用户名: 密码: 验证码:
空间折叠薄膜管充气展开过程气固耦合问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间充气展开结构具有折叠体积小、重量轻和展开可靠性高等优点,因此在航天领域具有广阔的发展前景,也是近期国内外研究的热点之一。本文研究的空间折叠薄膜管是空间充气展开结构的基本构件,针对空间折叠薄膜管在充气展开过程中的动力学问题,综述了近20年来国际上的进展情况,包括充气展开模型、有限元模拟以及充气展开实验研究等。但由于空间折叠薄膜管充气展开过程存在复杂的气固耦合问题,目前国内外在这一方向的研究尚不成熟。
     针对空间折叠薄膜管充气展开过程中存在非定常、可压缩的理想气体与柔性薄膜管之间的非线性气固耦合问题,本文引入任意拉格朗日-欧拉(ALE)描述方法,对可压缩理想流体的连续性方程和运动方程进行描述,构建了空间折叠薄膜管充气展开过程的气固耦合系统动力学模型,采用算子分裂方法并结合显式中心差分算法,解决了空间折叠薄膜管在充气展开过程中的大位移、小应变耦合界面的气固耦合问题。以V形折叠薄膜管为研究对象,分析了折叠薄膜管在充气展开过程中的速度场和压力场变化,讨论了充气速率和折叠角度对压力迟滞的影响。与分段充气控制体积模型计算的压力结果进行了比较,结果表明,分段充气控制体积模型误差较大,选用气固耦合模型更适合于研究薄膜管的充气展开动力学特性。
     针对空间微重力环境,建立了折叠薄膜管的充气展开实验系统,采用气垫导轨,解决了地面重力对充气展开过程产生摩擦力的影响;采用非接触式的光电测量方式,有效地避免了接触式传感器对充气展开过程的干扰。针对V形折叠薄膜管,研究了不同的充气流量、薄膜管尺寸效应以及展开端有无有效载荷对充气展开动力学特性的影响;通过实验研究,选择充气流量、管子直径和载荷质量为主定参量,对充气展开过程进行量纲分析和实验误差分析。实验结果验证了用ALE有限元方法对空间折叠薄膜管充气展开过程气固耦合问题的数值模拟是有效的,这可为预报空间充气展开结构的展开动力学特性提供一定的依据。
     针对粘扣控制下卷曲折叠薄膜管的充气展开过程,引入粘扣产生的阻力矩,采用刚体的平面运动理论,研究了有无粘扣控制下折叠薄膜管的充气展开动力学特性。然后考虑了薄膜管在卷曲折叠时的褶皱,采用ALE显式有限元方法对粘扣控制的折叠薄膜管进行气固耦合分析,研究了折叠薄膜管内的压力在充气展开过程中的变化,以及卷轴在充气展开过程中的展开速度和横向振动。对卷曲折叠薄膜管在粘扣控制下的充气展开过程进行了实验研究,结果表明,ALE有限元方法对粘扣控制的折叠薄膜管进行气固耦合分析是有效的,展开端部具有一定有效载荷的卷曲折叠薄膜管要可靠有序地展开,利用粘扣控制的方式是可行性的。
Increasing people focus on space inflatable deployment structures recently, which can offer inherent low packing volume, extremely low-mass and on-orbit deployment reliability, and they have extensive prospect in the space field. In this paper, space folded membrane booms are basic components for space inflatable structures. In view of their dynamics in the inflatable deployment process, the international advances of last twenty years have been summarized which including the inflatable deployment models, the finite element simulations and inflatable deployment experiments. But the research around the world is not mature enough for the complex gas-solid interaction problem existed in the space folded membrane booms during the inflatable deployment.
     Considering the nonlinear gas-solid interaction which is existed in the space folded membrane booms between nonstationary, compressible gas and flexible boom wall during the inflatable deployment process, the arbitrary Lagrangian-Eulerian (ALE) method is introduced in this paper to describe the continuity equation and motion equation of compressible fluid. Gas-solid interaction dynamic model of space folded membrane booms in the inflatable deployment is established. Operator-split methodology is applied combining with explicit central difference algorithm to solve the problem of gas-solid interaction with interface of large displacement and small strain. The change of velocity field and pressure field of membrane booms during inflatable deployment is analyzed for V-folded membrane booms. The effects of inflation rate and folding angle on pressure delay are discussed. The pressure result is compared with segmented inflation control volume model. The result indicates that the control volume model has larger error, and the gas-solid interaction model is more suitable to study the deployment dynamic properties of membrane booms.
     An inflation deployment experimental system in equivalent micro gravity environment is established based on air track which resolves the effect of gravity-caused friction. Non-contact photoelectricity measurement effectively avoids the disturbance of contact sensor to the inflation deployment process. The effectes of different inflation flows, variant geometry dimensions and loading/unloading on deployable end on dynamic properties are researched. Inflation flow, diameter, and payload mass are chosen as main parameters by the experiment. Inflation deployment process is analyzed by dimension theory, and analysis of experimental error is carried out. The experimental results show that the gas-solid interaction of the folded membrane boom during inflatable deployment is effective by ALE finite element method. This can offer gist to predict the deployment dynamics of space inflatable deployment structure.
     For Velcro-controlled deployment process of rolled booms, resistance moment induced by Velcro is introduced using the theory of rigid motion of the plane to research the deployment dynamic properity of the rolled boom with and without Velcro. Then considering the wrinkle of membrane boom at the rolled state, the gas-solid interaction of the Velcro-controlled rolled boom is analyzed by ALE finite element method. Variation of the gas pressure inside boom, the deployment velocity, and the transverse vibrations are studied. Results show that gas-solid interaction analysis on the rolled boom is effective using the ALE finite element method. It is feasible that the rolled boom with some payload is reliably deployed using Velcro-controlled mode.
引文
1 C. Cassapakis, M. Thomas. Inflatable Structures Technology Development Overview. Proceedings of AIAA 1995 Space Programs and Technologies Conference, Huntsville, Ala, 1995-09-26-28. USA, American Inst. of Aeronautics and Astronautics Inc., 1995: AIAA-95-3738
    2刘晓峰,谭惠丰,杜星文.充气太空结构及其展开模拟研究.哈尔滨工业大学学报. 2004, 36(4): 508~512
    3 R. E. Freeland, G. D. Bilyeu, M. M. Mikulas. Inflatable Deployable Space Structures Technology Summary. 49th International Astronautical Congress, Melbourne, Australia, 1998-09-28-02. 1998: IAF-98-I.5.01, 1~16
    4王援朝.充气天线结构技术概述.电讯技术. 2003, 43(2): 6~11
    5王援朝.大型可展开反射器天线结构发展概况.中国雷达. 2007, 2(4):40~45
    6 D. P. Cadogan, J. K. Lin, M. S. Grahne. Inflatable Solar Array Technology. 37th AIAA aerospace science meeting and exhibit, 1999-01-11-14, Reno, NV, 1999: AIAA-99-1075
    7 M. James, M. Jennie. Design Optimization of Thin Film Solar Concentrators Using Non-linear Deflection Modeling. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, WA. 2001-04-16-19, USA, American Inst. Aeronautics and Astronautics Inc., 2001: AIAA-01-1422
    8 P. K. Malone, G. T. Wilhrns. Lightweight Inflatable Solar Array. Journal of Propulsion and Power. 1996, 12 (5): 866~872
    9 F. Redell, D. Lichodziejewski. Power Scalable Inflation Deployed Solar Arrays. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, San Francisco, 2004-04-19-22. USA, American Inst. Aeronautics and Astronautics Inc., 2004: AIAA-2004-1572
    10王伟志.太阳帆技术综述.航天返回与遥感. 2007, 28(2): 1~5
    11 D. Cadogan, J. Stein, M. Grahne. Inflatable Composite Habitat Structures for Lunar and Mars Exploration. Acta Astronautica. 1999, 44 (7-12): 399~406
    12 N. Mathersa, L.Thompsonb. Using Inflatable Antennas for Portable Satellite-Based Personal Communications Systems. Acta Astronautica, 2007,61: 659~663
    13 R. E. Freeland, G. D. Bilyeu, G. R. Veal, et al. Large Inflatable Deployable Antenna Flight Experiment Results. Acta Astronautica. 1997,41(4-10):267~277
    14 M. Salama, C. P. Kuo, M. Lou. Simulation of Deployment Dynamics of Inflatable Structures. AIAA Journal. 2000, 38(12): 2277~2283
    15 J. K. Lin, J. J. Watson, T. W. Jones. Ultra-lightweight Isogrid Boom Space Expriment(UltraboomTM) Systems Design. 46th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, 2005-
    04-18-21. Reston, VA, United States, American Inst. of Aeronautics and Astronautics Inc., 2005: AIAA-2005-1971
    16 H. Sakamoto, M. C. Natori, Y. Miyazaki. Deflection of Multi-cellular Inflatable Tubes for Redundant Space Structures. R. Johne. 42nd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, Seattle, WA, 2001-04-16-19. USA, American Inst. Aeronautics and Astronautics Inc., 2001: AIAA-2001-1617
    17 J. K. H. Lin, G. H. Sapnalll, S. E. Scarborough, et al. Inflatable Rigidizable Isogrid Boom Development. R. F. Hartung. 43rd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 2002-04-22-25. USA, American Inst. Aeronautics and Astronautics Inc, 2002: AIAA-2002-1297
    18彭勇,程文科,宋旭民等.降落伞充气过程研究方法综述.中国空间科学技术. 2004, 6(3): 38~44
    19万鑫铭,杨济匡,沈斌.气囊折叠方式对展开作用力影响的仿真.机械工程学报. 2005, 41(12): 162~165
    20 L. Li, V. Volkov. Inflatable Models. J. of Computer Science and Technology. 2006, 21(2): 154~158
    21 W. Szyszkowski, P. G. Glockner. Inflatable Booms and Pneumatic Hinges-An Application in Deployment of Satellite Sensors. Engineering Structures, 1991, 13(4): 357~365
    22 J. A. Main, S. W. Peterson, A. M. Strauss. Beam-type Bending of Space-Based Inflated Membrane Structures. J. of Aerospace Engineering. 1995, 8(2): 120~128
    23 S. H. H. Tsoi. Modeling and Simulation of Inflatable Space Structures. Stanford Univ. master thesis. CA, 1997
    24 A. L. Clem, S. W. Smith, J. A. Main. Deployment Dynamics of Inflatable Solar Array. Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference. St. Louis, MO, 1999-04-12-15. Reston, VA, USA: AIAA, 1999: AIAA-99-1520
    25 A. L. Clem, S. W. Smith, J. A. Main. A Pressurized Deployment Model for Inflatable Space Structures. W. Tom. 41st AIAA/ASME/ASCE Structures, Structural Dynamics and Materials Conference and Exhibit, Atlanta, Georgia, 2000-04-03-06. Reston, VA, USA, American Inst. Aeronautics and Astronautics Inc., 2000: AIAA-2000-1808
    26刘晓峰.薄膜材料充气管弯曲特性及充气展开过程研究.哈尔滨工业大学博士论文. 2004: 41~53
    27 J. A. Burns, E. M. Cliff, Z. Liu. et al. On Coupled Transversal and Axial Motions of Two Beams With A Joint. J. of Mathematical Analysis and Applications. 2008, 339(1):182~196
    28 J. A. Burns, E. M. Cliff, Z. Liu. et al. Polynomial Stability of A Joint-Leg-Beam System With Local Damping. Mathematical and Computer Modelling. 2007, 46 (9-10): 1236~1246
    29刘晓峰,谭惠丰,杜星文.充气太空管展开模拟.哈尔滨工业大学学报. 2004, 36(5): 684~687
    30 J. P. Fay, C. R. Steele. Forces for Rolling and Asymmetric Pinching of Pressurized Cylindrical Tubes. J. of Spacecraft and Rockets. 1999, 36(4): 531~537
    31 C. R. Steele, J. P. Fay. Inflation of Rolled Tubes. IUTAM-IASS Symposium on Deployable Structures: Theory and Application, S. Pellegrino, S. D. Guest eds. Cambridge, 1998-09-06-09, Netherlands: Kluwer Academic Publishers, 1998, 393~403
    32 S. W. Smith, J. A. Main. Modeling the Deployment of Inflating Space Structures. Jenkins C H. Gossamer spacecraft: Membrane and Inflatable Structures Technology for Space Applications, Washington, DC. USA, AIAA, 2001: 203~241
    33 M. Salama, H. Fang, M. Lou. Resistive Deployment of Inflatable Structures. J. of Spacecraft and Rockets. 2002, 39(5): 711~716
    34 H. Fang, M. Lou, J. Hah. Deployment Study of a Self-Rigidizable InflatableBoom. R. E. Gary. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, 2003-04-07-10. USA, American Inst. Aeronautics and Astronautics Inc., 2003: AIAA-2003-1975
    35 H. Fang, M. Lou, J. Hah. Deployment Study of a Self-Rigidizable Inflatable Boom. J. of Spacecraft and Rockets. 2006, 43(1): 25~30
    36 M. Salama, C. P. Kuo, M. Lou. Simulation of Deployment Dynamics of Inflatable Structures. Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference. St. Louis, MO, 1999-04-12-15. Reston, VA, USA, AIAA, 1999: AIAA-99-1521
    37 J. T. Wang, A. R. Johnson. Deployment Simulation of Ultra-lightweight Inflatable Structures. R. F. Hartung. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 2002-04-22-25. USA, American Inst. Aeronautics and Astronautics Inc, 2002: AIAA-2002-1261
    38 J. T. Wang, A. R. Johnson. Deployment Simulation Methods for Ultra-lightweight Inflatable Structures. NASA/TM-2003- 212410 ARL-TR-2973
    39 Y. Miyazaki, M. Uchiki. Deployment Dynamics of Inflatable Tube. R. F. Hartung. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 2002-04-22-25. USA, American Inst. Aeronautics and Astronautics Inc, 2002: AIAA-2002-1254
    40 J. C. Simo, N. Tarnow. A New Energy and Momentum Conserving Algorithm for the Non-Linear Dynamics of Shells. Int. J. for Numerical Methods in Engineering. 1994, 37(15): 2527~2549
    41 J. Donea, S. Giuliani, J. P. Halleux. An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions. Computer Methods in Applied Methods and Engineering. 1983, 33: 689~723
    42 E. Haug, J. B. Protard, G. Milcent, et al. The Numerical Simulation of the Inflation Process of Space Rigidized Antenna Structures. Pro. of the International Conference: Spacecraft Structures and Mechanical Testing, Eur. ESA, 1991: 861~869
    43 A. R. Schnell, L. M. Leigh, M. L. Tinker. Deployment, foam rigidization, and structural characterization of inflatable thin-film booms. R. F. Hartung. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference, Denver, Colorado, 2002-04-22-25. USA, American Inst. Aeronautics and Astronautics Inc, 2002: AIAA-2002-1376
    44 S. Lienard, Y. Lefever. Modeling and Analysis of the Deployment of A Rolled Inflatable Beam Using MSC-DYTRAN. 46th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, 2005-04-18-21. Reston, VA, United States, American Inst. of Aeronautics and Astronautics Inc., 2005: AIAA-2005-1968
    45 T. Kentaro, N. Harunori, K. Isao. Simulation for Deployment of an Inflatable Disk in Orbit. J. of Spacecraft and Rocket. 2000, 37(5): 707~708
    46 G. Greshik, M. M. Mikulas, R. E. Freeland. Nodal Concept of Deployment and the Scale Model Testing of Its Application to a Membrane Antenna. Proceedings of the 40th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference. St. Louis, MO, 1999-04-12-15. Reston, VA, USA, AIAA, 1999: 2546~2554
    47 J. E. Campbell, S. W. Smith, J. A. Main, et al. Staged Microgravity Deployment of A Pressurizing Scale Model Spacecraft. R. F. Hartung. 43rd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 2002-04-22-25. USA, American Inst. Aeronautics and Astronautics Inc, 2002: AIAA-2002-1455
    48 S. W. Smith, M. D. Elliott, J. A. Main, et al. Post-flight Testing and Analysis of Zero-gravity Deployment of An Inflating Tube. R. Johne. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, Seattle, WA, 2001-04-16-19. USA, American Inst. Aeronautics and Astronautics Inc., 2001: AIAA-2001-1265
    49 A. L. Clem, S. W. Smith, J. A. Main. Experimental Results Regarding the Inflation of Unfolding Cylindrical Tubes. R. Johne. 42nd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, Seattle, WA, 2001-04-16-19. USA, American Inst. Aeronautics and Astronautics Inc., 2001: AIAA-2001-1264
    50刘晓峰,杜星文,谭惠丰.薄膜充气管充气展开特性试验.上海航天. 2007, 24(6): 56~60
    51 A. L. Welch, S. W. Smith, J. A. Main. Experimental Results Regarding Two-Dimensional Deployment of Inflatable Beams. R. E. Gary. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, 2003-04-07-10. USA, American Inst. Aeronautics and Astronautics Inc., 2003: AIAA-2003-1976
    52 M. Lou, H. Fang, L. M. Hsia. A Combined Analytical and Experimental Study on Space Inflatable Booms. IEEE Aerospace Conference Proceedings, 2000 IEEE Aerospace Conference, Big Sky, MT, 2000-03-18-15. 2000. 2: 503~512
    53 R. S. Pappa, J. O. Lassiter, B. P. Ross. Structural Dynamics Experimental Activities in Ultralightweight and Inflatable Space Structures. J. of Spacecraft and Rockets. 2003, 40(1): 15~23
    54 D. P. Cadogan, M. S. Grahne. Deployment Control Mechanisms for Inflatable Space Structures. 33rd Aerospace Mechanisms Conference, Pasadena, NASA, 1999: 1~11
    55管瑜.充气展开自硬化支撑管的设计与分析.浙江大学硕士论文. 2006: 66~77
    56 J. K. H. Lin, G. H. Sapnalll, S. E. Scarborough, et al. Inflatable Rigidizable Isogrid Boom Development. R. F. Hartung. 43rd AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 2002-04-22-25. USA, American Inst. Aeronautics and Astronautics Inc, 2002: AIAA-2002-1297
    57 H. Tsunoda, Y. Senbokuya, M. Watanabe. Deployment Method of Space Inflatable Structures Using Folding Crease Patterns. R. E. Gary. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, 2003-04-07-10. USA, American Inst. Aeronautics and Astronautics Inc., 2003: AIAA-2003-1979
    58 K. Senda, T. Oda, S. Ohta, et al. Deployment Experiment of Inflatable Tube Using Work Hardening. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Newport, Rhode Island, 2006-
    05-01-04. Reston, VA, United States, American Inst. of Aeronautics and Astronautics Inc., 2006: AIAA-2006-1808
    59 N. Fukuoka, K. Obama, M. Iwashita, et al. Deployment Experiment on Inflatable Tubes of Polygon Folding under Airplane Microgravity. 54th International Astronautical Congress of the IAF, Bremen, Germany, 2003-09-29-03. Paris, France, IAF, 2003. 3:133~139
    60 D. Lichodziejewski, R. Cravey, G. Hopkins. Inflatably Deployed Membrane Waveguide Array Antenna for Space. R. E. Gary. 44th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, 2003-04-07-10. USA, American Inst. Aeronautics and Astronautics Inc., 2003: AIAA-2003-1649
    61 A. L. Palisoc, F. H. Redell, G. Andersen. Deployment and Structural Support of Space Membrane Optics System Using Rigidizable Conical Booms. Pro. of the Ninth Biennial ASCE Aerospace Division International Conference, Houston, TX, United States, 2004-03-07-10. USA: American Society of Civil Engineers, 2004: 946~953
    62邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展. 1997, 27(1):19~38
    63岳宝增,李笑天. ALE有限元方法研究及应用.力学与实践. 2002, 24(2):7~11
    64 O. C. Zienkiewicz, P. Bettess. Fluid-Structure Dynamics Interaction and Wave Forces, an Introduction to Numerical Treatment. Int. J. Num. Meth. Eng., 1978, 13:1~16
    65张亮,李云波.流体力学.哈尔滨工程大学出版社, 2001: 17~22
    66王新月,杨清真.热力学与气体动力学基础.西北工业大学出版社, 2004
    67屠大燕,刘鹤年,马祥琯等.流体力学与流体机械.中国建筑工业出版社, 2000
    68刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法.工程力学. 2005, 22(6): 1~6
    69朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则.工程力学. 2007,24(10):92~99
    70张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展.计算力学学报. 1997, 14(1): 91~102.
    71赵海鸥. LS_DYNA动力分析指南.兵器工业出版社, 2003:156~159
    72邢景棠, W. G. Price,陈义根.非线性流体-刚体结构相互作用问题的一种数值模拟方法.固体力学学报. 2005, 26(4):373~384
    73徐刚,任文敏.三维浮式结构的流固耦合动力特性分析.应用数学和力学. 2004, 25(3): 305~312
    74徐刚,任文敏,郑兆昌.水下运动体的三维动力特性分析.工程力学. 2003, 20(3):1~5
    75 W. F. Noh. A Time Dependent Two Space Dimensional Coupled EulerianLagrangian Code. Meth. Comput. Phys.. 1964, 3: 123~144
    76 C. W. Hirt, A. A. Aesden, H. K. Cook. An Arbitrary Lagrangian-Eulerian Method for All Flow Speeds, Journal Comput. Phys.. 1974, 14(3): 227~253
    77 C. W. Hirt, A. A. Aesden, H. K. Cook. An Arbitrary Lagrangian-Eulerian Method for All Flow Speeds, Journal Comput. Phys.. 1997, 135: 203~216.
    78 T. J. R. Hughes, W. K. Liu, T. K. Zimmerman. Lagrangian-Eulerian Finite Element Formulation for Viscous Flows. J. Comput. Methods Appl. Mech. Engrg.. 1981,29: 329~349
    79 T. Nomura, T. J. R. Hughes. An Aritrary Lagrangian-Eulerian Finite Element Method for Interaction of Fluid and Rigid Body. J. Comput. Methods Appl. Mech. Engrg.. 1992, 95: 115~138
    80 T. Belytschko, D. F. Flanagan, J. M. Kennedy. Finite Element Method with User-controlled Meshs for Fluid-Structure Interaction. Comput. Methods Appl. Mech. Engrg.. 1982, 33: 689~723
    81 W. K. Liu. Finite Element Procedure for Fluid-Structure Interactions and Application to Liquid Storage Tanks. Nuclear Engineering and Design. 1981, 65: 221~238
    82 W. K. Liu, D. C. Ma. Computer Implementation Aspects for Fluid-Structure Interaction Problems. Comput Meths Appl. Mech. Engrg.. 1982, 31:129~148
    83 A. Huerta, W. K. Liu. Viscous Flows for Large Free Surface Motion. Computer Methods Appl. Mech. Engrg.. 1988, 69: 277~324
    84 P. R. F. Teixeira, A. M. Awruch. Numerical Simulation of Fluid-Structure Interaction Using the Finite Element Method. Computers & Fluids. 2005,34: 249~273
    85 M. Souli, A. Ouchsine, L. Lewin. ALE Formulation for Fluid-Structure Interaction Problems. Computer Methods in Applied Mechanics and Engineering. 2000,190: 659~675
    86 M. Souli, J. P. Zolesio. Arbitrary Lagrangian-Eulerian and Free Surface Methods in Fluid Mechanics. Computer Methods in Applied Mechanics and Engineering. 2001, 191:451~466
    87 M. Souli, Y. Sofiane, L. Olorsson, et al. ALE and Fluid Structure Interaction in LS_DYNA. ASME Pressure Vessels Piping Div Publ PVP. 2004, 485: 181~187
    88 M. S. Gadala, J. Wang. ALE Formulation and Its Application in Solid Mechanics.Comput. Methods Appl. Mech. Engrg.. 1998, 167: 33~55
    89岳宝增,彭武,王照林. ALE迎风有限元法研究进展.力学进展. 2005, 35(1):21~29
    90岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分步有限元数值方法.力学季刊. 2001, 22(1):34~39
    91王照林,刘延柱.充液系统动力学.科学出版社, 2002: 291~294
    92 J. P. Ponthot, T. Belytschko. Arbitrary Lagrangian-Eulerian Formulation for Element-Free Galekin Method. Comput. Methods appl. Mech. Engrg.. 1998, 152:19~46
    93李青.大晃动粘性流体与储液容器相互作用数值分析.清华大学硕士论文. 2004: 17~21
    94 T. Belytschko(美), W. K. Liu, B. Moran.连续体和结构的非线性有限元.庄茁译.清华大学出版社, 2002: 341~351
    95王勖成.有限单元法.清华大学出版社,2003
    96李政,金先龙,亓文果.流体-结构耦合问题的有限元并行计算研究.计算力学学报. 2007, 24(6): 727~732
    97 S. E. Ray, G. P wren, T. E. Teaduyar. Parallel Implementations of a Finite Element Formulation for Fluid-Structure Interactions in Interior Flows. Parallel Computing. 1998,23:1279~1292
    98 R. Engel. Analysis of Fluid-structure Interaction Problems in Nuclear Reactor Engineering. Int. J. of Computer Application in Technology. 1994,7(3-6): 193~205
    99王基盛,杨庆山.流体环境中结构附加质量的计算.北方交通大学学报. 2003, 27(1): 40~43
    100李声远,邱吉宝.流固耦合动力学问题中大位移耦合界面条件的处理方法.宇航学报. 2001,22(1):1~8
    101 J. J.康纳(美), C. A.勃莱皮埃.流体流动的有限元法.吴望一译.科学出版社, 1981:188~189
    102李飞,孙凌玉,张广越等.圆柱壳结构入水过程的流固耦合仿真与试验.北京航空航天大学学报. 2007, 33(9): 1117~1120
    103 W. K. Liu, T Belytschko, H. Chang. An Arbitrary Lagrangian-Eulerian Finite Element Method for Path-dependent Materials. Computer Methods in Applied Mechanics and Engineering. 1986, 58(2): 227~245
    104李政,金先龙,申杰等.车载柔性储液结构动态仿真方法.上海交通大学学报. 2007, 41(1):19~22
    105 L. Olovsson, L. Nilsson, K. Simonsson. An ALE Formulation for the Solution of Two-dimensionalmetal Cutting Problems. Computers and Structures. 1999, 72:497~507
    106李政,金先龙,陈向东.柔性储液容器跌落碰撞仿真方法的研究.振动与冲击. 2007, 26(8):72~75
    107余庆华,郑莹,董湘怀等.板料成形动力显式有限元模拟.塑性工程学报. 1999,6(4): 26~32
    108 R. Riff, M. Baruch. Stability of Time Finite Elements. AIAA Journal. 1984, 22: 1171~1173
    109邢向华,张雄,陆明万.基于Galerkin法弱形式的时间积分法.工程力学, 2006, 23(7):8~12
    110李小军,刘爱文.动力方程求解的显式积分格式及其稳定性与适用性.世界地震工程. 2000, 16(2):8~12
    111王跃先,陈军,阮雪榆. ALE有限元方法中的网格运动算法.上海交通大学学报. 2001, 35(10): 1539~1542
    112 B. Henning, W. Peter. Arbitrary Lagrangian-Eulerian Finite Element Analysis of Free Surface Flow. Comput Methods Appl. Mech. Engrg.. 2000, 190: 95~109
    113吴德铭,郜冶.实用计算流体力学基础.哈尔滨工程大学出版社, 2006
    114朱明程,刘烈全.有限元显式算法解大变形冲击响应中的网格稳定性研究.固体力学学报. 1993, 14(3):253~257
    115王建军,陆明万,张雄.流体力学Petrov-Galerkin有限元法研究进展.计算力学学报, 1998, 15(4):495~502
    116 I. Babuska. The Finite Element Method with Lagrangian Multipliers. Numer. Math.. 1973, 20: 179~192
    117章本照.流体力学中的有限元方法.机械工业出版社, 1986: 437~457
    118 L. R. Stein, R. A. Gentry, C. W. Hirt. Computational Simulation of Transient Blast Loading on Three-dimensional Structures. Comput. Meths. Appl. Mech. Engrg.. 1977, 11: 57~74
    119 M. Bercovier, M. Engelman. A Finite Element Method for Incompressible Viscous Fluid Flows. J. Comput. Phys.. 1979, 30:181~201
    120陈向东,金先龙,李政.波浪作用下软体浮囊动态响应仿真方法研究.系统仿真学报. 2007, 19(20): 4616~4619
    121马春生,黄世霖,张金换等. LS-DYNA的ALE方法在飞船返回舱着落仿真中的应用.清华大学学报(自然科学版). 2006, 46(8): 1455~1457
    122 A. P. Taylor. Developments in the Application of LS_DYNA to Fluid Structure Interaction (Fsi) Problems in Recovery System Design and Analysis. The 7th International LS_DYNA Users Conference, Fluid/Structure. Michigan, LSTC & ETA, 2002: 10-17~10-26
    123 B. A. Tutt, A. P. Taylor. The Use of LS_DYNA to Simulate the Water Landing Characteristics of Space Vehicles. The 8th International LS_DYNA Users Conference, Fluid/Structure. Michigan, LSTC & ETA, 2004: 1~15
    124解春雷,李尚健,黄树槐等.动力显式算法有限元分析中的砂漏控制.锻压机械. 1998, 33(1): 44~46
    125邓小刚,宗文刚,张来平等.计算流体力学中的验证与确认.力学进展. 2007, 37(20): 279~288
    126丁振良.误差理论与数据处理.第二版.哈尔滨工业大学出版社, 2002:67~70
    127赵凯华.定性与半定量物理学.高等教育出版社, 1991: 63~79
    128П.И.谢多夫(苏).力学中的相似方法与量纲理论.沈青,倪锄非,李维新译.第八版.科学出版社, 1982: 1~22
    129徐婕,詹士昌,田晓岑.量纲分析的基本理论及其应用.大学物理. 2004, 23(5): 54~58
    130胡云.基于量纲分析的建模研究.大学物理. 2006, 25(12):18~22
    131朱兴元,吴幼明.量纲分析法在缓冲气囊动态特性研究中的应用.华南理工大学学报(自然科学版). 2000,28 (5): 82~85
    132陈宗藩.塑料物理机械性能数据处理讨论.合成材料老化与应用. 1995,(1): 7~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700