用户名: 密码: 验证码:
骨髓间充质干细胞复合可注射型纤维蛋白凝胶TGF-β1移植治疗兔椎间盘退变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分骨髓间充质干细胞的体外培养及鉴定
     目的:建立兔骨髓间充质干细胞(MSCs)体外培养、扩增和鉴定的方法,了解其作为椎间盘组织工程种子细胞的可行性。方法:穿刺兔股骨大转子抽取骨髓4ml,培养、扩增、传代,倒置显微镜下观察原代和传代细胞的生长特性,流式细胞仪分析细胞表面标记物CD44、CD45。细胞经过诱导分化后进行Ⅱ型胶原免疫组化染色、阿利新蓝染色、碱性磷酸酶染色及钙结节染色。结果:体外成功建立兔骨髓间充质干细胞培养扩增的方法,并成功诱导出成骨、软骨细胞。骨髓MSCs表达CD44,不表达CD45。Ⅱ型胶原免疫组化染色,阿利新蓝染色,ALP染色及钙结节染色阳性。结论:全骨髓法能有效分离纯化和扩增骨髓MSCs,培养的细胞具有骨髓MSCs的基本表型和特征,该细胞经诱导后能表现类软骨细胞的特性,是一种有效的椎间盘组织工程种子细胞。
     第二部分针刺抽吸法诱导椎间盘退变动物模型的建立
     目的:探讨针刺抽吸法建立椎间盘退变动物模型的可行性。方法:新西兰大白兔18只,用21G皮肤穿刺针从椎间隙正前方刺入L3/4、L4/5、L5/6椎间盘的纤维环,深度控制在5mm,拔出针芯,抽吸出部分髓核组织。术前及术后4、8、12周分别对造模后椎间盘及对照椎间盘(L2/3)行MRI及CR检查,并行免疫组化及组织学观察。结果:术后第4周到第12周,造模后的椎间盘MRI的T2W1信号呈现持续减弱趋势;椎间盘高度指数持续下降;免疫组化及组织学检查显示髓核细胞的数量及Ⅱ型胶原含量较对照间盘进行性减少,细胞凋亡率明显增加(P<0.01)。结论:针刺抽吸法可诱导兔椎间盘的缓慢退变,为研究椎间盘退行性变的机理及治疗提供有效的载体。
     第三部分兔骨髓间充质干细胞在退变椎间盘环境中存活及迁移能力的实验研究
     目的:探讨兔骨髓间充质干细胞在退变椎间盘环境中存活及迁移能力,为进一步研究提供实验基础。方法:新西兰大白兔9只,穿刺法诱导椎间盘退变模型建立2周后每个退变椎间盘移植入BrdU标记的骨髓间充质干细胞纤维蛋白凝胶TGF-β1复合物0.04ml,术后2、4、8周将兔处死,取L3/4,L4/5,L5/6的9个椎间盘髓核组织进行BrdU免疫组织化学染色,随机取9个L2/3髓核作为对照组,计数10个高倍视野中BrdU阳性细胞数。结果:BrdU免疫组化染色可见在2、4、8周均有阳性染色细胞,细胞数为157.11±17.45、68.56±16.89、79.78±22.11,4周及8周组间无统计学意义,P>0.05,其余各组间有统计意义,F=74.59,P<0.01。纤维蛋白移植区阳性细胞数量随时间推移逐渐减少后保持一定数量,部分细胞向髓核组织迁移,正常对照组未见阳性细胞。结论:兔骨髓间充质干细胞复合纤维蛋白凝胶TGF-β1移植后能在退变椎间盘环境中存活及迁移,为椎间盘退变的组织工程学研究奠定了实验基础。
     第四部分骨髓间充质干细胞复合可注射型纤维蛋白凝胶TGF-β1移植治疗兔椎间盘退变的实验研究
     目的:探讨兔骨髓间充质干细胞移植抑制椎间盘退变的可行性,为后续的临床研究提供实验基础。方法:新西兰大白兔54只,随机分为3组:(1)退变模型组,(2)单纯纤维蛋白凝胶TGF-β1移植组(,3)骨髓间充质干细胞纤维蛋白凝胶TGF-β1移植组,每组18只。退变模型组单纯用针刺法诱导建立退变模型,单纯纤维蛋白凝胶TGF-β1移植组及骨髓间充质干细胞纤维蛋白凝胶TGF-β1移植组退变模型诱导两周后分别移植入纤维蛋白凝胶TGF-β1复合物及骨髓间充质干细胞纤维蛋白凝胶TGF-β1复合物,分别于术后4、8、12周(移植术后2、6、10周)行CR、MRI及病理检查。结果:椎间盘高度指数(DHI)在退变模型组及单纯支架移植组中下降明显,与时间呈正相关;正常对照组及干细胞移植组下降较缓慢。MRI结果显示退变模型组及支架移植组随时间的推移,退变逐渐加重,干细胞移植组退变不明显。免疫组化及组织学检查显示退变模型组髓核细胞的数量及Ⅱ型胶原含量较对照间盘进行性减少,细胞凋亡率明显增加,单纯支架移植组与退变模型组相似,干细胞移植组髓核细胞的数量及Ⅱ型胶原含量较退变组及单纯支架移植组明显增多,细胞凋亡率下降。结论:干细胞移植能明显抑制椎间盘退变,为进一步的研究奠定了实验基础。
Part I In vitro Culture and Identification of Marrow Mesenchymal Stem Cells
     Objective: We aim to develop a method for in vitro culture, proliferation and identification of the mesenchymal stem cells (MSCs) for the purpose of further application of the MSCs. Methods: The rabbit thighbone was punctured and 4 ml marrow was extracted from it. The marrow MSCs were processed by culture, proliferation and passage. The primary and passage cells were then observed under an inversion microscope for their growth characteristics. In addition, a flow cytometry was applied to assay the cell surface markers, i.e., CD44 and CD45. Finally, after induction and differentiation, the cells were processed by Collagen II immunohistochemistry, Alcian Blue stain, ALP stain and mineralization node stain. Results: We developed a method for in vitro culture and proliferation of the rabbit marrow MSCs and successfully induced osteoblast and cartilage. The marrow MSCs expressed CD44, however, did not express CD45. In addition, the results of Collagen II immunohistochemistry and staining using Alcian Blue, ALP and mineralization node stain were positive. Conclusions: The method of marrow culture can be used to effectively separate, purify and proliferate the marrow MSCs. The cultured cells have the essential phenotypes and characteristics of the marrow MSCs.
     PartⅡConstruction of rabbit model of intervertebral disc degeneration induced by puncturing the annulus fibrosus with needles of defined gauges and aspirating some nucleus pulposus tissue from the intervertebral discs
     Objective: to establish a slowly progressive reproducible rabbit model of intervertebral disc degeneration induced by puncturing the annulus fibrosus with needles of defined gauges and aspirating some nucleus pulposus tissue from the intervertebral discs(IVDs). Methods: The L3/4、L4/5andL5/6 lumbar intervertebral discs of 18 New Zealand white rabbits were stabbed by 21-gauge hypodemic needle into a depth of 5mm in the antero annulus fibrosus, pulled out the needle valve, and aspirated out some nucleus pulposus tissue. Magnetic resonance imaging scans (MRI) Computed radiography (CR) immunohistochemical and histologic analyses of the stabbed discs and intact L2/3 disc were performed preoperatively and at 4, 8, 12weeks respectively after surgery. Results: In the magnetic resonance imaging the stabbed discs exhibited a progressive decrease of sigal intensity in T2-weighted images which start at 4 week after stabing and last for 12 weeks. Computed radiography analyses indicates progressive decrease of the disc height index Immunohistochemical and histologic analyses revealed progressive decrease of chondrocyte-like cells and typeⅡcollagen.Conclusion and increase of cells apoptosis(P<0.01). Conculation: The stabbing and asprirating approach results in a slowly progressive intertebral disc degeneration in rabbit model.This model is available for studying the status intervertebral disc degeneration and treatment.
     PartⅢA Research on Existence and Migration Capability of Rabbit Mesenchymal Stem Cells in Intervertebral Disc Degeneration
     Objective: to explore the existence and migration capability of rabbit mesenchymal stem cells in intervertebral disc degeneration and lay the experimental foundation for further researches. Method: with nine white New Zealand rabbits, by means of puncturing the annulus fibrosus with needles of defined gauges and aspirating some nucleus pulposus tissue from the intervertebral discs, induce intervertebral disc degeneration model. After two weeks, transplant each degenerated intervertebral disc to mesenchymal stem cells fibrinousgelatin TGF-β1 complex 0.04ml with symbol of BrdU. After operation, in 2nd, 4th and 8th weeks, kill the rabbits and take nine intervertebral disc nucleus pulposus tissues of L3/4,L4/5,L5/6, carry out BrdU immunohistochemical stain and randomly take nine L2/3 nucleus pulposus as the control group. Result: From BrdU immunohistochemical stain, masculine staining cells can be seen in the 2nd, 4th and 8th weeks and cell counts are respectively 157.11±13.26, 68.56±13.16, 79.78±22.11, statistics of 4th and 8th weeks group have indifferent meanings P>0.05,and each of rest group have different meanings F=74.59, P<0.01. Along with the time, masculine staining cell count in fibrous protein implanted region decreases, until keeping a certain quantity, part of cells immigrate to nucleus pulposus tissue and there is no masculine staining cell found in normal control group. Conclusion: Rabbit mesenchymal stem cells can survive and immigrate in intervertebral disc degeneration. This lays the experimental foundation for tissue engineering researches of intervertebral disc degeneration.
     PartⅣA Research on Mesenchymal Stem Cells Compound Injectable Fibrinousgelatin TGF-β1 Transplantation Treatment of Rabbit Intervertebral Disc Degeneration
     Objective: To explore the feasibility of rabbit mesenchymal stem cell transplantation’s inhibiting intervertebral disc degeneration. Method: 54 white New Zealand rabbits are randomly divided into three groups: (1) degeneration model group; (2) pure fibrinousgelatin TGF-β1 transplanted group; (3) mesenchymal stem cells TGF-β1 transplanted group. Every group has 18 rabbits. In the degeneration model group, induce and establish the degeneration model merely by means of puncturing the annulus fibrosus with needles of defined gauges and aspirating some nucleus pulposus tissue from the intervertebral discs; in the pure fibrinousgelatin TGF-β1 transplanted group and the mesenchymal stem cells TGF-β1 transplanted group, 2 weeks after inducing degeneration model, transplant fibrinousgelatin TGF-β1 complex and mesenchymal stem cells fibrinousgelatin TGF-β1 complex respectively. Carry out CR, MRI and histologic examinations respectively in the 4th, 8th and 12th weeks (2nd, 6th and 10th weeks after transplant operation). Result: the disc height index (DHI) obviously decreases in the degeneration model group and the pure fibrinousgelatin TGF-β1 transplanted group, which is positively correlated with time; the normal control group and the stem cells transplanted group decrease slowly. MRI results show an increasingly aggravated degeneration in the degeneration model group and the stents transplanted group along with time, while the degeneration in the stem cells transplanted group is not obvious. An immunohistochemistry study and a histological examination indicate a decreasing quantity of the nucleus pulposus cells and the content of typeⅡcollagen in the degeneration model group, compared with that of the disc as well as an obviously increasing rate of cells apoptosis. The pure fibrinousgelatin TGF-β1 transplanted group is similar to the degeneration model group with an obviously increasing quantity of stem cells apoptosis in the stem cells transplanted group and typeⅡcollagen content compared with the degeneration group and the pure stents transplanted group while the cells apoptosis rate decreases. Conclusion: Stem cells can prohibit intervertebral disc degeneration. This lays the experimental foundation for further researches.
引文
1. Saad L, Spector M.Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosamino-glycan scaffolds[J].J Biomend Mater Res,2004, 71(2):233-241.
    2. Yamamot Y,Mohida J,Sakai D,etal.Upregulation of the viability of nucleus pulposus cells by bone marrow derived stromal cells;significance of direct cell-to-cell contact in coculture system[J].spine,2004,29(14):1508-1514.
    3. Nomura J , Mochida J , Okuma M , etal.Nucleus pulposus allograft retards intervertebral disc degdneration[J].clin orthop Relat Res,2001,389(2):94-101.
    4. Reyes M,Lund T,Lenvik T,etal.Purification and exvivo expansion of postnatal human marrow mesodermal progenitor cells[J].Blood,2001,98(9):2615-2625.
    5. Sakai D,Mochida J,Yamamoto Y,etal.Transplantation of mesenchymal stem cells embedded in atelocollagen gel to the intervertebral disc:a potential therapeutic modelfor disc degeration[J].Biomateerials,2003,24(20):3531-3541.
    6. Zhang YG,Guo X,Xu P,et al.Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans[J].Clin Orthop Relat Res,2005,430:219-226.
    7.王金堂,张宏,张银刚等.骨髓间质干细胞异位移植在椎间盘内的迁移及外源基因的表达.中国组织工程研究与临床康复.2007,11(7):1263-1266.
    8.刘凯,钱云良,范志宏.转化生长因子β与组织创伤修复综述[J].中国修复重建外科杂志,1999;13(5):283
    9.高刚,卫小春.关节软骨损伤修复的动物模型.中华实验外科杂志[J],2005,22:253 254.
    10. Roelen BA,Dijkep.Controlling mesenchymal stem cell differentiation by TGF beta familymembers[J]. JORthopaedic Science,2003,8:740-748.
    11. TuliR, TUliS, NandiS,etal. Transforming growth fatorβmediated chondrogenesis of human mesenchymal progenitor cells involves N cadherin andmitogen activated proteinkinase and wntsignaling cross talk J BiolCHem, 2003,278: 41227-41236.
    12. Boumedienek,viven D, Macro M,etal.Modulation of rabbit articular chondrocyte (RAC)proliferation by TGF beta isoforms[J]. Cellprolif. 1995, 28: 221-234.
    1. Caplan AI.Mesenchymal stem cells[J].Orthop Res.1991, 9(5):641~650.
    2. Krause DS, Theise ND, Colletor MI, etal.Multi-organ, multilineage engraftment by a single bone marrow derived stem cell[J]. Cell, 2001, 105(5):367~377
    3. Strauer B, Komowski R. Stem cell therapy in perspective[J].Circulation, 2003, 107(7): 929~934
    4.蒋文慧,马爱群.干细胞循环及其潜在应用前景[J].中华医学杂志, 2003, 83(21):1923~1925
    5.鄂征,刘流,主编.医学组织工程技术与临床[M].北京:北京出版社, 2003: 175~179
    6.曹谊林,主编.组织工程学理论与实践[M].上海:上海科学技术出版社, 2004:161~162
    7. Owen M. Marrow Stromal Stem Cells[J].J Cell Sci Supp l, 1988, 10:63--76.
    8. AggarwalS, Pittenger M F. Human menchymal stem cells modulate allogeneimmune cell responses [J]. Blood, 2005 105(4): 1815-1822.
    9. Pittenger M F, Mackay A M. Multilineage Potential of Adult Human Mesenchymal Stem Cell[J]. Science, 1999, 284(2):143-147.
    10. BruderS P, Jaiswal N, Haynesworth SE. Growth kinetics self-renewal and the osreogenic potential ofpurified humanmesenchymal stem cellsduring extensive subculativation and following cryoprese rvation [J]. J Cell Biochem, 1997, 64(2):278-294
    11.呼莹,赵春华.胎儿骨髓和肝脏间充质干细胞的表型和生物学性状研究[J].中国试验血液学杂志, 2001, 19(4):289-294
    12. Zvaifler NJ, Marinova ML, Adams G, et a.l Mesenchymal precursor cells in the blood of normal individuals[ J]. Arthritis Res, 2000, 2(6): 477.
    13. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[ J]. Br J Haematol , 2000, 109(1): 235.
    14. Zuk PA, Zhu M, MizunoH, et al. Multi-lineage cells from human adipose tissue: implications for cell based therapies[J]. Tissue Eng, 2001, 7(2): 211.
    15. Noort WA, Kruisselbrink AB, Anker PS, et al. Mesenchymal stem cells promote engraftmentofhuman umbilical cord blood derived CD34+cells inNOD /SCID mice [J].ExpHemato, l 2002, 30(8): 870.
    16. Jiang Y, Vaessen B, Lenvi KT, et al. Multi-potentpro-genitor cells can be isolated from post natalmarine bone marrow, muscle, and brain[J]. ExpHemato, l 2002, 30(8): 896.
    17. Almeida PG, ElShabrawy D, Porada C, et al. Differentiative potential of human metanephric mesenchymal cells[J]. Exp Hematol, 2002, 30(12): 1454.
    18. Zohar R, Sodek J, Mcculloch CA. Characterization of Stromal Progenitor Cells Enriched by Flow Cytomerty [J].Blood, 1997, 90(9):3471-3480.
    19. Encina NR, Billotte WG, Hofmann MC. Immunomagnetic Isolation of Osteoprogenitors from Human Bone Marrow Stroma [J]. Lab Invest, 1999, 79(4):449-455.
    20.秦宏敏,李强,马怀忠,等.骨髓间充质干细胞实验室分离的方法[J] .中国临床康复, 2005, 9(6):68~70.
    21. Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cellmobilization associated moleculeson multi-lin-eage cells from adipose tissue and bonmarrow[J]. Immunol Lett, 2003, 89(2-3): 267-270.
    1. Lu DS,Shono Y,Oda I,etal.Effects of chondroitinase ABC and chymopapain on spinal motion segment biomechanics an in vivo biomechanical,radiologic,and histologic canine study.Spine,1997,22:1828-1834.
    2. Key JA, Ford LT. Experimental intervertebral disc lesions[J].J Bone Joint Surg, 948,30A:621-630.
    3. Nguyen CM, Haughton VM, HoKC, etal. Amodel for studying intervertebral disc degeneratuion with magnetic resonance and a nuceleotome [J]. InvestRadiol, 1989, 24: 407-409.
    4. Cauchoix J, Yaacoubi M, Garci Romero, eal. An experimental model of lumba degenerated disc in rabbits [J].OrthopTrans, 1984, 8:431-435.
    5. Jiete K. In vivo disc regeneration by infusing EGF .Presented at the 1996 ISSLS Annual Meeting.
    6. Bercovici S,Paraschivesco E.Recherche exprimentale sur ladiscopthie vertebrale degenerative.Rev Rheum, 1958,25:487-499.
    7. Sullivan JD,Farfan HF,Kahn DS.Pathologic changes with intevertebral joint rotional instability in the rabbit.Can J Surg, 1971, 14:71-79.
    8. Lob A,Holm C.Die zusammenhange zwischen den verletzungen der bandscheiben and der spondylosis deformans im tierversuch.Dtsch Ztschr Chr,1933.240:421-440.
    9. Meachim.Fine structure of juvenile human nucleus pulposus[J].Anat,1970,53:544
    10. Gruber HE, Hanley EN. Analysis of aging and degeneration of the human intervertebral disc [J].Spine,1998,23:757
    11. Buckwalter JA. Aging and degeneration of the human intervertebral disc[J].Spine,1995,20:1037.
    12.吕振华.椎间盘的生物化学.见:胡有谷,主编.腰椎间盘突出症第2版.北京:人民卫生出版社,1995.81 82.
    13. Olmarker k, Blomquist J,Stromberg J,etal.Inflammatogenic properties of nucleus pulposus [J]. Spine,1995,20(6):665-669
    14. Satoh K,Konno S,Nishiyama K,etal.Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus [J].Spine,1999,24(19):1980-1984.
    15. Kim KS,Yoon ST,Li J,etal.Disc degeneration in the rabbit:a biochemical and radiological comparison between four disc injury models[J]. Spine, 2005, 30(1): 33-37.
    16. Sakai D,Mocbida J,Yamamoto Y,etal.Transplantation of mesenshymal stem cells embedded in Atelocollagen gel to the intervertebral disc:a potential therapeutic model for disc degeneration[J]. Biomaterials,2003,24(20):3531-3541.
    17. Saad L,Spector M. Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosamino-glycan scaffolds [J].j Biomed Mater Res,2004,71(2):233-241.
    1.孙晓艳,范洪学.骨髓间充质干细胞的研究进展[J].吉林医学,2007, 28(2):156-159
    2. AggarwalS, Pittenger M F. Human menchymal stem cells modulate allogeneimmune cell responses[J]. Blood, 2005 105(4): 1815-1822.
    3. Owen M. Marrow Stromal Stem Cells[J].J Cell Sci Supp l,1988,10:63--76.
    4.曹谊林,主编.组织工程学理论与实践[M].上海:上海科学技术出版社,2004:161~162.
    5. Reyes M,Lund T,Lenvik T,etal.Purification and exvivo expansion of postnatal human marrow mesodermal progenitor cells[J].Blood,2001,98(9):2615-2625.
    6. Risbud MV, Shapiro IM, Vaccaro AR,et al. Stem cell regeneration of the nucleus pulposus[J]. Spine, 2004,4(6 Suppl):348-353.
    7. Sakai D,Mochida J,Yamamoto Y,etal.Transplantation of mesenchymal stem cells embedded in atelocollagen gel to the intervertebral disc:a potential therapeutic model for disc degeration[J].Biomateerials,2003,24(20):3531-3541.
    8.梁涛,刘浩.间充质干细胞移植治疗椎间盘退变疾病的研究进展[J].中国修复重建外科杂志,2007, 21(5):502-506.
    9. Buckwalter JA, Mow VC, Boden SD,etal. Intervertebral disk structure, composition, and mechanical function[J]. American Academy of Orthopaedic Surgeons, 2000,p:548-555.
    10. Le Visage C, Kim SW, Tateno K,et al. Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis[J].Spine, 2002,31(18):2036-2042.
    11. Meyer JS .Koehm SL , Hughes JM et al.Bromodeoxy-uridine labdling for S-phase measurement in breast carcionma [J].Cancer,1993,71:3531
    12. Lin P, Allison DC. Measurement of DNA comtent and of tritated thymidine and bromodeoxyuridine incorporation by the same cels[J] .J histochem Cytochem 1993,
    1. Saad L,Spector M.Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosamino-glycan scaffolds[J].J Biomend Mater Res,2004,71(2):233-241.
    2. Yamamot Y,Mohida J,Sakai D,etal.Upregulation of the viability of nucleus pulposus cells by bone marrow derived stromal cells;significance of direct cell-to-cell contact in coculture system[J].spine,2004,29(14):1508-1514.
    3. Nomura J , Mochida J , Okuma M , etal.Nucleus pulposus allograft retards intervertebral disc degdneration[J].clin orthop Relat Res,2001,389(2):94-101.
    4. Verfaillie CM, Pera MF, Lansdorp PM, Stem cells; hype and reality[J]. Hematology, 2002,1(10):369-391.
    5. KrauseDS,TheiseND,CollectorMI,etal.Multiorgan,multilineage en graftment by a single bone marrow derived stem cell[J].Cell,2001,105(3):369-377.
    6. Gruber HE,Johnson TL,Leslie K,etal. Autologous intervertebral disc cell implantation;a momel using psammomysobesus, thesangrat [J]. Spine, 2002, 27(15): 1626-1633.
    7. Reyes M,Lund T,Lenvik T,etal.Purification and exvivo expansion of postnatal human marrow mesodermal progenitor cells[J].Blood,2001,98(9):2615-2625.
    8. Sakai D,Mochida J,Yamamoto Y,etal.Transplantation of mesenchymal stem cells embedded in atelocollagen gel to the intervertebral disc:a potential therapeutic model for disc degeration[J].Biomateerials,2003,24(20):3531-3541.
    9. KonttinenYT,KemppinenP,Life,etal.Transforming gandepidermal growth fator sin degenerated intervertebral discs.JBonejointSurg(Br),1999,81(6):1058
    10.刘凯,钱云良,范志宏.转化生长因子β与组织创伤修复综述[J].中国修复重建外科杂志,1999;13(5):283
    11. GruberHE,FisherECJr,DesaiB,etal.Human interverte–bral disc cells from the annulus:three dimensionsl culture in agaroseoralginteand respons iveness toTGF-betal[J].ExpCell Res,1997,235(1):13
    12.顾树明,胡有谷.转化生长因子β对腰椎间盘蛋白多糖核心蛋白基因表达的调控作用[J].中华医学杂志,1999;79(12):917
    13.高刚,卫小春.关节软骨损伤修复的动物模型.中华实验外科杂志[J],2005,22:253 254.
    14. Roelen BA,Dijkep.Controlling mesenchymal stem cell differentiation by TGF beta familymembers[J]. JORthopaedic Science,2003,8:740-748.
    15. TuliR, TUliS, NandiS,etal. Transforming growth fatorβmediated chondrogenesis of human mesenchymal progenitor cells involves N cadherin andmitogen activated proteinkinase and wntsignaling cross talk J BiolCHem, 2003,278: 41227-41236.
    16. Boumedienek,viven D, Macro M,etal.Modulation of rabbit articular chondrocyte (RAC)proliferation by TGF beta isoforms[J]. Cellprolif. 1995, 28: 221-234.
    17.李冬梅,金连弘,张宇等.骨髓间充质干细胞定向诱导成类软骨细胞的实验研究[J].解剖科学进展,2004,10(4):311~314
    1. Gruber HE, Hanley EN Jr. Ultrastructure of the human intervertebral disc during aging and degeneration: comparison of surgical and control specimens[J]. Spine,2002,27(8):798-805.
    2. Buckwalter JA,Mow VC,Boden SD,et al.Intervertebral disk structure, composition , and mechanical function. AmericanAcademy of Orthopaedic Surgeons, 2000,p:548-555.
    3. Homer HA,Urban JP.2001 volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc[J].Spine,2001,26:2543-2549.
    4. Bibby SR, Jones DA, Ripley RM,et al. Metabolism of the intervertebral disc:effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells[J].Spine,2005,30(5): 487- 496.
    5. Susin SA , Zzmzami N , Castedo M , et al.The central executioner of apoptosis:multiple connections between protease activation and mitochondria in Fas/Apo-1/CD95 and ceramide-induced apoptosis[J].J Exp Med , 1997 ,186(1):25-37.
    6.王拥军,孙鹏,刘梅等.大鼠椎间盘软骨细胞中Bax, Bcl-2及Caspase-8的表达[J].中国脊柱脊髓杂志,2004,14(8):480-484.
    7.李小川,金明煦,吕刚等.退变腰椎间盘组织中细胞凋亡及相关基因Bcl-2和Bax表达的研究[J].中国医科大学学报,2003,32(2):146-148.
    8.李小川,西中海,吕刚等.退变腰椎间盘组织中细胞凋亡及相关基因Fas和Fas L表达的研究[J].中国医科大学学报,2003,32(1):52-53.
    9.胡明,马远征,张传森等.人退变椎间盘组织细胞凋亡相关基因表达的初步研究[J].中国康复理论与实践,2006,12(6):484-487.
    10. Liu YH,Tang PZ,Xu ZG,et al. Differential expression of the epithelial membrane protein 1 of laryngeal carcinoma[J]. Zhong Guo Yi Xue Ke Xue Yuan Xue Bao, 2003, 25(1):47-51.
    11. Wang HT,Ong JP.Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray[J].World J Gastroenterology, 2003, 9(3):392-398.
    12. Wilson HL,Wilson SA,Surprenant A,et al.Epithelial mem-brane proteins induce membrane blebbing and interact withthe P2X7 receptor C terminus. Biochemistry, 2002, 277(37):34017-34023.
    13.王拥军,施杞,李家顺,等.大鼠退变颈椎间盘基因表达谱的研究[J].第二军医大学学报, 2002,23(12): 1335-1338.
    14.胡明,张传森,陈道运等.人退变椎间盘组织的基因表达谱[J].解剖学杂志, 2004,27(4):348-351.
    15. Roberts S ,Menage J ,Duance V ,et al. Collagen types around the cells of the intervertebral disc and cartilage end plate : an immunolocalization studyJ . Spine 1991 ,16(9) :1030~1038.
    16. Diab M,Wu JJ,Eyre D. Collagen typeⅨfrom human cartilage:A structural profile of intermolecular crass-linking sites [J].Biochem J, 1996,314:327-332.
    17. Annunen S,Passilta P, Lohiniva J.An allele of COAL9A2 associated with intervertebral disc disease[J]. Science, 1999,285: 409-412
    18. Solovieva S,Leino-Arjas P,Leino-Arjas P, et al. COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine:evidence of gene- environment interaction[J]. Spine,2002 ,27 (23) : 2691-2696.
    19.施杞,王拥军,吴士良,等.风寒湿刺激对家兔颈椎间盘MMP-1、MMP-3活性的影响[J].中国骨伤,2002,15(6):340-342.
    20.林梓凌,林应强.颈椎间盘细胞及细胞外基质退变机制的研究进展[J].现代中西医结合杂志,2004,13(23):3212-3214.
    21. Sedowofia KA,Tomlinnson IW,Weiss JB,et al. Collagenolytic enzyme systems in human intervertebral discs[J]. Spine,1982,7(2):213-222.
    22. Liu J,Roughly PT,Mort JS. Identification of human intervertebral disc stromelysin and its involvement in matrix degeneration[J]. J OrthoRes, 1991, 9(4) :568-575
    23. Kang JD,Georgescu HI,Mclntyre-Larkin L,et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitricoxide, interleudin-6 and prostaglandin E2[J]. Spine,1996,21(2): 271-277
    24. Kanemoto M,Hukuda S,Komiya Y,et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in human intervertebral discs[J]. Spine,1996,21(1):1-8
    25. Crean JK,Roberts S,Jaffray DC,et al.Matrix metalloproteinases in the human intervertebral disc:role in disc degeneration and scoliosis[J].Spine,1997, 22 (24):2877-2884.
    26. Fujita K,Nakagawa T,Hirabayashi K,et al.Neutral proteinases in human intervertebral disc. Role in degeneration and probable origin.Spine , 1993 , 18(13):1766-1773.
    27.吕浩然,刘尚礼,丁悦等.动物模型椎间盘退变全程基因变化的对比[J].中国矫形外科杂志,2005,13(11):846-849.
    28.赵瑛,谭祖键,吴雪晖.基质金属蛋白酶-9在腰椎间盘髓核组织中的表达[J].创伤外科杂志,2007,9(3):261-263.
    29.叶君健,李慧章,傅冷西.基质金属蛋白酶-13在退变腰椎间盘髓核组织中的表达及其意义[J].中华实验外科杂志,2007,24(2):235-236.
    30. Hoch Rc,Rodriguez R,Manning T,et al.Effects of accidental trauma on cytokine and endotoxin production[J].Crit Care Med, 1993,197:1556.
    31.徐亮,代成甫,刘洪涛.髓核组织TNFα、IL-6与腰椎间盘突出症的相关性检测及其意义[J].河南医药信息,2001,9(11):1-2.
    32. Kawakami M,Tamaki T,Hashizume H,et al.The role of phospholipase A2 and nitric oxide in pain-related behavior produced by an allograft of intervertebral disc material to the sciatic nerve of the rat[J].Spine,1997,22(10): 1074- 1079
    33.原野,赵静,李永民.核因子κB和肿瘤坏死因子α在正常椎间盘及其退行性变组织中的表达[J].中国临床康复,2006,10(28):22-23.
    34. Buckwalter JA. Aging and degeneration of the human intervertebral disc[J]. Spine,1995,20(8):1037.
    35. Gruber HE,Hanley EN. Analysis of aging and degeneration of the human intervertebral disc-Comparison of surgical specimens with normal controls[J].Spine,1998,23(6):751.
    36.夏玉军.转染外源性转化生长因子β1基因对兔髓核细胞凋亡的影响[J].青岛大学医学院学报,2003,39(2):140-141.
    37. Ariga K.Miyamoto S,Nakase T, et a.l The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the Intevertebral disc[J]. Spine, 2001, 26(22): 2414~2420.
    38. Ariga K,Yonerobu K,Nakase T, et al.Mechanical stess-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebra discs:an ex vivo study[J]. Spine, 2003, 28(14): 1528~1533.
    39.张振兴,徐振华,牛光峰.退变前后兔腰椎间盘细胞凋亡及蛋白多糖的比较[J].武汉大学学报,2007,28(2):169-171.
    40.彭宝淦,贾连顺,施杞,等.软骨终板在椎间盘退变过程中的作用机理[J].中国矫形外科杂志,2000,7(2):147-150.
    41.马旭,吕刚,黄涛.软骨终板细胞凋亡及其相关研究进展[J].中国矫形外科杂志,2005,13(13):1021-1023.
    42. Nerlich AG, Schleicher ED, BoosN, et a.l Immunohistologic marke for age-related changes of human lumbar intervertebral discs[ J].Spine, 1997, 22(24): 2781~2795.
    43. Melrose J,Roberts S,Smith S,et al.Increase nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration[ J].Spine,2002,27:1278-1285.
    44. Johson WE,Caterson B,Eisenstein SM,et al.Human intervertabral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro[ J].Spine,2005,30: 1139- 1147.
    45. Wada E. Experimental spondylosis in the rabbit spine:Overuse could accelerate the spondylosisc[J].Spine,1992,17:1-6.
    46. Schendel MJ,Dekutoski MB.Kinematic of the canine lumbar intervertebral joint:An in vivo study before and after adjacent intruementation[J].Spine,1995,20: 2555- 2564.
    47. Van Deursen DL,Snijders CJ,KingmAI,et al.In vitro torsion-induced stress distribution changes inporcine intervertebral discs[J].Spine,2001,26: 2582- 2586.
    48. Chiu EJ,Newitt DC,Segal MR,et al.Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro [J].Spine, 2001, 26: 437-444.
    49.陈立,詹红生,应航,等.长时间异常应力负荷下兔颈椎间盘的组织病理学观察[J].中国骨伤,2003,16:374-375.
    50. Cassidy JJ, Yong-Hing K, Kirkaldy-Willis WH,et al. A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat[J]. Spine,1988,13:301-308.
    51. Yamada K. The dynamics of experimental posture: Experimental study of intervertebral disk herniation in bipedal animals [J]. Clin Orthop 1962,25:20-31.
    52. Higuchi M, Abe K, Kaneda K. Changes in the nucleus pulposus of the intervertebral disc in bipedal mice: A light and electron microscopic study [J]. Clin Orthop,1983,175:251-257.
    53.吴靖平,陈统一,陈中伟,等.双后肢大鼠椎间盘退变动物模型的建立[J].中华实验外科杂志.2004,2(1):105-107.
    54. Lindblom K. Experimental ruptures of intervertebral discs in rats' tails: A preliminary repot [J]. J Bone Jiont Surg,1952,39A:123-128.
    55. Lotz JC,Hsieh AH,Walsh AL,et al.Mechanobiology of the intervertebral disc[J].Biochem Soc Trans,2002,30:853-858.
    56. Iatridis JC , Mente PL , Stokes IA , et al.Compression-induced changes in intervertebral disc properties in a rat tail model[J].Spine,1999,24(10):996-1002.
    57. Kroeber MW,Unglaub F,Wang H,et al.New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration[J].Spine,2002,27(23):2684-2690.
    58.陈国仙,王万明.椎间盘退变动物模型研究进展[J].实用骨科杂志,2007,13(1):33-36.
    59. Sullivan JD, Farfan HG, Kahn DS. Patholgic changes with intervertebral joint rotational instability in the rabbit [J]. Can J Surg,1971,14:71-79.
    60. Stokes IA,Counts DF,Frymoyer JW.Experimental instability in the rabbit lumbar spine[J].Spine,1989,14(1):68-72.
    61. Miyamoto S,Yonenobu K,Ono K.Experimental cervical spondylosis in the mouse[J].Spine,1991,16(Suppl 10):495-500.
    62.郭常安,胡有谷.椎间盘退变动物模型研究概况[J].上海实验动物科学,2000,20(1):58-62.
    63. Osti OL , Vemon-Roberts B , Fraser RP.1990 Volvo award in experimental study.Anulus tear and intervertebral disc degeneration:an experimental using an animal model[J].Spine,1990,15:762-767.
    64. Moore RJ,Osti OL,Vernon-Roberts B,et al.Changes in end plate vascularity after an outer anulus tear in the sheep[J]. Spine, 1992,17(8): 874-878.
    65. Lipson SJ,Muir H.Proteoglycans in experimental intervertebral disc degeneration [J].Spine,1981,6(3):194-210.
    66.吕浩然,刘尚礼,丁悦,等.兔腰椎间盘退变模型的建立及影像学分析[J].中国临床解剖学杂志,2005,23:643-647.
    67. Sobajima S,Kompel JF,Kim JS,et al.A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI,X-ray,and histology[J].Spine,2005,30(1):15-24.
    68. Kim KS,Yoon ST,Li J,et al.Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models[J].Spine,2005,30 (1):33-37.
    69.王靖,唐天驷,姚啸生等.纤维环穿刺诱导椎间盘退变动物模型的试验研究[J].中国脊柱脊髓杂志,2006,16(4):284-286.
    70.吴健,唐天驷,王根林等.针刺抽吸法诱导建立椎间盘退行性变的动物模型[J].中国组织工程研究与临床康复,2007,11(45):9116-9119.
    71. Holm S,Holm AK,Ekstom L,et al.Experimental disc degeneration due to endplate injury[J].J Spinal Disord Tech,2004,17:64-71.
    72. Jiete K. In vivo disc regeneration by infusing EGF. Presented at the 1996 ISSLS Annual Meeting.
    73. Sakuma M,Fujii N,Takahashi T,et al.Effect of chondroitinase ABC on matrix metalloproteinases and inflammatory mediators produced by intervertebral disc of rabbit in vitro[J].Spine,2002,27(60):576-580.
    74. Norcross JP,Lester GE,Weinhold P,et al.An in vivo model of degenerative disc disease[J].J Orthop Res,2003,21(1):183-188.
    75. Silberberg R, Aufdermaur M, Adler JH. Degeneration of the intervertebral disks and spondylosis in aging sand rats [J]. Arch Pathol Lab Med, 1979,103:231-235.
    76. Silberberg R. The vertebral column of diabetic sand rats (Psammomys obesus) [J]. Exp Cell Biol, 1988,56:217-220.
    77. Moskowitz RW, Ziv I, Denko CW,et al. Spomdylosis in sand rats: A model of intervertebural disc degeneration and hyperostosis [J]. J Orthop Res 1990,8:401-411.
    78. Mason RM, Palfrey AJ: Intevertebral disc degeneration in adult mice with hereditary kyphoscoliosis [J]. J Orhop Res,1984,2:333-338.
    79. Silberberg R, Geritsen G. Aging changes in intervetebral discs and spondylosis in Chines hamsters [J]. Disbetes,1976,25:477-483.
    80. Hansen HJ. Comparative views on the pathology of disc degeneration in animals [J]. Lab Invest,1959,8:1242-1265.
    81. Lauerman WC, Plateberg RC, Cain JE,et al.Age related disk degeneration: Preliminary repot of a naturally ocurring baboon model[J]. J Spinal Disord,1992,5:170-174.
    82. Sahlman J,Inkinen R,Hirvonen T,et al.Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen[J].Spine,2001,26(23):2558-2565.
    83. Hamrick MW,Pennington C,Byron CD.Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8(myostatin)[J].J Orthop Res,2003,21(6):1025-1032.
    84. Sato M, Kikuchi T, Asazuma T, et al. Glycosaminoglycan accu-mulation in primary culture of rabbit intervertebral disc cells[J].Spine, 2001, 26: 2653-2660.
    85. An HS, Thonar EJ, Masuda K. Biological repair of intervertebral disc[J]. Spine, 2003, 28: 86-92.
    86. Gruber HE,Johnson TL,Leslie K,et al.Autologous intervertebral disc cell implantation:a model using psammomys obesus, the sand rat[J].Spine, 2002,27(15):1626~1633.
    87. Nomura T,Mochida J,Okuma M,et al.Nucleus pulposus allograft retards intervertebral disc degeneration[J].Clin Orthop Relat Res,2001, 389(2): 94-101.
    88. Mizuno H,Roy AK,Vacanti CA,et al.Tissue-engineered composites of annulus fibrosus and nucleus pulposus for intervertebral disc replacement[J]. Spine, 2004, 29(23): 2770-2778.
    89. Rahmat R,Moore RJ,Nikoloff S,et al.Autologous chondrocyte implantation in an ovine model of disc degeneration[R].Spine Society of Australia. Canberra , Australia:2003.
    90. Gorense kM,Jaksimovic C,Kregar-Velikonja N,et al.Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes [J].Cell Mol Biol Lett,2004,9(2):363-367.
    91.冀振亮,谢红梅,李增怀.椎间盘的组织工程学[J].中国矫形外科杂志,2004,12(19):1492-1494.
    92. Yang LJ,Hall R,Pelinkovic D,et al.New use of a three-dimensional pellect culture system for human interverbral disc cells:initial characterixation and potential use for tissue engineering[J].Spine,2001, 26(21):2316-2322.
    93. Moon SH, Gilbertson LG, NishidaK, et al. Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: implications for theclinical management of intervertebral disc disorders[J]. Spine, 2000, 25: 2573- 2579.
    94. Paul R,Haydon RC,Cheng H,et al. Potentialuse of Sox9 gene therapy for intervertebral degenerative disc disease[J]. Spine, 2003,28: 755-763.
    95. D Greg Anderson,Makarand V Risbud,Irving M Shapiro.Cell-based therapy for disc repair [J].The Spine Journal,2005,5:297-303.
    96.杨进波,杨磊,姬文婕等.椎间盘体外培养方法及其初步应用的研究[J].劳动医学,2001,18(2):70-72.
    97. Di Martino A,Sittinger M,Risbud MV.Chitosan:a versatile biopolymer for orthopaedic tissue - engineering[J]. Biomaterials,2005, 26: 5983-5990.
    98. Alini M, Roughley PJ, Antoniou J,et al. A biological approach to treating disc degeneration: not for today, but maybe for tomorrow[J]. Eur Spine J,2002,11: S215-220.
    99. Mwale F,Iordanova M,Demers CN,et al.Biological evaluation of chitosan salts cross- linked to genipin as a cell scaffold for disk tissue engineering[J]. Tissue Eng, 2005, 11: 130-140
    100.赵鑫,侯铁胜.骨髓间充质干细胞移植治疗腰椎间盘退变的研究进展[J].中国脊柱脊髓杂志2007年第17卷第6期:464-466.
    101. Gruber HE,Leslie K,Ingram J,et al.Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers[J].Spine J,2004,4:44-55.
    102. Saad L,Spector M.Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosamino-glycan scaffolds[J].J Biomed Mater Res,2004,71(2):233-241.
    103.潘勇,周跃,李长青.脱矿脱细胞骨基质环孔隙度作为组织工程椎间盘纤维环细胞支架材料的可行性[J].中国临床康复2006,10(45):60-62.
    104. Kusior IL , Vacanti CA , Bayley JC , et al.Tissue engineering of nucleus pulpous[J].Trans Orthop Res Soc,1999,24:807.
    105.曹谊林,主编.组织工程学理论与实践[M].上海:上海科学技术出版社,2004:161~162
    106. Owen M. Marrow Stromal Stem Cells[J].J Cell Sci Supp l,1988,10:63--76.
    107. AggarwalS,Pittenger M F. Human menchymal stem cells modulate allogeneimmune cell responses[J]. Blood, 2005 105(4): 1815-1822.
    108. Pittenger M F, Mackay A M. Multilineage Potential of Adult Human Mesenchymal Stem Cell[J]. Science,1999,284(2):143-147.
    109. David CC,Reiner C,Catla M,et al.Rapid expansion of recycling stems cells in cultures of plastic-adherent cells from human bone marrow[J].Proc Natl Acad Sci USA,2000,97(7):3213-3218.
    110. BruderS P, Jaiswal N, Haynesworth SE. Growth kinetics self-renewal and the osreogenic potential ofpurified humanmesenchymal stem cellsduring extensive subculativation and following cryoprese rvation[J]. J Cell Biochem, 1997, 64(2): 278-294.
    111. Dezawa M,Kanno H,Hoshino M,et al.Special induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation[J].J Clin Invest,2004,113(12):1701-1710.
    112. Zohar R, Sodek J ,Mcculloch C A. Characterization of Stromal Progenitor Cells Enriched by Flow Cytomerty [J].Blood,1997,90(9):3471-3480.
    113. Encina N R, Billotte W G, Hofmann M C. Immunomagnetic Isolation of Osteoprogenitors from Human Bone Marrow Stroma [J]. Lab Invest, 1999,79(4):449-455.
    114. Ugarte D A,Alfonso Z, Zuk P A, et al. Differential expression of stem cellmobilization associated moleculeson multi-lin-eage cells from adipose tissue and bonmarrow[J]. Immunol Lett, 2003, 89(2-3): 267-270.
    115. Zhao RC,Liao L,Han Q.Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy[J].J Lab Clin Med,2004,143(5):284-291.
    116. Le Blanc K,Tammik L,Sundberg B,et al.Mesenchymal stem cells inhibit and stimulate mixed lymphocytecultures and mitogenic responses independently of themajor histocompatibility complex.Scand J Immunol,2003,57(1):11-20. 100
    117. Ruggeri L, Capanni M,Martelli MF,et al.Cellular therapy: exploiting NK cellalloreactivity in transplantation[J].Curr Opin Hemato,2001, 8(6): 355-359.
    118. Risbud MV,Albert TJ,Guttapalli A,et al.Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro:implications for cell-based transplantationtherapy[J].Spine,2004,29(23):2627-2632.
    119. Yamamoto Y, Mochida J, Sakai D,et al.Reinsertion of nucleus pulposus cells activated by mesenchymal stem cells using coculture method decelerated intervertebral disc degeneration.Spine J, 2003,3: 101-102.
    120. Sobajima S, Shimer A, Kim J,et al. Feasibility of stem cell therapy for intervertebral disc degeneration. Spine J, 2004, 4:117-186.
    121. Richardson SM, Walker RV, Parker S,et al. Intervertebral disccell-mediated mesenchymal stem cell differentiation. Stem Cells,2005,24(3):707-716.
    122. Zhang YG,Guo X,Xu P,et al.Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans[J].Clin Orthop Relat Res,2005,430:219-226.
    123.王金堂,张宏,张银刚等.骨髓间质干细胞异位移植在椎间盘内的迁移及外源基因的表达.中国组织工程研究与临床康复.2007,11(7):1263-1266.
    124. Crevensten G,Walsh AJ,Ananthakrishnan D,et al.Intervertebral disc cell therapy for regeneration:mesenchymal stem cell implantation in rat intervertebral discs[J].Ann Biomed Eng,2004,32(3):430-434.
    125. Sakai D,Mochida J,Yamamoto Y,et al.Transplantation of mesenchymal stem cells embedded in atelocollagen gel to the intervertebral disc:a potential therapeutic model for disc degeneration[J].Biomaterials,2003,24(20):3531-3541.
    126. Sakai D,Mochida J,Iwashina T,et al.Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model:potential and limitations for stem cell therapy in disc regeneration[J].Spine J,2005,30(21):2379-2387.
    127.赵梓汝,吴小涛,祁亚斌,等.TGF-β1干预下体内兔骨髓间充质干细胞对退变椎间盘治疗的实验研究[J].中国矫形外科杂志,2006,14(13):1019-1022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700