用户名: 密码: 验证码:
光强对花生光合特性、产量和品质的影响及生长模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2007年和2008年在山东农业大学农学实验站进行。针对花生与玉米、小麦等作物间作、套种造成遮光问题,选用大花生品种丰花1号和小花生品种丰花2号做为供试材料,在花生苗期、结荚期和饱果期分别用不同透光率的遮阳网进行遮光处理模拟弱光条件,设置自然光(CK)、遮光27%、遮光43%和遮光77%四种光强水平,研究了光强处理对花生光合特性、光系统Ⅱ光能分配、RuBPCase活性、植株形态建成、物质生产和产量以及品质的影响,明确了不同时期干物质积累及光能利用率与光合有效辐射的关系,以此为基础采用2种方法建立了花生干物质生产动态模型和花生产量形成模拟模型,并对各模型的模拟精度进行了比较。主要研究结果如下:
     1光强对花生叶片光合荧光特性的影响
     苗期遮光处理,随处理光强的减弱叶绿素(Chl(a+b))含量显著增加,PSⅡ的实际光化学效率(ФPSⅡ)和最大光化学效率(Fv/Fm)升高;叶绿素a(Chla)与叶绿素b(Chlb)的比值(Chla/b)、净光合速率(Pn)降低。遮光处理结束,各处理均在高光强1200μmol·m-2·s-1下测定时,Pn、气孔导度(Gs)随处理光强的减弱而下降,细胞间隙CO2浓度(Ci)升高;在低光强276μmol·m-2·s-1下测定时,遮光处理的Pn显著高于自然光下生长的,Gs和Ci下降;低光强与高光强下测定的Pn的比值随处理光强的减弱显著升高。遮光处理结束后均恢复到自然光强下,Pn、ФPSⅡ和Fv/Fm先迅速下降,3-5d后逐渐回升;恢复15d时,仅遮光27%处理的各参数能恢复到对照水平。丰花1号各处理叶绿素含量、Pn、ФPSⅡ均比丰花2号相同处理的高。结荚期遮光处理花生叶的Pn变化规律与苗期的类似。饱果期遮光处理的在处理光强下和低光强276μmol·m-2·s-1光强下测定时Pn变化规律与苗期处理的相似,均在高光强1200μmol·m-2·s-1下测定时Pn随处理光强的减弱而升高。遮光处理降低了花生的光合能力,提高了其利用弱光的能力,降低了其利用强光的能力;并且花生对弱光有一定有适应性,轻度遮光处理的在自然光下生长一段时间可以较快的恢复。
     2光强对光合日变化及光合曲线参数的影响
     花生叶片Pn的日变化都呈单峰曲线,遮光处理对Pn日变化的趋势没有影响,但降低了Pn的峰值,提高了花生下午弱光时的光合速率。苗期在遮光条件下生长的植株光合作用光补偿点和光饱和点比自然光强下生长的植株显著降低,表观量子效率显著升高,光强越弱变幅越大。遮光27%处理的光饱和点与自然光强下的差异不显著,遮光43%和77%处理的光饱和点分别比自然光强下的降低14%、29%,差异显著。自然光、遮光27%、43%和77%处理的光合作用光补偿点分别为:52.7、45.9、21.3、9.6μmol·m-2·s-1,表观量子效率为:0.0269、0.0317、0.0337、0.0317μmol·mol-1。弱光处理后,叶片CO2补偿点、CO2饱和点降低,遮光43%和77%处理的与自然光下生长的差异显著。
     3光强对光合酶及抗氧化酶活性的影响
     苗期遮光处理的花生叶片RuBPCase活性都显著地低于自然光下生长的,且随处理光强的减弱而显著降低,遮光27%、43%和77%处理分别比对照降低21.7%、45.9%和81.9%。苗期遮光处理结束,均在自然光下生长1d,消除了即时光强的刺激,遮光处理的RUBPCase有所升高,但仍随处理光强的减弱而显著降低,表现出RUBPCase的潜力差异,苗期遮光可能损害了叶片的RuBPCase功能。PEPCase活性变化规律与RUBPCase活性基本一致,遮光处理的都显著地低于自然光下生长的,且随处理光强的减弱而降低,但降低的幅度比RUBPCase活性的小。说明即时光强和较长时间的遮光处理均会显著影响RuBPCase和PEPCase的活性。
     苗期遮光处理,随处理光强的减弱,花生叶片的SOD、POD活性显著升高,CAT活性显著降低;处理结束后在自然光下生长15d时,SOD、POD活性仍随处理光强的减弱而升高,但与对照差异减小,CAT活性仍比自然光下生长的低。结荚期和饱果期遮光处理的SOD活性随处理光强的减弱而下降,POD和CAT活性上升。结荚期遮光处理结束在自然光下生长15d时,各处理SOD活性均明显低于对照,POD和CAT活性高于对照,但处理间差异不显著。
     4光强对花生植株营养生长的影响
     苗期遮光处理对花生植株性状影响最大,结荚期处理的次之,饱果期处理的影响最小。苗期遮光处理促进了花生主茎和侧枝的伸长,但明显减少了花生植株的分枝数。3个时期遮光处理对叶面积系数均有很大影响,其中苗期遮光43%和77%处理主要是降低了叶面积的增长速度,从而降低了最大叶面积系数;结荚期遮光处理则是减缓或是阻止了花生生长后期叶面积系数的提高,从而使最大叶面积系数变小,出现的时间比自然光下生长的早,同时减缓叶面积系数下降的速度;饱果期遮光处理则是加快了叶面积系数下降的速度。3个时期遮光处理植株生物产量均随处理光强的减弱显著降低,其中以结荚期遮光处理的降幅最大,饱果期遮光处理的次之,苗期遮光处理的影响最小。
     5光强对荚果产量和籽仁品质的影响
     遮光处理均造成减产,苗期遮光27%和43%处理的减产幅度较小与对照差异不显著;结荚期和饱果期遮光处理的减产严重差异显著,减产原因是降低了单株结果数和荚果的成熟饱满度。苗期遮光处理对花生产品质量影响较小,结荚期和饱果期遮光处理影响较大,出口果和仁出成率均降低,籽仁含油量分别降低0.4~2.0、0.6~3.2、1.6~6.0个百分点,蛋白质和可溶性糖含量小幅增加。籽仁典型样品(成熟饱满的花生籽仁)含油量比随机样品(具有经济价值的籽仁,包括成熟饱满的和秕的)分别高0.7~2.6、0.7~3.4、0.7~4.9个百分点。籽仁营养成分含量和成熟饱满度极显著相关,说明通过栽培措施提高成熟饱满度的途径改善花生产品质量有很大潜力。
     6干物质积累、光能利用率与光合有效辐射的关系
     系统研究了不同生育时期光能利用率、干物质积累与光合有效辐射的关系。苗期单株干物质增长速率相应与光合有效辐射量的变化符合双曲线,结荚期的符合指数曲线,饱果期的符合S形曲线,3个时期的相对增长速率相应与光合有效辐射量的变化均符合指数曲线;结荚期和饱果期荚果干物质增长速率和相对增长速率与光合有效辐射均符合指数曲线。为建立以光合有效辐射为驱动变量的干物质积累模型提供了基础。以光合有效辐射为基数计算了花生的光能利用率,全生育期平均为5.19%,苗期平均为2.33%,花针期平均为7.33%,结荚期平均为8.87%,饱果期平均为7.72%。苗期光能利用率与光合有效辐射负相关,结荚期和饱果期是正相关;光能利用率与叶面积系数呈正相关关系。
     7花生干物质生产与产量形成模拟模型
     在试验研究的基础上,建立了花生干物质生产模型,然后以此为基础建立花生产量形成模拟模型,并进行了比较。第一种方法是根据“物质—能量转化—能量平衡”理论及作物生理学的基本原理,建立了花生群体干物质生产动态模型。模型考虑了群体叶面积动态、冠层光能分布及光合作用等主要生理过程。该模型的群体干物质积累实测值与预测值的决定系数为0.9505,均方差根为16.76%,以此为基础进行的产量预测检验结果为:R=0.9236,RMSE=17.58%。二是以光合有效辐射Q与叶面积系数L作为驱动变量,借鉴CERES中的干物质生产模型Wi=a*Qi*(1-e-k*Li),按出苗—结荚期,结荚期—成熟收获两个阶段进行模拟,干物质积累实测值与预测值的决定系数为0.9967,均方差根为7.18%,以此为基础进行的产量预测检验结果为:R=0.9758,RMSE=9.88%。两种模型相比,第一种方法建立的模型机理性较强,CERES模型有更好的模拟精度。
The research was carried out at agronomy experimental station of Shandong agricultural university in 2007 and 2008. Shading experiments were designed according to low light intensity problem caused by intercropping system of peanut with maize or wheat et al. Fenghua1 and Fenghua2 were adopted in the experiment of four light intensity levels (CK in which the plants were grown under natural light, 27% shading, 43% shading and 77% shading), which carried out at three growth stage using black sunshade net. And the three stages were seedling phase, pod-setting phase and pod-maturing phase. The aim of this study was to investigate the effects of low light on the photosynthetic characteristics, luminous energy distribute of PSⅡ, RuBPCase activitiy, plant morphogenesis, dry matter production, pod yield and quality of peanut at different stages, defined the relationship between dry matter accumulation and PAR, relationship of efficiency for solar energy utilization and PAR, and then set up the dry matter production and yield formation model on the basis of the experimental data. The main results were as follows.
     1 Effect of light intensity on photosynthetic and fluorescence characteristics of peanut leaves
     Shading treatment at seedling phase could increase content of chlorophyll(a+b) (Chl(a+b)), enhance the actual photochemical efficiency of PSⅡ(ФPSⅡ) and optimal photochemical efficiency of PSⅡin the dark(Fv/Fm) significantly along with the weakening of treatment light intensity. While could depress the ratio of chlorophyll a to chlorophyll b (Chla/b) and photosynthetic rate (Pn). When the treatment ended, Pn, stomatal conductance (Gs) decreased and intercellular CO2 concentration (Ci) increased with the weakening of treatment light intensity when measured under high light intensity (1200μmol·m-2·s-1). And Pn raised, Gs and Ci reduced when measured under low light intensity (276μmol·m-2·s-1). The ratio of Pn measured in low light to high light had significant positive-correlation with treatment light intensity. When the shading treatment ended and recovered to natural light, Pn,ФPSⅡand Fv/Fm were immediately decreased and then ascended gradually after 3-5 days. The recovery extent and shading degree were negative correlation. After recovery of 15 days, Pn,ФPSⅡand Fv/Fm of 27% shading treatment could recover to the CK level. Content of Chl(a+b), Pn andФPSⅡof Fenghua1 were higher than those of Fenghua2 at the same treatment. So the ability of using low light was improved and the ability of using high light was decreased. The shading treatment at pod-setting phase had similar rule. Pn of shading treatments at pod-maturing phase had similar variation law with seedling treatment when measured under treatment light intensity and low light intensity (276μmol·m-2·s-1), while had opposite law when measured under high light intensity (1200μmol·m-2·s-1). So shading treatment depressed the photosynthetic capacity of peanut leaves, improved the ability of using low light, and decreased the ability of using high light. Peanut has adaptability to weak light, and peanut under light shading treatment resume growing in a period when growth in natural light.
     2 Effect of light intensity on diurnal variation of photosynthesis and photosynthetic curve parameter of peanut leaves
     The diurnal variation of net photosynthetic rate was a single peak curve. Shading treatment has no effect on the tendency of change, but depressed the peak of the curve and increased Pn in weak light in the afternoon. In seedling shading treatment, light compensation point and light saturation point of peanut which cultured under treatment light intensity conditions were lower than that cultured under natural light, while the apparent quantum yield were higher. The weaker the light intensity was, the larger amplitudes were. Compared with peanut cultured under nature light, light saturation point of peanut of 27% shading had not significant difference, while the light saturation point of peanut of 43% shading and 77% shading percentage fell by 14%, 29% respectively and were remarkable difference. The light compensation point of nature light, 27% shading, 43% shading and 77% shading were respectively 52.7, 45.9, 21.3, 9.6μmol·m-2·s-1, and the apparent quantum yield of the four treatment were respectively 0.0269, 0.0317, 0.0337, 0.0317μmol·mol-1. Shading treatment depressed the CO2 compensation point and CO2 saturation point, and the two indexes of 43% shading and 77% shading treatment had significant difference from the contrast.
     3 Effect of light intensity on photosynthetic enzymatic and antioxidant enzyme activity of peanut leaves
     RuBPCase activity of peanut leaves which cultured under low light ware significantly depressed according to the weakening of treatment light intensity in seedling phase. RuBPCase activity of peanut cultured under 27% shading, 43% shading and 77% shading treatment condition were decreased by 21.7%, 45.9% and 81.9% respectively compared with those cultured under natural light. When the seedling shading treatment ended, all the peanut plant were made growth in natural light for one day in order to eliminate the influence of immediate light intensity effect. RuBPCase activity increased slightly but also significantly depressed according to the weakening of treatment light intensity. The later data showed the difference of RuBPCase activity potential, that is to say seedling shading treatment was likely to damage the function of RuBPCase. PEPCase activity had the similar variation law to RuBPCase activity, while had lower amplitudes. The result indicated that immediate light intensity and long time shading treatment can all influence RuBPCase and PEPCase activity.
     SOD, POD activity of peanut leaves cultured under low light were significantly increased according to the weakening of treatment light intensity at seedling phase, while CAT activity decreased significantly. After 15 days’growth under natural light when the treatment ended, SOD, POD, CAT activity all showed similar rules, while the disparity between the CK level minished. SOD activity depressed as the weakening of treatment light intensity in pod-setting phase and pod-maturing phase treatment, while POD and CAT activity increased. The SOD activity was significantly lower than CK level after 15 days’growth under natural light when the pod-setting shading treatment ended, while POD and CAT activity were higher than CK level but had not significantly difference.
     4 Effect of light intensity on vegetative growth of peanut
     Shading treatment at seedling phase had the most influential effect on peanut plant characters; shading at pod-setting phase took the second place; while shading at pod-maturing phase had the least influence. Shading treatment at seedling phase promoted the elongation of main stem and lateral branch, but reduced the branch number of the plant. Shading at the three phase all have great influence on leaf area index; among them 43% shading and 77% shading at seedling phase decreased leaf area index mainly because depressed the growth rate; shading at pod-setting phase mainly reduced the growth rate of leaf area, and depressed the descending rate at anaphase of peanut growth; shading at pod-maturing phase mainly quickened the degressive velocity of leaf area. Plant biolobical yield all significantly reduced at the three phase shading treatment, among them shading treatment at pod-setting had the extremum decreasing amplitude, shading treatment at pod-maturing phase took the second place, while shading at seedling phase had the least influence.
     5 Effect of light intensity on pod yield and kernel quality of peanut
     Yield reduction occurred under all treatments. There were little reduction under 27% and 43% shading at seedling phase, while the maximal yield reduction occurred under shading at pod-setting phase. Decrease of pods per plant and plumpness were main reason of reduction of yield. Shading at seedling phase had little influence on quality, while had great influence at the other two phases. The yield rate of export pod and kernel were all decreased. Decreasing ranges of oil content were 0.4~2.0, 0.6~3.2 and 1.6~6.0 percentage point at the three phases respectively, while protein and total soluble sugar content increased by a small margin. The oil content of typical samples was 0.7~2.6, 0.7~3.4 and 0.7~4.9 percentage point higher than random samples at the three phases respectively. There were significant correlation between nutrition content and plumpness. So it was very potential in improving the quality of peanut production by way of increasing plumpness with cultivation measures.
     6 Relationships between dry matter accumulation and PAR, and between efficiency for solar energy utilization and PAR were specified
     The relationships between dry matter accumulation and PAR and the relationship between efficiency for solar energy utilization and PRA were studied systemically. And it showed dry matter accumulation rate and PAR followed the logarithm curve at seedling phase, exponential curve at pod-setting phase and S shape curve at pod-maturing phase. Relative rate of dry matter accumulation of the three phases were all followed exponential curve. And the two rates of dry matter accumulate in pod were all followed exponential curve at pod-setting phase and pod-maturing phase. That’s to say there’s significant correlation between dry matter accumulation and PAR, and it will be the basic to make dry matter accumulation model. Efficiency for solar energy utilization was calculated, and the results as followed: 5.19% in the whole growth period, 2.33% at seedling phase, 7.33% at pod-pin phase, 8.87% at pod-setting phase and 7.72% in pod-maturing phase. There were negative correlation between efficiency for solar energy utilization and PAR at seedling phase, and positive correlation at pod-setting phase and pod-maturing phase. There were positive correlation between efficiency for solar energy utilization and LAI.
     7 Simulation model of peanut population dry mater accumulation and yield formation were set up
     Peanut population dry matter production model and yield formation model were founded by adopting two kinds of method based on the theories of peanut growth physiology. The first kind of model considered the physiological processes of leaf area dynamic, coronal luminous energy allocation, photosynthesis and so on based on the“material---energy transform--- energy balancing”theory and crop physiology fundamental principle. The test result of population dry matter production model is: R=0.9505, RMSE=16.76%; and test result of yield formation model is: R=0.9236, RMSE=17.58%. That’s the first peanut model found by this way. In the second kinds, solar radiation and leaf area index had been taken into account in dry matter model Wi=a*Qi*(1-e-k*Li) as CERES used for reference. According as the growth center is different in every period, the entire phenology course is detached to two phases, seedling to Pod-setting and Pod-setting to Pod-maturing. The test result of population dry matter production model is: R=0.9967, RMSE=7.18%; and test result of yield formation model is: R=0.9758, RMSE=9.88%. As compared, the first kind of model was much more mechanism, and the CERES model was batter in simulating precision.
引文
[1]艾希珍,郭延奎.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,2004, 37(2): 268-273
    [2]白宝璋,汤学军.植物生理学测试技术[M].北京:中国科学技术出版社,1993
    [3]本庄一雄.稻米蛋白质含量的研究工不同施肥条件对糙米蛋白质含有率和蛋白质总量的影响[J].日本作物学会纪事.1971,40:190-197
    [4]蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响[J].应用生态学报,1999, 10(2): 193-196
    [5]曹宏鑫.小麦群体与土壤水分及氮素动态的模拟优化决策研究[D].南京农业大学博士毕业论文,1997
    [6]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2006
    [7]曹锡清.膜质过氧化对细胞有机体的作用[J].生物化学与生物物理学进展, 1988, 86(2): 17-32
    [8]陈日远,关佩聪,翟英芬.凉爽纱覆盖对生菜产量、品质及生理效应的研究[J].华南农业大学学报,1994,15(2):82-87
    [9]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2): 87-89
    [10]程方民,朱碧岩.稻米胶稠度与结实期温度的关系[J].西北农业大学学报,1996,24(5):16-20
    [11]迟伟,王荣富,张成林.遮荫条件下草莓的光合特性变化[J].应用生态学报, 2001, 12(4): 566-568
    [12]戴云玲,郭仲琛,郑光植,管康林,徐桂芳,汤佩松.遮光对冬小麦穗发育的影响[J].作物学报,1965(2) 135-147
    [13]董树亭,胡吕浩,岳寿松.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系[J].植物生态学与地植物学学报,1992,16(4):372-377
    [14]董占山,潘学标.棉花生长发育产量潜力的模拟[J].棉花学报,1992, 4(增刊):21-30
    [15]杜占池,何妙光,杨宗贵.遮阴对谷子和花生光合特性的影响[J].植物生态学与地植物学丛刊,1982,6(3):219-226
    [16]杜占池.不同光照条件对伏花生光合特性的影响[J].花生学报, 1980, (1): 22-27
    [17]段咏新,宋松泉,傅家瑞.钙对杂交水稻叶片中活性氧防御酶的影响[J].生物学杂志,1999,16(1):18-19
    [18]范柯伦H,沃尔夫J主编;杨守春,王涌涛,陈同斌等译.农业生产模型—气候、土壤和作物[M].北京:中国农业科技出版社,1990
    [19]范燕萍,余让才,郭志华.遮荫对匙叶天南星生长及光合特性的影响[J].园艺学报,1998,25(3):270-274
    [20]冯利平,高亮之等.小麦发育期动态模拟模型的研究[J].作物学报, 1997, 23(4): 418-424
    [21]高辉远,邹琦,程炳嵩.大豆光合日变化的不同类型及其影响因素[J].大豆科学,1992,1(3):219-225
    [22]高亮之, DB Hannannway.苜蓿生产的农业计算机模拟模式--ALFAMOD[J].江苏农业学报, 1985,1(2):1-11
    [23]高亮之,金之庆,黄耀.水稻计算机模拟优化决策系统(RCSODS)[M].北京:中国农业出版社,1992
    [24]高亮之,金之庆.水稻钟模型—水稻发育动态的计算机模型.中国农业气象, 1989,10(3):3-13
    [25]高绍森,朱延姝,冯辉.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究[J].辽宁农业科学,2005(3):31-32
    [26]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000,26(6):806-812
    [27]郭天财,王之杰,王永华.不同穗型小麦品种旗叶光合作用日变化的研究[J].西北植物学报,2002,22(3):554-560
    [28]郭泳,李天来.环境因素对番茄净光合速率的影响[J].沈阳农业大学学报, 1998, 29(2): 127-131
    [29]韩天富,王金陵,杨庆凯,盖钧镒.开花后光照长度对大豆化学品质的影响[J].中国农业科学,1997,30(2):47-53
    [30]何平等.光状况对油松生长和光合特性的影响[J].生态学报,1993,13(1):92-95
    [31]何维明,钟章成.攀缘植物绞股蓝幼苗对光照强度的形态和生长反应[J].植物生态学报, 2000, 24(3): 375-378
    [32]贺顺钦,王发其.辽东栎苗木早期生长与光的关系[J].林业科学研究,2001,(14): 697-700
    [33]胡国华,宁海龙,王寒冬,王继安,张大勇,李文滨.光照强度对大豆产量及品质的影响Ⅰ.全生育期光照强度变化对大豆脂肪和蛋白质含量的影响[J].中国油料作物学报, 2004, 26(2):86-88
    [34]胡继超,姜东,曹卫星.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报, 2004,15(1): 63-67
    [35]黄策,王天铎.水稻群体物质生产过程的计算机模拟[J].作物学报, 1986,12(1):1-8
    [36]黄进勇,李新平,张娟,孙敦立.一麦两玉高效复合种植模式的研究[J].耕作与栽培, 1999, 4:5-6,48
    [37]黄俊,郭世荣,吴震,李式军.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2007,18(2): 352-358
    [38]黄卫东,吴兰坤,战吉成.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节[J].中国农业科学, 2004, 37(12): 1981-1985
    [39]蒋跃林,岳伟,张庆国,张仕定,姚玉刚.大气CO2浓度对大豆光能利用率和水分利用效率的影响[J].耕作与栽培,2005,(2):2-3,37
    [40]焦念元,陈明灿,付国占.玉米花生间作复合群体的光合物质积累与叶面积指数变化[J].作物杂志,2007,(1):34-35
    [41]焦念元,宁堂原,赵春,王芸,史忠强,侯连涛,付国占,江晓东,李增嘉.玉米花生间作复合体系光合特性的研究[J].作物学报,2006,32(6):917-923
    [42]冷平生,苏淑钗,王天华.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响[J].植物资源与环境学报, 2002,(11):1-4
    [43]李秉柏,马新明,徐立华.棉花干物质积累的模拟模型与检验[J].中国农业气象, 1998, 19(2): 20-24
    [44]李潮海,栾丽敏,王群,等.苗期遮光及光照转换对不同玉米杂交种光合效率的影响[J].作物学报,2005,31(3): 381-385
    [45]李初英,孙祖东,陈怀珠,杨守臻.不同时期接受遮光胁迫对大豆产量性状及产量的影响[J].西南农业学报,2006,19(2):265-269
    [46]李凤超,李增嘉,陈雨海,于洪欣.玉米间作大豆的产量效益、土壤养分平衡及经济效益[J].山东农业大学学报,1988,19(1):15-23
    [47]李少昆,赵明.不同基因刚玉米光合作用强度的调控研究[J].石河子人学学报(自然科学版),1998,2(3):245-249
    [48]李向东,王晓云,张高英.花生衰老的氮素调控.中国农业科学, 2000,33(5): 30-35
    [49]李永庚,于振文,梁晓芳,赵俊晔,邱希宾.小麦产量和品质对灌浆期不同阶段低光照强度的响应[J].植物生态学报,2005,29(5):807-813
    [50]李增嘉,李凤超,赵秉强.小麦玉米玉米间套作的产量效应与光热资源利用率的研究[J].山东农业大学学报,1998,29(4):419-426
    [51]梁镇林.耐荫与不耐荫大豆叶性状的变化及差异比较研究[J].大豆科学, 2000, 19(1): 35-40
    [52]廖桂平,官春云.甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究[J].作物学报, 2002,28(1): 52-58
    [53]林少宫等.多元统计分析及计算程序[M].武汉:华中工学院出版社, 1985
    [54]林植芳,李双顺,林桂珠.水稻叶片的衰老与超氧化物岐化酶活性及脂质过氧化作用的关系[J].植物学报, 1984,26(6): 605-615
    [55]刘国顺,赵献章,韦凤杰,王芳,汪文杰.旺长期遮光及光照转换对不同烟草品种光合效率的影响[J].中国农业科学,2007,40(10):2368-2375
    [56]刘建栋,曹卫星,金之庆.玉米冠层光分布农业气象模式的研究[J].南京农业大学学报,1997,20(3):13-19
    [57]刘铁梅,曹卫星,罗卫红.小麦叶面积指数的模拟模型研究[J].麦类作物学报, 2001, 21(2):38-41
    [58]刘铁梅.小麦光合生产与物质分配的模拟模型[D].南京农业大学博士学位论文, 2000
    [59]刘贤赵,康绍忠.不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响[J].生态学报,2002,22(12):2264-2271
    [60]马德华,庞金安,霍振荣.大棚黄瓜光合作用日变化及环境因素对光合作用的影响[J].河北农业大学学报,1998,21(4):59-63
    [61]马德华,庞金安,霍振荣.弱光对黄瓜幼苗光合及膜质过氧化作用的影响[J].河南农业大学学报,1997, 32(1): 68-72
    [62]孟亚利,曹卫星.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362-1367
    [63]牟会荣,姜东,戴廷波,荆奇,曹卫星.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学,2008,41(2):599-606
    [64]睦晓蕾,蒋健篇,王志源.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999, 26(5): 34-38
    [65]睦晓蕾等.弱光条件下不同基因型辣椒幼苗光合与生长的差异[J].农业工程学报,2005, 21: 41-44
    [66]倪纪恒,罗卫红,李永秀.温室番茄干物质分配与产量的模拟分析[J].应用生态学报, 2006,17(5):811-816
    [67]潘瑞炽.植物生理学[M].北京:高等教育出版社, 2001
    [68]潘学标,韩湘玲,董占山.棉花生长发育模拟模型COTGROW的建立:I光合作用和干物质生产分配[J].棉花学报,1997, 9(3):132-141
    [69]潘学标,韩湘玲.GOTGROW:棉花生长发育模拟模型[J].棉花学报, 1996, 8(4): 180-188
    [70]蒲金涌,姚晓红,尹东,刘彩花,汪丽平,许彦平,胡利平.紫花苜蓿及主要粮食作物各生育时段叶面积指数及光能利用率比较[J].中国农业气象,2005,(1):31-33,37
    [71]戚昌翰.水稻生长日历模型与研究论文集[J].江西农业大学学报,1991(增刊
    [72]乔新荣,郭桥燕,刘国顺,王芳.光强对烤烟生长发育及光合特性的影响[J].华北农学报2007,22(3):76-79
    [73]任华中,黄伟,张福馒.低温弱光对番茄生理特性的影响[J].中国农业大学学报, 2002, 7(1):95-101
    [74]任万军.弱光对杂交稻氮素积累、分配和子粒蛋白质含量的影响[J].作物营养与肥料学报,2003,9(3):288-293
    [75]邵玉娇.不同光强下油菜品质形成的生理基础研究[J].华中农业大学硕士论文,2005
    [76]沈文云,马德华,侯锋.弱光生长对黄瓜叶绿体超微结构的影响[J].园艺学报, 1995, 22(4): 397-398
    [77]沈允钢.动态光合作用[M].北京:科学出版社,1998
    [78]施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮酸羧化酶的研究—Ⅰ.PEP羧化酶同功酶的分离和变构特性的比较[J].植物生理学报, 1979, 5(3): 225-236
    [79]眭晓蕾.弱光条件下不同基因型辣椒幼苗光合与生长的差异[J].农业工程学报,2005,21: 41-44
    [80]孙睿,洪佳华.夏玉米光合生产模拟模型初探[J].中国农业气象,1997,18(20):20-23
    [81]孙彦浩,陶寿祥,王才斌.宽幅麦套花生生育特点及麦花两热双高产配套技术[J].中国油料,1993,(4) :21-25
    [82]谭正晓,陈效东.花生地间作玉米_得不偿失[J].中国油料作物学报,1982,(3) :64
    [83]佟屏亚.我国耕作栽培技术成就和发展趋势[J].耕作与栽培, 1994, 65(4): 1-5,20
    [84]万书波,郑亚萍,刘道忠.精播麦套花生套期、肥料与密度优化配置[J].中国油料作物学报,2006,28(3) :319-323
    [85]王才斌,郑亚萍,成波,沙继锋,张鲁江,孙秀山,李安东.山东省不同生态区域花生种植方式综合评价研究[J].花生学报,2002, 31(3): 15-19
    [86]王惠哲,庞金安,李淑菊,霍振荣.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005,20(1):55-58
    [87]王美平.弱光对苗期黄瓜形态和生理生化特性的影响[D].河南农业大学硕士毕业论文,2003
    [88]王培武,李治远,礒田昭弘,魏国治,涂华玉.新疆大豆生产及生态的研究—Ⅰ.开花期缺水和遮光生长对大豆干物质生产及株型的影响[J].作物学报, 1995, (4): 396-403
    [89]王庆成,刘开吕,张秀清.玉米的群体光合作用[J].玉米科学,2001,9(4):57-61
    [90]王群,郝四平,栾丽敏,李潮海.玉米花生叶片光合效率比较分析[J].河南农业大学学报,2004, 38 (3):243-248
    [91]王群瑛,胡昌浩.玉米不同叶位叶片叶绿体超微结构与光合性能的研究[J]. 1988, 30(2):146-150
    [92]王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展[J].山东农业大学学报, 1998, 29(3):130-134
    [93]王绍辉,张振贤,于贤昌.遮荫对生姜生理生化特性的影响[J].西北农业学报,1999,8(2):77-79
    [94]王在序,盖树人.山东花生[M].上海:上海科学技术出版社,1999
    [95]翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报(农业与生命科学版),2002,28(4):387-391
    [96]许春辉.光逆境对叶绿体叶绿素蛋白质复合物的影响[J].植物学通报, 1991, 11(4): 8-11
    [97]许大全,丁勇,沈允钢.C4植物玉米叶片光合效率的日变化[J].植物生理学报, 1993, 19(1):43-48
    [98]许大全,李德耀,邱国雄.毛竹叶光合作用的气孔限制研究[J].植物生理学报,1987,13:154-160
    [99]许大全.光合作用效率[M].上海:上海科学技术出版社,2002
    [100]许守民,苗以农,姜艳秋,胡阿林,佟德娟,王英典,朱长甫,刘学军.大豆不同生殖生长期不同冠层光合活性差异与叶片结构关系的探讨[J].作物学报,1992,18(3): 191-195
    [101]严建民,焦德茂,朱献玳,王公金,陈炳松,童红玉.水稻光合对不同光强的响应及品种间差异[J].中国水稻科学,1992,6(2):53-56
    [102]严美春,曹卫星,罗卫红.小麦发育过程及生育期机理模型的研究Ⅰ建模的基本设想与模型的描述[J].应用生态学报,2000,11(2):355-359
    [103]杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118
    [104]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2): 215-220
    [105]姚君平,杨新道.光照强度对花生苗期和花针期植株生育的影响[J].花生学报, 1992, (4) :22-24
    [106]易金鑫,陈静华.弱光胁迫对茄子植株形态及两项生理指标的影响[J].江苏农业科学,1999,(6):62-65
    [107]于强,王天铎.玉米株型与光合作用的数学模拟研究.I.模型与验证[J].作物学报,1998,24(1):7-15
    [108]战吉成,黄卫东,王利军.不同光环境对葡萄幼苗光合产物分配与转化的影响[J].中国农业科学,2002,35(11):1432-1436
    [109]战吉成,王利军,黄卫东.弱光环境下葡萄叶片的生长及其在强光下的光合特性[J].中国农业大学学报,2002,7(3):75-78
    [110]战吉宬,黄卫东,王利军.植物弱光逆境生理研究综述[J].植物学通报,2003,20(1): 43-50
    [111]战吉宬,黄卫东,王志龙.葡萄幼苗对弱光环境的形态和生长反应[J].中国农学通报, 2002,18(2): 1-2,17
    [112]张开林,唐庆文,孙厚振.花生遮光对其生育及产量影响初探[J].花生学报, 1984, (2): 6-7
    [113]张立功.弱光及水杨酸钠对草莓叶片膜脂过氧化的影响[D].中国农业大学硕士毕业论文,2004
    [114]张守仁.叶绿素荧光参数及其意义讨论[J].植物学通报, 1999, 16(4): 444-448
    [115]张振贤,郭延奎,邹琦.遮荫对生姜显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2):96-100
    [116]张振贤,郭延奎,邹琦.遮荫对生姜叶片显微结构及叶绿体超微结构的影响.园艺学报,1999,26(2):96-100
    [117]甄伟,张福墁.弱光对黄瓜功能叶片光合特性及其超微结构的影响[J].园艺学报, 2000, 27(4): 290-292
    [118]甄志高,王晓林,段莹.气象条件对花生蛋白质和脂肪含量的影响[J].花生学报,2004,33(3):22-24
    [119]郑亚萍,沙继锋,李安东.胶东地区不同种植方式作物产量、经济效益和光能利用率研究[J].当代生态农业,2003,(Z1):80-82
    [120]种培芳.弱光胁迫对甜瓜光合特性及生长发育的影响[D].甘肃农业大学硕士毕业论文,2003
    [121]周广洽.水稻结实期温度对稻米外观品质和淀粉形成的影响[J].湖南农业科学, 1986, (6):5-9
    [122]周治国,孟亚利,施培.苗期遮荫对棉苗茎叶结构及功能叶光合性能的影响[J].中国农业科学,2001,(5):519-525
    [123]周治国.苗期遮荫对棉花功能叶光合特性和光合产物代谢的影响[J] .作物学报, 2001,27(6):967-973
    [124]周竹青,朱旭彤.湖北省小麦新品种旗叶光合速率日变化及相关环境因素分析[J].孝感师专学报(自然科学版),1998,18(4):75-79
    [125]朱延姝.弱光对不同基因型番茄品系苗期功能叶片光合速率和叶绿素含量的影响[J].辽宁农业科学,2005, (1): 17-18
    [126]邹冬生,郑丕尧,王瑞舫.大豆叶片光合、蒸腾的日变化及其与生态因子的相关性研究[J].植物生态学与地植物学学报,1990,14(4):350-357
    [127]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995
    [128] DeWit C T著,裴鑫德,李赋镐译.农作物同化、呼吸和蒸腾的模拟[M].北京:科学出版社,1987
    [129] J.法郎士, J.H.M.索恩利著,金之庆,高亮之主译.农业中的数学模型—农业及与之科学若干问题的数量研究[M].北京:农业出版社,1991
    [130] Penning DeVries F W T著,王馥棠译.植物生长与作物生产的模拟[M].北京:科学出版社,1988
    [131] Aggarwal P K,Penning de Vries F W T.Potential and water-limited wheat yields in rice based cropping systems in southeast Asia[J].Agric.Syst,1989,30:49-69
    [132] Amir. J. and Sinclair I.R.. A model of the temperature and solar-radiation effects on spring wheat growth and yield [J]. Field Crop Res. , 1991,28:47-58
    [133] Anderson. J. M. Composition of the photosystems and chloroplast structure in extreme shade plants [J]. Bio-chem BiophysActa, 1973, 325: 573-585
    [134] Andrew J R, George W S. Roles of Carbohydrate Supply and Phytohomones in Maize Kenrel Abortion [J]. Plant Physiol, 1989, 91:986-992
    [135] Andrew J R, Singletary G W, Schussler J R. Shading Effeets on Dry Matter and Nitrogen Partitioning, Kernel Number, and Yield of Maize [J]. Crop Sci, 1988, 28:819-825
    [136] Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta- vulgaris [J]. Plant Physiol., 1949, 24(1): 1-15
    [137] Baker A, Barnes W L, Smart P L. Speleothem luminescence intensity and spectral [J]. J Hydrol, 2003, 273(1-4): 51-68
    [138] BAKER D N, Lambert J R, Mckinion J M. GOSSYM: A simulator of cotton growth and yield [J]. South Carolina Agricultural Experiment Station Technical Bulletin, 1983, 10(89): 52-69
    [139] Bedhairy T G.Effect of intercropping patterns on soybean growth and photosyntheticapparatus[J].Egyptian Journal of Physiological Sciences,1994,18(1):168-178
    [140] Bhagsari, A. S. and Brown, R. H. Photosynthesis in peanut genotypes [J]. Peanut Sci., 1974, 3: 1-5
    [141] Boote K. J.. Growth stage of peanut [J]. Peanut Science, 1982(9):35-40
    [142] BORMANB A M, Kropff M J, Tuong T P, et al.ORYZA2000: modeling lowland rice[M]. International Rice Research Institute. Manila, Philippines,2001
    [143] Cao W, Moss D N. Modeling phasic development in wheat: a conceptual integration of physiological components [J]. Journal of Agricultural Science Cambridge,1997, 129:163-172
    [144] Chaturvedi G S, Ingram K T. Growth and yield of low land rice in response to shade and drainage [J]. Crop Sciences, 1989, 14: 61-67
    [145] Cockshul K.E., Graves. C. J. Shading on yield of glass-house tomato[J]. Journal of Horticultural Science, 1992(67): 11-24
    [146] Duncan W.G, D.E.Mc Cloud, R.L. McGraw and K.J. Boote. Physiological Aspects of Peanut Yield Improvement [J]. Crop Science,1978,18(6):1015-1020
    [147] Duncan, W. G. PEANUTZ: A simulation Model for Predicting Growth、Development and Yield of A Peanut plant[J]. Proc. Of APREA, 1974(6):72
    [148] Dymova OV, Golovko TK. Light adaptation of photosynthetic apparatus in Ajuga reptans L.—a shade-tolerant plant as an example[J].Russian Journal of plant physiol, 1998,45(4):440-446
    [149] Earley E B. Effects of shade applied at different stages of plant development on corn production[J]. Crop Sci, 1967, 7: 155?156
    [150] Early E B, Lyons J C, Inselberg E. Ear Shoot Development of Midwest Dent Corn (Zea Mays L.). Agric expstn,1977,47:l-44
    [151] Early E B, Mcllrath W O, Seif R D. Effeets of Shade Applied at Different Stages of Plant Development on Corn(Zea Mays L.) Produetion. Crop Sci, 1967, 7:151-156
    [152] Egli D B. Variation in Leaf Starch and Sink Limitations during Seed Filling in Soybean[J]. Crop Science, 1999, 39:1361-1368
    [153] Flore J A, Kesner C,. Orchard design for stone fruit based on light interception[J].Compact FruitTree, 1982,(25):159-165
    [154] Flore J A, Layne D R. Photo assimilate production and distribution in cherry[J]. Hort Sci, 1999,(34):1015-1019
    [155] Flore J A. The effect of light on Cherry trees[J]. Proc Mich State Hort Soc, 1980,(110): 119-122
    [156] Foyer GH, LelandaisM, KunertKJ. Photooxidative stress in plants[J]. Physiologia Plantarum, 1994, 92,696-717
    [157] Fransis C.A. Multiple cropping system[M].New York: Macmillan Publishing Company.Inc.1986
    [158] Gabrielle B, Denoroy P, Gosse G. Development and evaluation of a CERES-type model for winter oilseed rape[J]. Field Crops Research, 1998,57: 95-111
    [159] Genter C F, Eheart J F, Linkous W N. Effects of location hybrid fertilizer and rate of planting on the oil and protein contents of corn grain[J]. Agron J, 1956, 48: 63-67
    [160] Gerakis P A,Parakosta-tasoPoulou D. Effects of dense Planting and artificial shading on five maize hybrids [J]. Agricultural Meteorology, 1980, 21(2): 129-137
    [161] Goudriaan J, Van Laar H H. Modeling potential crop growth processes. Textbook and Exercises [M]. Kluwer Academic Publishers,1994, 197-199
    [162] Grant R. F. Simulation of maize phenology [J].Agron. J. ,1989,(81):451-457
    [163] Hashemi-Dezfouli A,Herbert S J. Intensifying Plant density response of corn with artificial shade[J].Agronomy Joural,1992,84(4):547-551
    [164] Hateh M D, Slaek C R, Bull T A. Light-induced changes in the content of some enzymes to the C4 dicarboxylic acid Pathway of Photosynthesis and its effect on other characteristics of Photosynthesis[J]. Phytochemistry, 1969 (8): 696-706
    [165] Hearn A B. OZCOT:a simulation model for cotton crop management[J]. Agricultural systems,1994,44:257-299
    [166] Heuvelink E. Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae, 1997, 69: 51-59
    [167] Hunt HW, Morgan JA, Read JJ. Simulating growth and root: Shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress. Annals of Botany, 1998,81: 489-501
    [168] Hunt L.A. and Pararajasingham S. CROPSIM-WHEAT:A model describing the growth and development of wheat[J]. Can. J. Plant sci.1995,75: 619-632
    [169] Ingram K. T., McCloud D. E.. PNUTMOD: An education model of crop growth and development simulation in a handheld calculator [J]. Journal of Agronomy Education, 1981(10): 5-13
    [170] Ingram K. T., McCloud D. E.. Simulation of Potato Crop Growth and Development [J]. Crop Science, 1984,(24):21-27
    [171] Jackson D I. Environmental and hormonal effects on development of early bunchstem necrosis[J].AmJEnol Vitic, 1991(42): 290-293
    [172] Janssen L H J, Wams H E, Hass E L T. Temperature dependence of chlorophyll fluorescence induction and photosynthesis in tomato as affected by temperature and light[J]. Journal of Plant Physiology, 1992, 139(5):549-554
    [173] Jarvis P G. The adaptability to light intensity of seedlings of Quercus petraca (Matt.) liebl[J]. J.Ecol.,1964,52(3):111-120
    [174] Jones C A, Kiniry J R. CERES-maize, a simulation model of maize growth and development [M]. College Station.Texas A &M University press,1986
    [175] Kakiuchi Jin, Tohru Kobata. Shading and Thinning Effects of Seed and Shoot Dry Matter Inerease in Determinate Soybean during the Seed-Filling Period[J]. Agron.J, 2004,96:398-405
    [176] Kappe, L F., Flore, J. A. Effect of shade on photosynthesis, specific leaf weight, leaf chlorophyll content and morphology of young peach trees[J]. J Amer Soc Hort Sci, 1983, (108): 541-544
    [177] Kiniry J R, Williams J R. A general, process-oriented model for two competing plant species[J].Trans of ASAE,1991,35(3):801-810
    [178] Kiniry J.R., Ritchie J.T.. Shade-sensitive Interval Kernel Number of Maize[J]. Agron. J.1985,77:711-715
    [179] Kiniry J.R., Tischler C.R., Rosenthal W.D., Gerik T.J.. Nonstructral Carbohydrate Utilization by Sorghum and Maize Shaded during Grain Growth[J]. Crop Sci,1992,32:131-137
    [180] Krall JP, Edwards GE. Relationship between photosystem II activity and CO2fixation in leaves[J].Physiologia Plantarum, 1992, 86, 180-187
    [181] Krause G H, Weise E. Chlorophyll fluorescence and photosynthesis: The Basices. Annual Review of Plant[J]. Phsiology and Plant Molecular Biology,1991,42:313-349
    [182] Kropff M J,Peng S,et al.Quantitative understanding of rice yield potential.In:Breaking the Yield Barrier.eds Cassman IRRI,PhiLippines,1994,5-20
    [183] Lakshmi Praba, M., Vanangamud i M. Effect of low light on yield and physiological attributes of rice[J]. Crop management and physiology, 2004, 29(2): 71-73
    [184] Li B, Shibuya T, Yogo Y. Effects of light quanlity and quality on growth and reproductipn of a clonal sedge, Cyperus esculentus[J]. Plant Species Biology, 2001, 16: 69-81
    [185] Li HB, Chen F. Preparative isolation and purification of salidroside from the Chinese medicinal plant Rhodiola sachalinensisby high-speed counter-current chromatography[J]. Journal of Chromatography, 2001, 32: 91-95.
    [186] Lichtenthaler HK, Burkart S. Photosynthesis and high light stress[J].Plant Physiol, 1999,25(3): 3-16
    [187] Lin CH, McGraw RL. Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential[J]. Agroforesty Systems. 2001,53(3):269-287
    [188] Llemmon H. CottonPlus:A Cotton Crop Model[C]. International Federation of Automatic Control 14th World Congress.Beijing:1999
    [189] Ma B L,Morrison M J,Dwyer L M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield maize[J].Agronomy Journal(USA), 1996, 88(6): 915-920
    [190] Marcelis LFM. Simulation of biomass allocation in glasshouse crops-are view[J]. Acta Horticulture, 1993,328:49-67
    [191] Matalog V.E., Gross H.D.. Effects of desiccation on peanut seed protein composition[J]. Environmental and Experimental Botany,2002,47(1):67-75
    [192] Matthews R B,Kropff M J.Modeling the impact of climate change on rice production in Asia[M].CAB lntenational walling ford,UK.1995
    [193] Mbewe D M N, Hunter R B. The effect of shade stress on the Performance of corn for silage versus grain[J]. Plant Science,1986,66(l):53-60
    [194] McClendon R. W., Hoogenboom G.. Optimal control and neural net works applied to peanut irrigation management [J]. Transactions of the American society of agricultural engineers, 1996,(39): 275-279
    [195] McCown R L. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research [J]. Agri System, 1996, 50(3): 255-271
    [196] Menzel C M, Simpson D R. Effect of continuous shading on growth, flowering and nutrient uptake of passion fruit[J].Scientia Horticulturate, 1988,(35):77-88
    [197] Ody Y. Effects of light intensity, CO2 concentration and leaf temperature on gas exchange of strawbery plants: feasibility studied on CO2 enrichment in Japanese conditions[J].Acta Horticultrae, 1997,(439): 563-573
    [198] Olesinski A A, Wolf S, Rudich J, Marani A. Effect of leaf age and shading on photosynthesis in potatoes(Solanum tuberosum)[J]. Annuals of Botany, 1989, 64: 643-650
    [199] Parmar R. S., McClendon R. W.. Computer simulation model for peanut machinerymanagement [J]. Conference Publication, American Society of Agricultural Engineers. 1991
    [200] Patten K D. Effect of different artificial shading times and natural light intensities on the fruit quality of Bing sweet cherry[J]. JAmer SocHort Sci, 1986,(111):360-363
    [201] Penning de Vries F W T, Jansen D M, Ten Berge H F M. Simulation of ecophysiological processes of growth in several annual crops[M]. Pudoc Wageningen, 1989
    [202] Petersen CT, Jorgensen U, Svendsen H. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape.European Journal of Agronomy, 1995,4: 77-89
    [203] Prakash, V. Effect of genotypes, moisture stress and shading on the activities of nitrate reductase and peroxi-dase in wheat leaves[J]. Plant Physiology and Bio-chemistry, 1982, 9(1): 41-47
    [204] Probert M E. APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems[J]. Agri. System, 1998, 50(1): 1-28
    [205] Racker E. Ribulose diphophate carboxylase from spinach leaves//Colowick SP, Kaplan N, eds. Methods in Enzymology[M]. New York: Academic Press, 1962
    [206] Reddy M.S and Willey R W. Growth and resource use studies in an intercrop of pearl millet/groundnut[J].Field Crops Res.1981,4:13-24
    [207] Reed A J,Singletary GW,Schussler J R. Shading effects on dry matter and nitrogen Partitioning,kernel number,and yield of maize[J].Crop Science, 1988, 28(5): 819-825
    [208] Ritchie J. T. , Godwin D.C..CERES-Wheat,(Michigan State University) ,1988
    [209] Rohacek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships[J]. Photosynthetica ,2002,40:13-29
    [210] Rylski I. Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation[J].Scientia Horticulturae, 1986,(29): 31-35
    [211] Seemann J R. Light adaptation/acclimation of photosynthesis and the regulation of Ribulose_1,5_bisphosphate carboxylase activity in sun and shade plants[J]. Plant Physiol,1989(91):379-386
    [212] Sharkey T D, Raschk K. Separation and measurement of direct and indirect effects of light on stomata[J]. Plant Physiol, 1981, 68:33-40
    [213] Singh, V. P., Dey, S. K. Effect of low light stress on growth and yield of rice[J]. Indian Journal of Plant Physiology, 1988, 31(1): 84-91
    [214] Smeets L, Carretsen F. Growth analysis of totmato genotypes grown under low night temperatures and low light intensity[J]. Euphytica, 1986, 35(3):701-715
    [215] Syvertsen J P, Smith M L. Light acclimation in citrus leaves. I. Changes in physical characteristics, chlorophyll, and nitrogen content[J]. JAmer SocHor Sci, 1984,109(6): 812-817
    [216] Thangaraj M, Sivasubram A V. Effects of low light intensity on growth and productivity of irrigated rice[J]. Madras Agricultura Journal, 1990, 77: 220-224
    [217] Thornley JHM. A model to describe the partitioning of photosynthate during vegetative plant growth[J].Annals of Botany, 1972,36: 419-430
    [218] Tim L. Brian A. Flannigan. Sugar and Starch Redistribution in Maize in Response to Shade and Ear Temperature Treatment[J]. Crop Sci,1986, 26:575-579
    [219] Tim L. Setter Brian A. Flannigan. Relationship between Photosynthate Supply and Endosperm Development in Maize[J]. Annals of Botany,1989,64:481-487
    [220] Tim L., Setter Brian A., Flannigan, Jeff Melkonian. Loss of Kernel Set Due to Water Deficit and Shade in Maize: Carbohydrate Supplies, Abscisic Acid, and Cytokinins[J].Crop Sci, 2001,41:1530-1540
    [221] Tognetti R. Ecophy siological responses of Fagus sylvaticaL. Seedings to changing light conditions I. Interactions between photosynthetic acclimation and photo inhibition during stimulated canopy gap formation[J]. Physiologia Plantarum, 1997,101(1):115-123
    [222] Tsuji G Y.DSSAT (Version 3) user s guide.Hawaii:IBSNAT,1994
    [223] Uhart S A,Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in Maize under different source/sink ratios[J]. Crop Science, 1995, 35(l): 183-190
    [224] Uhart S A,Andrade F H. Nitrogen deficiency in Maize: Carbon-nitrogen interaction effects on kernel number and grain yield [J].Crop Science,1995,35(5):1384-1389
    [225] Umezaki T,Yoshida T.Effects of shading on the internode elongation of late maturing soybean[J].Journal of the Faculty of Agriculture Kyushu University,1992,36:267-272
    [226] Van Delden, M. J. Kropff and A. J. Havertkort. Modeling temperature- and radiation- driven leaf area expansion in the contrasting crops potato and wheat[J]. Field Crops Research, 2001, 79:119-142
    [227] Villalobos FJ, HallAJ, Ritchie JT. OIL-CROP-SUN: A development, growth, and yield model of the sunflower crop[J].Agronomy Journal, 1996,88: 403 -415
    [228] Wahua,T.A Babalola O and Aken’ova,M.E.Intercropping morphologically different types of maize with cowpeas: LER and growth attributes of associated cowpeas[J]. Exp.Agric.,1981,17:407-413
    [229] Ward D A, woolhouse H W. Comparative effects of light during growth on the Photosynthetic Properties of NADP-ME type C4 grasses from open and shaded habitats. Gas exchange, leaf anatomy and ultrastructure[J]. Plant, Cell and Environment, 1986,9(4),261-270
    [230] Ward D A, Woolhouse H W. Comparative effects of light during growth on the Photosynthetic Properties of NADP-ME type C4 grasses from open and shaded habitats. Photosynthetic enzyme activities and metabolism[J].Plant, Cell and Environment,1986,9(4),271-277
    [231] Wardley T M. Changes in the number and composition of chloroplast during senescence of mesophyll cells of attached and detachedprimary leaves of wheat(Triticum aestivumL.)[J].Plant Physiol,1984,75:421-424
    [232] Waren Wilson,J. Maximum yield potential In:ProcⅦth Colloquium, Int.Potash Inst.,Bern,Switzerland,1969,34-56
    [233] Weir A H, Bragg P L, Porter J R. A winter wheat crop simulation without water or nutrient limitations[J]. Journal of Agriculture Science,1984,102:371-382
    [234] Williams J R,Jones C A,Dyke P T.A modeling approach to determing the relationship between ersion and soil productivity[J].Trans of the ASAE, 1984, 27(1):129-144
    [235] Yang H X,Zou Q,Wang W. Photo inhibition in shaded cotton leaves after exposing to high light and the time course of its restoration[J]. Acta Botanica Sinica, 2001, 43: 1255-1259
    [236] Young J. H., Cox F. R. A peanut growth and development model [J]. Peanut Science, 1979(6): 27-36
    [237] Zhao D, Oosterhuis DM. Influence of shade on mineral nutrient status of field-grown cotton[J].Journal of Plant Nutrition. 1998, 21 :1681-1695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700