride. Appl. Phys. Lett., 1997; 70: 1122-1124
    [132] Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon, 1954
    [133] Martin R M, Relation between Elastic Tensors of Wurtzite and Zinc-Blende Structure Materials. Phys. Rev. B, 1972; 6: 4546-4553
    [134] Lepkowski S P. Nonlinear elasticity in Ⅲ-N compounds: Ab initio calculations. Phys. Rev. B, 2005; 72(24): 245201-245212
    [135] Wright A F. Elastic properties of zinc-blende and wurtzite A1N, GaN, and InN. J. Appl. Phys., 1997; 82: 2833-2839
    [136] Siegle H, Kaczmarczyk G, Filippidis L. et al. Zone-boundary phonons in hexagonal and cubic GaN. Phys. Rev. B, 1997; 55: 7000-7004
    [137] T(?)t(?)nc(?) H M, Srivastava G P. Phonons in zinc-blende and wurtzite phases of GaN, A1N, and BN with the adiabatic bond-charge model. Phys. Rev. B, 2000;62: 5028-5035
    [138] Davydov V Yu, Kitave Yu E, Goncharuk I N. Phonon dispersion and Raman scattering in hexagonal GaN and A1N. Phys. Rev. B, 1998; 58: 12899-12907
    [139] Shimada K, Sota T, Suzuki K. First-principles study on electronic and elastic properties of BN, A1N, and GaN. Journal of Applied Physics, 1998; 84: 4951-4958
    [140] Parlinski K, Bechstedt F. Ab initio study of phonons in hexagonal GaN. Phys. Rev. B, 1999; 60: 15511-15514
    [141] Gonze X, Lee C, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B, 1997; 55: 10355-10368
    [142] Christensen N E, Gorczyca I. Optical and structural properties of Ⅲ-Ⅴ nitrides underpressure. Phys. Rev. B, 1994; 50: 4397-4415
    [143] Collins A T, Leitowlers E C, Dean P J. Lattice Vibration Spectra of Aluminum Nitride. Phys. Rev., 1967; 158: 833
    [144] Akasaki L, Hashimoto M. Infrared lattice vibration of vapour-grown AlN. Solid State Commun., 1967; 5: 851-853-838
    [145] Karch K, Bechstedt F, Pavone P, Strauch D. Pressure-dependent properties of SiC polytypes. Phys. Rev. B, 1996; 53: 13400-13413
    [146] Wagner J -M, Bechstedt F. Pressure dependence of the dielectric and lattice-dynamical properties of GaN and A1N. Phys. Rev. B, 2000; 62(7): 4526-4534
    [147] Weber W. New Bond-Charge Model for the Lattice Dynamics of Diamond-Type Semiconductors. Phys. Rev. Lett, 1974; 33: 371-374
    [148] Weber W. Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α-Sn. Phys. Rev. B, 1977; 15: 4789-4803
    [149] Wellenhofer G, Karch K, Pavone P, Rossler U, Strauch D. Pressure dependence of static and dynamic ionicity of SiC polytypes. Phys. Rev. B, 1996; 53:6071-6075
    [150] Paolo Giannozzi, Stefano de Gironcoli. Ab Initio Calculation of Phonon Dispersions in Semiconductors. Phys. Rev. B, 1990; 43: 7231-7242
    [151] Harima H, Inoue T, Nakashima S, et al. Raman studies on phonon modes in cubic AlGaN alloy. Appl. Phys. Lett., 1998; 74(2): 191-193
    [152] Krystian Karch, Friedhelm Bechstedt. Coherent phonons in Si/SiGe superlattices. Phys. Rev. B, 2005; 71:195309-195320
    [153] Cros A, Dimitrov R, Ambacher H, Stutzmann M, Christiansen S, Albrecht M, Strunk H P. Influence of magnesium doping on the structural properties of GaN layers. J. Cryst. Growth, 1997; 181: 197-203
    [154] Sanjurjo J A, Lopez-Cruz E, Vogl P, Cardona M. Dependence on volume of the phonon frequencies and the ir effective charges of several Ⅲ-Ⅴ semiconductors. Phys. Rev. B, 1983; 28: 4579-4584
    [155] Grille H, Schnittler Ch, Bechstedt F. Phonons in ternary group-Ⅲ nitride alloys. Phys. Rev. B, 2000; 61: 6091-6105
    [156] Sachdev H, Haubner R, Noth H, Lux B. Investigation of the c-BN/h-BN phase transformation at normal pressure. Diamond Relat. Mater., 1997; 6: 286-292
    [157] Knittle E, Wentzcovitsch R M, Jeanloz R, M. Cohen L. Experimental and theoretical equation of state of cubic boron nitride. Nature (London), 1989; 337: 349-352
    [158] Alexander F Goncharov, Jonathan C Crowhurst, John K Dewhurst. Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale. Phys. Rev. B, 2007; 75: 224114-224119
    [159] Janotti A, Wei S -H. First-principles study of the stability of BN and C. Phys. Rev. B, 2001; 64: 174107-174111
    [160] Vladimir L. Solozhenko, Daniel Hausermann and Mohamed Mezouar. Equation of state of wurtzitic boron nitride to 66 GPa. Appl. Phys. Lett., 1998; 72: 1691-1693
    [161] Reich S, Ferrari A C, Arenal R, Loiseau A, Bello I, Robertson J. Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B, 2005; 71:205201-205212
    [162] Glen A Slack, Bartram S F. Thermal expansion of some diamondlike crystals. J. Appl. Phys., 1975; 46: 89-98
    [163] Ruf T, Serrano J, Cardona M. Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering. Phys. Rev. Lett., 2001; 86:906-909
    [164] Cardona M, Kremer R K, Lauck R. Heat capacity of PbS: Isotope effects. Phys. Rev. B, 2007; 76: 075211-075217
    [165] Porowski S, Grzegory I. Thermodynamical properties of Ⅲ-Ⅴ nitrides and crystal growth of GaN at high N_2 pressure. J. Cryst. Growth, 1997; 178: 174-188
    [166] Karch K, Pavone P, Windl W, et al. Ab initio calculation of structural and lattice-dynamical properties of silicon carbide. Phys. Rev. B, 1994; 50:17054-17063
    [167] Barin I. Thermochemical Data of Pure Substances (VCH, Weinheim, 1995), Chap. 5
    [168] Danilchenko B A, Paszkiewicz T, Wolski S. Heat capacity and phonon mean free path of wurtzite GaN. Appl. Phys. Lett., 2006; 89: 061901-061903
    [169] Won Ha Moon, Ho Jung Hwang. Structural and thermodynamic properties of GaN: a molecular dynamics simulation. Phys. Lett. A, 2003; 315: 319-324
    [170] Gangadharan R, Jayalakshmi V, Kalaiselvi J, Mohan S, Murugan R, Palanivel B. Electronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te). J. Alloy. Compd., 2003; 359: 22-26
    [171] Ves S, Schwarz U, Christensen N E, Syassen K, Cardona M. Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state. Phys. Rev. B, 1990; 42: 9113-9118
    [172] Okoye C M I. First-principles study of the electronic and optical properties of zincblende zinc selenide. Physica B, 2003; 337: 1-9
    [173] Lee B H. Pressure Dependence of the Second-Order Elastic Constants of ZnTe and ZnSe. J. Appl. Phys., 1970; 41: 2988-2991
    [174] Adachi S, Taguchi T. Optical properties of ZnSe. Phys. Rev. B, 1991; 43: 9569-9577
    [175] Lee G.-D, Lee M H, Ihm J. Role of d electron in the zinc-blend semiconductor ZnS, ZnSe and ZnTe. Phys. Rev. B, 1995; 52: 1459-1462
    [176] Pollak R A, Ley L, Kowalczyk S P, et al. X-Ray Photoemission Valence-Band Spectra and Theoretical Valence-Band Densities of States for Ge, GaAs, and ZnSe. Phys. Rev. Lett., 1973;29:1103-1105
    [177] Benmakhlouf A, Bechiri A, Bouarissa N. Zinc-blende ZnS under pressure: predicted electronic properties. Solid State Electron., 2003; 47: 1335-1338
    [178] Venghaus H. Valence-band parameters and g factors of cubic zinc selenide derived from free-exciton magnetoreflectance. Phys. Rev. B, 1979; 19:3071-3082
    [179] Khenata R, Bouhemadou A, Sahnoun M, et al. Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Matter. Sci., 2006;38: 29-38
    [180] Kleinman L. Deformation Potentials in Silicon. I. Uniaxial Strain. Phys. Rev., 1962; 128: 2614-2621
    [181] Chang I F, Mitra S S. Application of a Modified Random-Element-Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals.Phys.Rev.,1968;172:924-933
    [182]Vagelatos N,Wehe D,King J S.Phonon dispersion and phonon densities of states for ZnS and ZnTe.J.Chem.Phys.,1974;60:3613-3618
    [183]Lin C.-M,Chuu D.-S,Yang T.-J,et al.Raman spectroscopy study of ZnSe and Zn_(0.84)Fe_(0.16)Se at high pressures.Phys.Rev.B,1997;55:13641-13646
    [184]Hamdi I,Aouissi M.Structural,thermodynamic,and transport properties of Laves-phase ZrMn_2 from x-ray and neutron diffraction and first principles Phys.Rev.B,2006;74:224109-224118
    [185]Wallace D C.Thermodynamics of Crystals(Wiley,New York,1972)
    [186]http://www.rohmhass.corn/cvdmaterials/Mat/pdfs/Temp Dependency Data.pdf
    [187]Maradudin A A,Fein A E.Scattering of Neutrons by an Anharmonic Crystal.Phys.Rev.,1962;128:2589-2608
    [188]T F Smith and White G K.The low-temperature thermal expansion and Gruneisen parameters of some tetrahedrally bonded solids.J.Phys.C,1975;8:2031-2042
    [189]Irwin J C,LaCombe J.Specific heats of ZnTe,ZnSe,and GaP.J.Appl.Phys.,1974;45(2):567-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700