用户名: 密码: 验证码:
立式储罐并联隔震基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储罐是油品和各种液体化学品的储存设备,是石油化工装置和储运系统设施的重要组成部分。由于其一般存贮易燃、易爆、有毒介质,一旦发生地震灾害,其后果十分严重,同时容易产生火灾和环境污染等次生灾害,给人类的生存和生态环境造成严重的影响,给生产和国民经济造成严重的损失。
     基础隔震能有效地保护储罐罐体免遭地震破坏,保护人类的生命与财产安全。在诸多的隔震方式中,滑移隔震具有技术简单易行、隔震效果好、隔震层滑动之后不影响其竖向承载力、造价较低及滑移位移控制困难等特点;而橡胶支座隔震结构具有足够柔的水平刚度,水平向刚度受垂直荷载影响较小,有较好的回复能力,造价较高等特点。本文考虑把叠层橡胶支座和摩擦滑移支座组合在一起使用,组成新的并联隔震体系,通过合理的参数搭配,使两种型式的隔震支座相互取长补短,有效降低了隔震结构的造价,而且能优化隔震效果。针对所提出的并联隔震体系,具体研究了以下几个方面的内容:
     (1)合理设计了并联基础隔震系统的具体构造,利用圈梁结构将基础设计成具有滑移和隔震支撑并联的结构体系,支撑由上下垫板构成,垫板与圈梁无约束,垫板可以起到调整储罐中心点沉降和不均匀沉降的作用。
     (2)建立了并联基础隔震储罐的简化分析力学模型。
     (3)依据简化分析力学模型,建立了并联基础隔震储罐动响应简化分析的运动方程,并给出了求解动响应的时程分析理论方法。
     (4)对储罐并联基础隔震结构体系进行了水平隔震地震响应分析,采用时程分析方法,针对系列浮顶立式储罐,对储罐并联基础隔震结构体系隔震效果进行了全面分析,研究了不同地震波、不同场地、不同地震烈度、不同摩擦系数、不同并联滑移隔震支座负担的结构总重量比、不同高径比,不同隔震周期及等效阻尼比对上部储罐地震响应的影响。分析结果表明,当并联滑移隔震支座负担的结构总重量比增加、摩擦系数增大,隔震效果减弱。但地震波种类、场地类别、地震烈度、隔震周期等因素对减震效果及规律有相应的影响。
     (5)对储罐并联基础隔震结构体系的隔震试验研究,根据相似原理建立了试验模型,通过水平静推力的输入,测试隔震立式浮放储罐的隔震层顶部的滑移位移和罐壁结构下壁板应力及起滑剪力。对试验模型进行了有限元分析。验证了并联隔震储罐体系的减震效果。
     通过对本文研究内容的总结,得出了本论文的研究成果,提出了与本文研究工作密切相关的尚需进一步研究的工作。
The liquid storage tank is the storage equipment of the petroleum and all kinds of liquid chemistry, and it is one of the important components of petrochemical industry installments and the preserving and transporting system facilities. Because most flammable, poisonous and exploded-prone mediums are deposited in this type of container mostly, once the earthquake occurs, the consequence is very serious, and even much worse second disaster, such as fire, pollution, etc. could be caused, which can lead to the severe destruction of our survival environment and huge loss of national economy and production.
     Base isolation can effectively avoid the damage of the storage tank from the earthquake, protecting the human life and property. Among all the ways of base isolations, the sliding isolation has characteristics with simple, effective isolation, no affecting its vertical load capacity after the isolation layer sliding, lower cost and the difficulties in controlling sliding displacement and so on.
     The rubber isolation bearing, however, has some features which have enough supple horizontal stiffness, little influence of the vertical load on the horizontal stiffness, better response ability, and higher cost. In this paper, a new parallel isolation system which is composed of the laminated rubber bearings and sliding friction bearings is researched. With reasonable parameter matching, parallel isolation system can effectively bring into play the advantages of the two former ones, reducing the cost and optimizing the effect of isolation. Aimed at the parallel isolation system, the concrete research mainly includes the following parts:
     Part1: The specific structure of parallel base isolation system is designed reasonably. The base is designed to be a parallel structure system with sliding isolation and isolation supporting by using the ring beam structure. The supporting is made up of the upper and lower plate which is no restriction with ring beam. The plate can adjust central point settlement and the uneven settlement of tanks.
     Part2: Simplified analysis mechanical model of liquid tank parallel base isolation structure is established.
     Part3: The simplified analysis motion equations of the parallel base isolation tanks dynamic response are established according to the simplified analysis mechanical model. And the time-history analysis theory and methods which can solve the dynamic response are given out.
     Part4: The horizontal isolation earthquake response analysis of the tank parallel base isolation structure system is carried out. Aimed at series of floating roof vertical tanks, the isolation effectiveness of the tank parallel base isolation structure system is analyzed comprehensively by adopting time-history analysis method. The impact of various parameters on the earthquake response of the upper storage tank is studied, including different earthquake waves, different site, different seismic intensity, different friction coefficient, different weight ratio of parallel sliding isolation bearing burden the structure total weight, different ratio of height to diameter, different isolation period and the equivalent damping ratio and so on. The results show that, with both weight ratio of parallel sliding isolation bearing burden the structure total weight and the friction coefficient increasing, the isolation effectiveness doesn't work well. However, the types of earthquake waves, the types of sites, seismic intensity, the isolation period and other factors have corresponding effect on the isolation effectiveness and rule.
     Part5: The base-isolation experiment of the tank parallel base isolation structure system is made. The experiment model is established based on similar principle. Sliding displacement of isolation top layer of the vertical floating tank with isolation, and the lower wall stress of the tank and beginning sliding shear stress are measured through inputting horizontal static thrust force. Then, the test model is analyzed by adopting finite element method. Parallel isolation tank system damping effect is verified.
     Systematically summarizing the results of research in this paper, research achievements are reached, and the further research in depth content closely relating to the study of this paper is proposed.
引文
[1]徐英,杨一凡,朱萍等.球罐和大型储罐[M].北京:化学工业出版社,2005.123~127.
    [2]孙建刚.立式储罐地震响应控制研究[D].中国地震局工程力学研究所,2002.
    [3]土木学会新泻震害调查委员会.新泻地震震害调查报告[R].1966,6:1~57.
    [4]郭增建等.城市地震对策[M].北京:地震出版社,1991.38~45.
    [5]尚守平,周福霖.结构抗震设计[M].北京:高等教育出版社,2003,87.
    [6]郭骅等.圆柱形储液罐提离分析的半理论半经验解[J].设备抗震.《工程抗震》编辑部,1987.
    [7]黄熙明,周福霖.结构体系模型试验研究和计算机仿真分析[J].工程力学,1997年增刊.
    [8]曲乃泗.水弹性结构的动力抗震分析[J].圆柱形储液罐抗震论文集.石油工业部抗震办公室等编,1986
    [9]日本工业标准JJSB8501[S].钢制焊接油罐结构,1985.
    [10]周福霖.工程结构减震控制[M].北京:地震出版社,1997.29~31.
    [11]熊世树.三维基础隔震系统的理论与试验研究[D].华中科技大学,2004.1~11.
    [12]李宏男,李忠献,祁皑等.结构振动与控制[M].北京:中国建筑工业出版社,2005.175~178.
    [13]孙建刚,吕睿,郝进锋等.立式储液容器自复位隔震体系研究[J].地震工程与工程振动,2001,20(1):141~145.
    [14]孟庆利.基厎隔震混合控制和三维隔震系统研究[D].中国地震局工程力学研究所,2005:126.
    [15]王建强,王利娟.滑移摩擦支座摩擦力模型研究[J].四川建筑科学研究,2005,06.15~17.
    [16]李爱群,瞿伟廉.工程结构减震控制[M].北京:机械工业出版社,2007,9.130~135.
    [17]李桂青.结构动力可靠性理论及其应用[M].北京:地震出版社,1993,4:45~57.
    [18]刘旭华.结构动力可靠性研究[D].哈尔滨工程大学,2006,1.17~35.
    [19]周云,徐彤.基础隔震结构的能量设计方法[J].地震工程与工程振动,2000.12,20(3):116~122.
    [20]吕西林,周德源,李思明等.建筑结构抗震理论与实例[M].上海:同济大学出版社,第2版,2002,8:21~32.
    [21]孙建刚.周丽.袁朝庆等.立式储罐基础隔震动力反应特性分析[J].地震工程与工程振动,2001,21(3):140~144.
    [22]孙建刚,袁朝庆,郝进锋.柔性基底立式储罐减震耗能分析[J].哈尔滨工业大学学报,2002,34(3):320~323.
    [23] J. Sun, J. Hao, L. Ma, Z. Yuan. analysis model of isolation control for elastic cylindrical steel storage-fluid container[J]. Fourth International Colloquium on Computation of Shell & Spatial Structures, June 4-7,2000,Chennai-Crete, Greece.
    [24] Sun Jiangang,Yuan Zhaoqing,Hao Jinfeng. SEISMIC DYNAMIC SIMULATION ANALYSIS OF ISOLATION AND DAMPER-COSTING ENERGY SYSTEM FOR TANK. THEORIES AND APPLICATIONS OF STRUCTURE ENGINEERING.[J] Yunnan Science & Technology Press.
    [25]孙建刚,郝进锋,王振.储罐基底隔震振型分解反应谱计算分析研究[J].哈尔滨工业大学学报,2005,37(5):649~651.
    [26]孙建刚,宫克勤齐含兵等.水平地震作用下无锚固储罐应力与应变响应分析[J].地震工程与工程振动,2007,6,27(3):110~115.
    [27]孙建刚,王振,杜蓬娟.浮放储罐三维地震反应有限元分析[R].第16届全国结构工程学术会议论文集(第Ⅱ册),中国力学学会工程力学编辑部,2007.175~180.
    [28]孙建刚,王振,袁朝庆.储罐隔震设计简化分析方法[J].地震工程与工程振动,2001,21(2):157~160.
    [29]孙建刚.立式储罐隔震结构的一种控制体系[J].世界地震工程,1998,14(1):34~41.
    [30]孙建刚,郝进锋.立式储液罐基础橡胶垫隔震控制分析[J].大庆石油学院学报,1998,22(4):69~71.
    [31]孙建刚,郝进锋,张文福等.采用滚动隔震体系的立式储液罐(敞口)振动的模型实验研究[J].大庆石油学院学报,1998,22(3):101~105.
    [32]孙建刚,郝进锋,张云峰.储液罐液固耦联振动固有特性有限元分析[J].大庆石油学院学报,1998,22(3):96~100.
    [33]孙建刚.弹性圆柱钢制储液容器橡胶基底隔震分析模型[J].大庆石油学院学报,1998,22(3):91~95.
    [34]孙建刚,周抚生,郝进锋.立式储罐橡胶基底隔震模型实验研究[J].地震工程与工程振动,1999,19(4):102~106.
    [35] Sun Jiangang. Study on Isolation of Stand Storage Tank[J].Third China_Japan_Us Symposium on Structure Health monitoring and control and Fourth Chinese National Conference on Structure Control,Dalian:2004,10.
    [36]孙建刚,袁朝庆,郝进锋.橡胶基底隔震储罐地震模拟实验研究[J].哈尔滨工业大学学报,2005,37(6):806~809.
    [37]孙建刚,周利剑,魏志真.立式钢制储罐基于地震损伤性能的抗震设计方法[J].世界地震工程,2004,20(2):122~128.
    [38]袁朝庆,李惠,孙建刚.应用液压阻尼系统(HDS)控制储罐地震响应[J].哈尔滨工业大学学报,2008,2,40(2):323~327.
    [39]孙建刚,齐晗兵,王莉莉.立式储罐橡胶隔震工程应用设计研究[J].大连民族学院学报,2006,34(5):4~7.
    [40]张云峰,周利剑等.立式储罐反应谱动力分析[J].世界地震工程,2005,35(1):94~96.
    [41]孙建刚,郝进锋,袁朝庆等.储罐地震响应耗能减震研究[J].哈尔滨工业大学学报,2001,6,33(6):763~768.
    [42]崔利富,孙建刚,郭巍等.基于结构分析软件的框架结构基础隔震分析[J].大连民族学院学报,2008,1,10(1):70~74.
    [43]周利剑,孙建刚,梁立孚.立式储罐耗能及变形的数值分析与计算[J].大庆石油学院学,2006,30(2):128~130.
    [44]李刚,程耿东.基于性能的抗震结构设计理论方法与应用[M].北京:科学出版社,2004:1~2.
    [45] Seigenthaler R. Earthquake-proof Building Supporting Structure with Shock Absorbing Damping Elements [J]. Schweizerische Bauzeitung, No.20:211~219.
    [46] Staudacher K. Structural Integrity in Extreme Earthquakes [C].The Swiss Full Base Isolation System.8th World Conference In Earthquake Engineering,San Francisco:CA, 123~126.
    [47]孙建刚,袁朝庆,郝进锋等.立式钢制圆柱储液容器基底隔震的地震动仿真计算[J].大庆石油学院学报,2000,24(2):64~67.
    [48]温德超,郑兆昌,孙焕纯.储液罐抗震研究进展[J].力学进展,1995,25(1):60~76.
    [49]王永岗,吕英民,张对红等.储液罐抗震研究[J].油气储运,1999,18(6):1~7.
    [50]于洋.储罐减震耗能有限元数值模拟分析[D].大庆石油学院,2002.
    [51]周利剑.立式钢制储罐基于损伤性能的抗提离研究[D].大庆石油学院,2003.
    [52]王莉莉.季节性冻土影响的储罐地震反应研究[D].大庆石油学院,2003.
    [53] Wyllie L A et al. The Chile Earthquake of March 3.1985[M]. Earthquake Spectra,1986,2:373~409.
    [54]中国石化总公司抗震办公室.圆柱形储液罐抗震文集[C].北京:地震出版社,1986:1~20.
    [55] D.C. Barton, J.V. Parker. Finite Element Analysis of the Seismic Response of Anchored and Unanchored Liquid Storage Tanks[J]. Earthquake Engineering and Structural Dynamics,1987,15 (8):1251~1254.
    [56] Housner G W. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the Seismological Society of America,1957,47(1):15~35.
    [57] Housner G W. The dynamic behavior of water tanks[J]. Bulletin of the Seismological Society of America,1963,53(1): 381~ 387.
    [58] Haroun,M.A. and Housner, G.W. Dynamic interaction of liquid Storage tanks and foundation soil, proc, Second ASCE/EMD Specialty Conf[J]. On Dynamic Response of Structures ASCE, New York,N.Y,1981.346~360.
    [59] Niwa A, Clough R W. Buckling of cylindrical liquidstorage tanks under earthquake loading[J]. Earthquake Engineering and Structural Dynamics,1982,10:107~122.
    [60] F.H. Hamdan. Seismic behavior of cylindrical steel liquid storage tanks[J]. Journal of Constructional steel research,2000,553(12):307~333.
    [61] P. Schneider F. Bucher F.zapeca. Structural Response to Thin Steel Shell Structures due to Aircraft Impact[J]. Journal of loss prevention in the process industries,1999,12(7):325~329.
    [62] Buler T A, Benett G J, Babcock C D, and natisavas S. response of seismic category tank to earthquake excitation[J]. NUREG/Cr- 4776, La-20871-Ms,los Alamos national lab, nm nuclear regulatory commission, Washington, D. C,1987.
    [63] Haroun, M.A., and Ellaithy. H.M. model for flexible tanks Undergoing rocking[J]. Engrg Mech:ASCE,1985,111(2):143~157.
    [64] R.A.Ibrahim.etc. Experimental investigation of liquid sloshing under parametric random excitation[J].American society of mechanical engineering New York,NY,USA.WA/APM23,1993,7.
    [65] R.S. Wozniak and W.W. Mitchell. Basis of seismic response provisions for welded oil storage tanks[J]. API convention. Toronto:Canada, May 1978.
    [66] S.Natsiavas. An analytical model for unanchored fluid-filled tanks under base excitation[J]. J of applied Mech,648/Vol.55 Sept.1988.
    [67] Malhotra,Veletsos.Uplifting analysis of base plates in cylindrical tanks[J]. Journal of Structural Engineering, December, 1994.3489~3505.
    [68] S.Sun. Seismic damages of liquid tanks and its analysis of a seismic design. ASME, Proc. of the 1985 PVP conference. New Orleans, Louisiana, 98-7, ,June 1985:61~71.
    [69] Natsiavas S,Babcock,CD. Behavior of unanchored fluid-filled tanks subjected to ground excitation[J]. ASME,New York,NY,USA WA/APM50.6, Nov,1988.
    [70] Rinnc J E. Oil storage tanks[M]. The Prince William Sound, Alaska Earthquake of 1964 and Aftershocks, U.S. Dept. of Commerce, E.S.S.A. Coast and Geodetic Survey, Washington, D.C.,II, 1967:245~252.
    [71] Kelly J M and Tsztoo D F. Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices[J], Bulletin New Zealand Nat. Society for Earthquake Engrg.,10, 1977:196~207.
    [72] Kelly,J.M. A seismic base isolation review and bibliography[J], soil DynEarthq:Eng. 1986,5(3): 202~216.
    [73] Kelly,J.M. New applications and R &D for isolated civil buildings in the united state, Proc. of Inter[M]. Post-SMiRT Conference Session on Seismic Isolation, Passive Energy Dissipation and Control of Vibrations of Structural,Chile. 1995.
    [74] Kelly J.M, Eidinger J.M , Derham C.J. A Practical soft story Earthquake Isolation System[R], Report, No.UC13/EERC-77/27, Earthquake Engineering Research Center, University of California,Berkeley,Calif,1997.
    [75] Kelly,J.M.,Pall,A.S. Seismic response of a nine-story steel frame with friction damped cross-bracing[R]. Report No,UCB/EERC-88/17,1988.
    [76] Tajirian F E. Seismic isolation of critical components and tank proc[J]. ATC-17-1Seminar on Seismic Isolation,1993 Passive Energy Dissipation and Active Control. San Francisco. Calif. 1993. 233~244.
    [77] Liang B,Tang J X.Vibration. studies of base isolated storage tanks[J]. Computers and structures,1994,52:1051~1059.
    [78] Zayas V S. and Low D S. Application of seismic isolation to industrial tanks[J]. Proc. Pressure Vessels and piping on f. ASME/JSME, Hawaii. 1995.268~273.
    [79] Kim N S and Lee D G. Pseudo-dynamic test for Evolution of seismic performance of base isolated liquid storage tanks[J]. Engineering Structures,1995,17(3):198~208.
    [80]刘扬,赵洪激,董家梅.常压储罐系统可靠性研究[J].石油学报2002,9 ,23(5).
    [81] Malhotra M K. Method for seismic base isolation of liquid-storage tanks[J]. J. Struct. Engrg. ASCE,1997a,123(1):113~16.
    [82] Malhotra M K. New method for seismic base isolation of liquid storage tanks[J]. Earthquake Engineering and Structural Dynamics,1997,26:839~847.
    [83] Wang Y P, Teng M C, Chung K W. Seismic isolation of rigid cylindrical tanks using friction pendulum bearing[J]. Earthquake Engineering and Structural Dynamics,2001,30:1083~1099.
    [84] Shrimali M K,Jangid R S. Seismic response of liquid storage tanks isolated by sliding bearings[J]. Eng. Strcut, 2002,24(7):907~919.
    [85] Shrimali M K,Jangid R S. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation[J]. Nuclear Engineering & Design,2002,217 (1/2): 1~20.
    [86] Shrimali M K,Jangid R S. A COMPARATIVE STUDY OF Performance of various solation systems for liquid storage tanks[J]. International Journal of Structural Stability and Dynamics,2002,2(4):573~591.
    [87] Shrimali M K,Jangid R S. Seismic Response of Base-Isolated Liquid Storage Tanks[J]. Journal of Vibration & Control,2003,9(10):1201~1217.
    [88] Shrimali M K,Jangid R S. Seismic analysis of base-isolated liquid storage tanks [J]. Journal of Sound & Vibration,2004,275(1/2):59~75.
    [89] Jadhav M B,Jangid R S. Response of base-isolated liquid storage tanks[J]. Shock and Vibration. 2004,11:33~45.
    [90] Kim M K,Lim Y M,Cho S Y et al. Seismic analysis of base-isolated liquid storage tanks using the BE–FE–BE coupling technique[J]. Soil Dynamics & Earthquake Engineering,2002,22(9-12):1151~1157.
    [91] Cho K H,Kim M K, Lim Y M et al. Seismic response of base-isolated liquid storage tanks considering fluid–structure–soil interaction in time domain[J]. Soil Dynamics & Ea rthquake Engineering. 2004.24(11):839~852.
    [92]樊爱武.滑移隔震结构的滑移位移研究[D].华中科技大学,2005.
    [93]唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.
    [94] G.W.Housner, L.A.Bergman. Structural control past, present and future[J]. J.Engrg.Mech.ASCE, 1997, 123(9):897~971.
    [95] I.G.Buckle and R.L.Mayes. Seismic isolation history application and performances world view[J]. Earthquake Spectra,1990, 6(2):161~201.
    [96]李立.建筑物的滑动隔震,隔震技术的研究与应用[M].北京:地震出版社,1991.
    [97]唐家祥,李黎.叠层橡胶基础隔震房屋结构设计与研究[J].建筑结构学报,1996,17(2):37~47.
    [98]周锡元,彭尚达等.建筑结构隔震、减震、控震技术的研究和应用[C].武汉:第二届全国结构减振控制学术会议论文集,1992.10:41-53.
    [99]曾德民,苏经宇,樊水荣等.建筑基础隔震技术的发展和应用概况[J].工程抗震. 1996,3:37~41.
    [100]樊水荣,苏经宇等.建筑基础摩擦滑移技术及其应用[J].工程抗震,1997,1:39~43.
    [101]田洁,姚谦峰,王克成.夹层橡胶垫在单层工业厂房中的应用研究[J] .工程抗震与加固改造,2005,3(27).
    [102] Skinner R I,Robinson W H,Mcverry G H. An Introduction to Seismic Isolation[M]. John Wiley&Sons Ltd,1993.
    [103]周锡元,阎维明,杨润林.建筑结构的隔震、减震和振动控制[J].建筑结构学报, 2002,23(2):2~12.
    [104]张俊发,刘云贺,田洁.铅芯橡胶支座应用于多层框架结构的增层减震研究[J].西安建筑科技大学学报,2000,32(2):139~142.
    [105]田洁,张俊发,刘云贺,王克成.铅芯橡胶支座基础隔震体系参数优化配置研究[J].世界地震工程, 2003,19(1):158~163.
    [106]刘云贺,张俊发,田洁.铅芯橡胶支座应用与桥梁减震的优化配置研究[J].西安公路交通大学学报,2000,20(1):39~42.
    [107]麦敬波.复合隔震体系研究[D].广州大学,2006.
    [108] J.M.Kelly. Seismic Base Isolation Review and Bibliography[J]. Soil Dyn. Eaquake Engng,1986,8:202~216.
    [109] M.S.Chalhoub and J.M.Kelly. Sliders Tension Controlled Reinforced Elastomeric Bearings Combined for Earthquake Isolation[J].Earthquake Engineering &Structural Dynamic, 19,1990.
    [110] Mostaghel,N. and Khodaverdian,N. Dynamics of Resilient-Friction Base Isolator(R-FBI) [J]. Earthquake Engng. and Struct. Dynamics,1987,15(3):379~390.
    [111] Gueraud, R. Noel-leroux, J. P Livolant M. and Michalopouls, A. P. Seismic isolation using sliding elastomeric bearing pads[J]. Nucl. Engng Design 1985,84:363~377.
    [112] Su, L. Ahmadi G. and Tadjbakhsh I. G. A comparative study of base isolation system[J]. J. Engng. Mech. ASCE,1989, 115(9):1976~1992.
    [113]周锡元,韩森,李大望等.并联和串联基础隔震体系地震反应的某些特征[J].工程抗震,1995,4:1~5.
    [114]吕西林,朱玉华,施卫星等.组合基础隔震房屋模型振动台试验研究[J].土木工程学报,2001,34(2):43~49.
    [115]杨树标.复合隔震结构地震反应的简化计算[J].世界地震工程,2001,17(2):65~69.
    [116]周福霖,张雁等.防灾减灾工程研究与进展[C].北京:科学技术出版社,2005.240~244.
    [117]杨树标,孙武,别慧中等.并联复合隔震支座性能的试验研究[[J].煤炭工程,2003,1:62~64.
    [118]李爱群,毛利军.并联基础隔震体系地震反应特征与隔震层参数的优选[J].工程抗震与加固改造,2005,27(2):27~31.
    [119]别慧中,王金光,黄宝平.并联复合隔震技术研究[[J].煤炭工程,2003,8:59~61.
    [120] Marchaj T J. Importance of vertical acceleration in the design of liquid containing tanks [R]. Proc. 2nd US National Conf. Eng. Stanford, Calif,1979:146~166.
    [121] Malhotra P K.Seismic strengthening of liquid-storage tanks with energy-dissipating anchors [J]. J. Struct. Engrg. ASCE , 1998,124(4):405~414.
    [122]滕圣康.复杂地质条件下大型储罐基础的处理[J].石油化工建设,2006,6,28(3):47~49.
    [123]马玉红,邹君.大型圆筒形储罐有限元设计计算[J].炼油与化工,2002,6,13(3):26~28.
    [124]张广存.大型原油储罐施工过程的基础沉降观测[J].油气田地面工程,2006,10,25(9):37~38.
    [125] Anestis S. Veletsos and so on. Dynamic Response of Flexibly Supported Liquid-Storage Tanks[J]. J.struc.Eng,118,1,1992.
    [126] Basharkhah M A and Yao J T P. Some Recent Developments in Structural Control[M]. ASCE, 1983.
    [127] Basharkhah M A and Yao J T P. Reliability Aspects of Structural Control[J]. Civil Engineering Systems ,10,1984: 224~9.
    [128] Nicos Makris,Shih-Po Chang. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthquake engng.struct.dyn,2000, 29(1):85~107.
    [129] C.F.Shin. Failure of liquid storage tanks due to earthquake excitation[M]. Earthquake Engir. research laboratory, California institute of Technology, Report No. EERL 81-04, Pasadena, California, 1981.5.
    [130] Cheng,K.C.,Soong,T.T. Oh,S.t. and Lai,M.L. Effect of ambient temperature on a viscoelastically damped structure[J]. Journal of Structural Engineering, ASEC, 1992,11, 8(7).
    [131] Chik-Sing Yim & Anil K.Chopra. Effects of transient foundation uplift on earthquake response of structures[M]. Report No.UCB/EERC 83/09 Earthquake Engir. Research Center University of California Berkeley:California,June 1983.
    [132] Haroun,M.A. and Housner, G.W. Dynamic interaction of liquid Storage tanks and foundation soil[J], proc, Second ASCE/EMD Specialty Conf,On Dynamic Response ofStructures ASCE, New York,N.Y. 1981, 346~360.
    [133] Kobori,T.etal. Seismic-response-controlled structure with active variable stiffness system[J].Earthquake Eng.Struct.Dyn,1993, 22:925~941.
    [134] Clough D.P. Experimental evaluation of seismic design methods for broad cylindrical tanks[M].Earthquake engineering research center, university of California, Berkelcy, report No. UCB/EERC-77/10,may,1977.
    [135] Kurata, N. Kobori, K.et al. Shaking table experiment of active variable stiffness system[J], Proc. of Int. Workshop on Struct. Control, 1994,2(2):109~117.
    [136] Edwards H.W. A procedure for the Dynamic analysis of thin walled Cylindrical liquid storage tanks subjected to lateral Ground motion[M].Ph.D.Dissertation,University of Michigan, ANN Arbor,Michigan,1969.
    [137] Filiatrault,A. and Cherry,s. Seismic design of friction damped braced steel plane frames by energy method[R],Report No.UBC-EERE-88-01. 1988.
    [138] F.J.Cambra,Earthq. Response considerations of broad liquid storage tanks[D], University of California,Berkeley, Roport No.UCB/EERC-82/25, Feb.November.1982.
    [139] Fujita,T.et al. Study for the prediction of the long term durability of seismic isolators[J], 310,ASME 1995:197~203.
    [140] Haroun, M. A. Dynamic analysis of liquid storage tanks[D], EERL 80-04, California institute of technology,Pasadena,Calif.,Feb.1980.
    [141] Zhou Fulin. Most recent research development and application on seismic control system of structures and computational method[C]. Proc. of International Conference on Computational Methods in Structural and Geotechnical Engineering, Hong Kong, 1994.
    [142] Zhou Fulin, Xie Lili, Yu Gonghua and Xian Qiaoling. Most recent development on seismic control of structures in P.R. China[S]. Proc. of First World Conference on Structural Control(1WCSC) , Los Angeles, USA, 1994.
    [143]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析[D].哈尔滨工程大学,2006.
    [144] Martin C.R and Song T.T. Modal Control of Multistory Structures[J]. ASCE, J.Eng, Mech. 1976.102(EM8):613~623.
    [145] M.Chiba, J.Tani. Dynamic stability of liquid-filled cylindrical shells under vertical excitation[J].PartⅡ:Theoretical Results. Earthquake Engir. and structure dynamics, (1987)15:37~51.
    [146]王振.立式浮放储罐三维地震反应分析及实验研究[D].哈尔滨工程大学,2006.
    [147] Haroun, M.A. and Ellaithy, H.M. model for flexible tanks undergoing rocking[J]. J, Engrg Mech. ASCE, 1985, 111(2):143~157.
    [148]孙建刚,郝进锋,袁朝庆等.立式浮放钢制储罐抗震减震研究[J].哈尔滨工业大学学报,2001,9,33(增刊):215~219.
    [149]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [150]《建筑隔震橡胶支座》(JG115一2000)[S]
    [151]《叠层橡胶支座隔震技术规程》(CECS126:2001)[S]
    [152]郑明君,王文静,陈政南.橡胶Mooney-Rivilin模型力学性能常数的确定[J].橡胶工业,2003,50:462~465.
    [153]叶志雄,李黎,聂肃非.铅芯橡胶支座非线性动态特性的显示有限元分析[J].工程抗震与加固改造,2006,28(6):53~60.
    [154]张文芳,李爱群等.建筑物滑移隔震研究现状及新进展[J].东南大学学报,1997,Vol.27(增刊):45~49.
    [155] Yen-Po Wang Wei-Hsin Liao. Dynamic analysis of sliding structures with unsynchronized support motions[J]. Earthquake engng.struct.dyn.,2000,Vol.29(3):297~313.
    [156] JoséL.Almazán,Juan C.De la Llera. Physical model for dynamic analysis of structures with FPS isolators[J]. Earthquake engng.struct.dyn,2003,Vol.32(8):1157~1184.
    [157] Wen-Chyi Su,Alan G.Hernied. Seismic response of rotating machines-structure-RFBI systems[J]. Earthquake engng.struct.dyn,2000,Vol.29(2):213~240.
    [158]李大望,霍达.滑动隔震结构的非线性动力可靠性分析[J].世界地震工程,2000,Vol.16(1):28~31.
    [159]朱玉华,吕西林.滑移摩擦隔震系统在多向地面运动作用下的试验研究[J].地震工程与工程振动,2002,Vol.22(5):77~84.
    [160]吴强.碟形弹簧对结构物的隔震作用[D].大连理工大学,2000:15~17.
    [161]张玉敏.碟形弹簧竖向隔震装置的试验研究[D].河北理工大学,2005:12.
    [162] Tajirlan F F, Kelly J M, Aiken I D, et al. Elastomeric Bearing of Three-Dimensional Seismic Isolation [C] . Proceedings, 1990 ASME PVP Conference, ASME PVP-200,Nashville, Tennesse,1990.
    [163] Kelly J M, Aiken I D, Tajirian F F. Mechanics of High Shape Factor Elastomeric Seismic Isolation Bearings [R]. Report No. UCB/EERC-90/01, University of California, Berkeley, CA , 1990.
    [164] Tokuda N, Kashiwazako A , Omata I. Three-Dimensional Base Isolation System for FBR Reactor Building[J]. SMiRT 13, 1995, Div. K:513~518.
    [165] Kanazawa K, Matsuda A and Hirata K. Three Dimensional Base Isolation System on Laminated Thick Rubber Bearings[R]. CRIEPI Report, July 1997.
    [166] Hirata K, Yabana S, Kanazawa K, et al. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR[R]. CRIEPI Report, July,1997.
    [167] Yabana S. Development of Thick Rubber Bearing for Three-Dimensional Seismic Isolation[J]. Proc. Of 12th World Conference on Earthquake Engineering, 2000:104~106.
    [168] Matsuda A and Yabana S. Evaluation of Mechanical Properties of Laminated RubberBearings Using Finite Element Analysis[J].Seismic Engineering-2000, 2000, PVP-Vol402-1, ASME:95~102.
    [169] Teramura A,Yoshihara J, Nakamura M, et al. Development of Base Isolation System for Earthquakes and Micro-vibrations Using Laminated Thick Rubber Bearings (Part2) - Vertical Damper Device and Its Dynamic Characteristics.
    [170]扬彦飞,何文福.三维隔震技术的研究与应用[J].山西建筑,2006,32(23):72~73.
    [171] Huffmann G K. Full Base Isolation for Earthquake Protection by Helical Springs and Viscodampers[J].Nuclear Engineering and Design,1985,Vol, 84, No.3.
    [172] Feuillade G and Richard P. Evolutions des Dispositifs Parasismique du Batiment Reacteur du Projet SPX2 Depuis 1980 et Consequences Sur les Chargement du Bloc Reacteur[J]. 1er Colloque National de Genie Parasismique, St-Remy-Les-Chevreuse,France
    [173] Shingu Kiyoshi, Fukushima, Kinya. Seismic isolation and fuzzy vibration control of shell structure subjected to vertical seismic forces[C]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C [NIPPON KIKAI GAKKAI RONBUNSHU C HEN], 1994,Vol. 60(577):2999~3005.
    [174] Fujita S , Kato E , Kashiwazaki A et al. Shake Table Tests on Three-Dimensional Vibration Isolation System Comprising Rubber Bearing and Coil Spring[M].Proceedings of 11th World Conference on Earthquake Engineering, 1996.
    [175] Parvin A and Ma Z. The Use of Helical Spring and Fluid Damper Isolation Systems for Bridge Structures Subjected to Vertical Ground Acceleration[J]. Electronic Journal of Structural Engineering, 2001,No.2:98~110.
    [176] Kageyama Mitsuru, Iba Tsutomu, Somaki Takahiro, et al. Development of cable reinforced 3-dimensional base isolation air spring[M]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP. 2002,445(2):19~25.
    [177] Suhara Junji, Okada Yasuo, Tamura Tadashi, et al. Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring. American Society of Mechanical Engineers[J], Pressure Vessels and Piping Division (Publication) PVP. 2002,445(2):43~48.
    [178] Kashiwazaki A , Mita R , Enomoto T, et al. Three-Dimensional Base Isolation System Equipped with Hydraulic Mechanism[J].Transactions of the Japan Society of Mechanical Engineers, 1999,Vol.66(648):146~151.
    [179] Umeki K, Kajii Shinichiro, Kunitake Nobuhiro, et. al. Three dimensional seismic isolation system using hydraulic cylinder. American Society of Mechanical Engineers[J]. Pressure Vessels and Piping Division (Publication) PVP, 2002,Vol. 445(2):35~42.
    [180] Kashiwazaki Akihiro, Fujiwaka Tatsuya, Shimada Takahiro, et al. Feasibility tests on a three-dimensional base isolation system incorporating hydraulic mechanism. American Society of Mechanical Engineers[J].Pressure Vessels and Piping Division (Publication)PVP, 2002, Vol. 445(2):11~18.
    [181] Fujita T, Nakajima K, Sugimoto H, et al. A 3-dimensional seismic isolation floor using a conversion mechanism of vibration direction for vertical isolation[C]. TRANS. JAPAN SOC. MECH. ENG. (SER. C) , 1990,56(526):1377~1380.
    [182] Kitamura S, Morishita M. Design method of vertical component isolation system. American Society of Mechanical Engineers[J].Pressure Vessels and Piping Division (Publication) PVP, 2002,445(2):55~60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700