用户名: 密码: 验证码:
断陷盆地不整合输导油气有效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来随着我国东部断陷盆地勘探实践的不断深入,新发现的油气藏中不整合油气藏在储量和产量上占据着重要地位,已成为断陷盆地油气增储上产的重要目标。不整合油气藏形成机理研究的主要内容之一就是不整合对油气的输导作用问题,实际上就是油气能否以及如何沿不整合从“源”到“藏”的问题,也即不整合输导油气有效性的问题,它直接影响和控制了不整合油气藏的形成。目前,有关不整合输导油气有效性的研究还较少,甚至有些方面还未涉及,这极大限制了不整合油气藏的勘探和开发。因此,针对断陷盆地,对不整合输导油气有效性问题进行深入分析和研究,是油气勘探的迫切需要,对不整合油气藏形成机理、分布规律及相关理论的认识和研究具有十分重要的意义。
     论文以我国东部断陷盆地─渤海湾盆地的济阳坳陷和冀中坳陷为主要研究区,以不整合空间结构特征和不整合运移通道类型研究为基础,以不整合空间结构的非均质性、油气沿不整合运移的物理模拟实验及其有效性研究为重点,对不整合输导油气有效性进行了综合研究,在此基础上,预测了不整合油气藏的有利区带。
     通过对济阳坳陷和冀中坳陷不整合油气藏勘探实例的分析,认为断陷盆地不整合在空间上具明显的三层结构特征,即不整合面之上的底砾岩层、不整合面之下的风化粘土层和半风化岩石层,其中底砾岩层和半风化岩石层是油气运移的主要通道,且油气主要在半风化岩石层中聚集。理论上不整合可出现48种结构类型,当不整合不发育风化粘土层,且不整合面之上为砂岩时,不整合结构类型以出现“输导体”居多,不整合面之上为泥岩时,不整合结构类型以形成封堵或圈闭居多;当不整合发育风化粘土层,则以形成圈闭居多。
     在对不整合空间结构特征研究的基础上,提出了油气沿不整合运移的通道类型:宏观上,存在由不整合面之上底砾岩和不整合面之下半风化岩石两种高效运载层组合成的双运移通道型和单运移通道型两种通道类型;微观上,底砾岩“连通孔隙”和半风化岩石“孔-洞-缝”系统可作为油气运移的主要通道。它们可将砂体和断层等连接起来,组成区域性的运移输导网络,共同控制着油气的运移。
     通过对断陷盆地不整合各结构层的几何形态、连续性、厚度变化特征、岩性变化特征以及物性变化特征等的定性及定量研究结果表明,不整合无论是在平面、层内,还是层间均表现出强烈的非均质性,且半风化岩石层的非均质程度要强于底砾岩层。依据不整合各结构层渗透率变异系数、渗透率突进系数和渗透率级差的大小,建立了断陷盆地不整合非均质性的评价指标。在此基础上,尝试性的将油气沿不整合发生有效输导的非均质性参数Vk的下限值定为0.7,即Vk≥0.7时,油气可沿不整合面之下的半风化岩石层发生有效输导并聚集成藏。
     根据冀中坳陷不整合油气藏勘探实际,针对性地建立实验模型,对不整合油气运移过程进行了实验模拟,结果表明:①不整合可作为油气侧向运移的良好通道,且油气主要沿物性好的输导层运移;②半风化岩石层始终是油气运移的优势通道,大部分的油气均沿此通道运移;③油气沿不整合的运移普遍表现出明显的非均一性,这种非均一性既表现在层间,也表现在层内;④沟通底砾岩层和半风化岩石层的开启性断层不仅是油气运移的良好通道,而且大大提高了不整合输导油气的能力;⑤油气在不同结构层中的运移特征直接受其物性的控制,如在物性好的半风化岩石层中,油气的运移速度快、运移量大、运移距离远等;⑥在注油压力、注油量相同的条件下,半风化岩石层的含油饱和度最高(散失量也最大),其输导油气的有效空间体积明显大于底砾岩层,具有较强的油气输导能力。
     在之前相关研究及物理模拟实验的基础上,论文对不整合输导油气有效性进行了综合研究:①断陷盆地油气沿不整合发生侧向运移的距离最远可达50km,有利于成藏的距离在5~20km之间;②油气在不同坳陷中沿不整合运移的速度差异较大,在0.28~8.33km/Ma之间;③油气在平面上由“凹”向“凸”呈“线状”运移(即沿优势通道运移),而不是“面状”运移,在剖面上则沿着“梁”运移,而不会在“沟底”运移;④不整合的半风化岩石层和底砾岩层始终是输导油气的主要通道,且半风化岩石层的“孔-洞-缝”系统较底砾岩层的“连通孔隙”具更高的输导能力,油气主要在半风化岩石层中运移和聚集;⑤断陷盆地控制油气沿不整合发生有效运移的因素主要有油源、油气运移动力、不整合特征(包括区域分布、结构性、通道类型、非均质性等)、不整合与其它输导体(如断层)的配置关系等,其中油源和油气运移动力是前提条件,而不整合特征及不整合与其它输导体的配置关系是关键因素。
     论文还对断陷盆地不整合油气藏的有利区带进行了预测:①盆地或凹陷边缘的地层超剥带,是不整合油气藏发育的有利区带;②鼻状构造带与超剥带的组合区域,是不整合油气藏最为富集的区带;③盆地或凹陷内部隆起,是今后寻找不整合油气藏(尤其是潜山油气藏)的重要区带。
In recent years, hydrocarbon exploration demonstrates that unconformity reservoirs play an important role in newly found reservoirs and become primary exploration targets in faulted basins, eastern China. As the main hydrocarbon pathway, one of the objectives for unconformity study is to prove how hydrocarbon to migrate through unconformity from source rocks to reservoirs, i.e., the efficiency of hydrocarbon migration through unconformity which directly control the formation of unconformity reservoirs. However, few studies have been done on migration efficiency through unconformity, which restricts the exploration and development of unconformity reservoirs. Therefore, further studies should be carried on, which is significant for the formation and occurrence of unconformity reservoirs.
     This dissertation focuses on Jiyang and Jizhong Depressions, Bohai Bay basin. Based on the unconformity structure and the types of migration passages, it discusses the heterogeneity and physical modeling experiments of unconformity. Moreover, the efficiency of hydrocarbon migration through unconformity is intensively studied and prospects of unconformity reservoirs are predicted.
     Study shows that the vertical structure of unconformity in faulted basin includes three parts: basal conglomerate, weathered clay and semi-weathered rock, among which basal conglomerate and semi-weathered rock are major passages for hydrocarbon migration, and semi-weathered rocks are the main reservoirs for petroleum accumulation. The structure of unconformity can be subdivided into 48 types. If weathered clay is absent and the overlying layer is sandstone, the unconformity mainly becomes carrier bed, and the sealing or trap is formed if the overlying is mudstone. When weathered clay develops, the unconformity tends to trap oil and gas.
     Two kinds of unconformity migration passages are presented, which are dual migration passage consisting of two types of highly effective transport passages and single migration passage, repectively. The dual migration passage occurs between semi-weathered rock and basal conglomerate. The cavern-fracture system of semi-weathered rock and the connected pores of basal conglomerate can be regarded as the major passages for hydrocarbon migration. They connected faults and sand bodies formed in different periods to construct the regional migrating network which controlled the hydrocarbon migration.
     The unconformity structure displays obvious heterogeneity because of the differences in geometry, continuity, thickness, lithology and physical property. The unconformity shows strong interformational, intraformational and plane heterogeneity. The semi-weathered layer is more heterogeneous than the basal conglomerate layer. With the consideration of permeability mutation coefficient, permeability dash coefficient and permeability graded differences, the evaluation criterion of unconformity heterogeneity has been established and hydrocarbon can migrate and accumulate through semi-weathered layer when Vk≥0.7.
     Modeling experiments are designed to simulate the process of hydrocarbon migration through unconformity. The experiment results can be summarized as follows:①Unconformity can be a good migration passage, and hydrocarbon migrates mainly along carrier beds with better physical property.②Most hydrocarbon migrates along the semi-weathered layer.③Hydrocarbon migration through unconformity is characterized by an obvious interformational, intraformational and plane heterogeneity.④Opened faults, which connect the semi-weathered layer and basal conglomerate layer, not only can be a good passage, but also improve the transportation capability of unconformity.⑤The physical properties of unconformity control the hydrocarbon migration. Hydrocarbon has faster migration velocity, larger volume and longer migration distance in semi-weathered layer than in basal conglomerate layer.⑥Under the same experimental conditions, the semi-weathered layer has the highest oil saturation and the largest loss. Moreover, the semi-weathered layer has broader effective passage volume than the basal conglomerate layer and shows stronger transportation capability.
     Based on the preceding research and physical modeling experiments, this paper discusses the efficiency of hydrocarbon migration through unconformity in faulted basins:①The lateral distance of hydrocarbon migration through unconformity can reach 50km, and favourable range is from 5km to 20km.②Different depressions have different migration rates, from 0.28km/Ma to 8.33km/Ma.③Hydrocarbon migrates from sag to uplift laterally, and migrates along ridges not gullies vertically.④Semi-weathered layer and basal conglomerate layer are always the migration passages in geological time, and cavern-fracture system of semi-weathered layer has a stronger transportation capability than the connected pores of basal conglomerate layer. Therefore, hydrocarbon migration and accumulation occurred mainly in semi-weathered rocks.⑤A lot of factors influence hydrocarbon migration through unconformity, including oil-source, migration drive force, unconformity features (such as regional distribution, structural nature, migration passages and heterogeneity) and the collocation of unconformity and other migration pathways. Among these, oil-source and migration drive force are prerequisite, and unconformity features and the collocation of unconformity and other migration pathways are key factors.
     In the end, favourable regions of unconformity reservoirs in faulted basins are predicted:①The stratigraphic onlap and denudation zones in basins or depressions are the favorable belt to discover unconformity reservoirs.②The stratigraphic onlap and denudation areas combine with nose structure belts to form a prolific zone of unconformity reservoirs.③The inner uplifts in basins or depressions will be the important targets for unconformity reservoirs (especially buried hill reservoirs) in the future.
引文
1. Klemme H. D..Petroleum basins-classifications and characteristics[J].Journal of Petroleum Geology,1980,3:187-207.
    2.查全衡,韩征,刘殿升.中国石油地质的若干特点及其对储量增长的影响[J].石油学报,1999,20(5):1-6.
    3.李丕龙,金之钧,张善文,等.济阳坳陷油气勘探现状及主要研究进展[J].石油勘探与开发,2003,30(3):1-4.
    4.李丕龙,庞雄奇,张善文,等.陆相断陷盆地隐蔽油气藏的形成——以济阳坳陷为例[M].北京:石油工业出版社,2004.
    5.庞雄奇,陈冬霞,李丕龙,等.隐蔽油气藏资源潜力预测方法探讨与初步应用[J].石油与天然气地质,2004,25(4):370-376.
    6.姚益民.济阳坳陷的沙二段以及与之有关的不整合面[J].石油技术,1986,8(5):38-42.
    7.吴智平,李守军,周瑶琪.地层间断面的时间结构研究进展[J].石油大学学报(自然科学版),1998,22(6):119-124.
    8.邱以钢,程日辉,林畅松.沾化凹陷下第三系不整合类型及其地质意义[J].吉林大学学报(地球科学版),2002,32(2):146-150.
    9.隋风贵,赵乐强.济阳坳陷不整合结构类型及控藏作用[J].大地构造与成矿学,2006,30(2):161-166.
    10.何登发.不整合面的结构与油气聚集[J].石油勘探与开发,2007,34(2):142-149.
    11. Levorsen A. I..Relation of oil and gas pools to unconformities in the midcontinent region[A].In:Wrather W. E. , Lahee F. H..Problem of petroleum geology[C].AAPG Sidney Powers Memorial Volume,1934,761-784.
    12.潘钟祥.不整合对于油气运移聚集的重要性[J].石油学报,1983,4(4):1-10.
    13. John S..Interregional unconformities and hydrocarbon accumulation[J].AAPG Memoir 26,1984.
    14. James Hutton.Investigation of the laws observable in composition,dissolution and restoration of land up on the globe[J].Royal Society Edinburgh Transactional,1988,109-304.
    15.张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发, 1996,23(5):16-19.
    16. Li Pilong,Zhang Shanwen,Xiao Huanqin,et al.Exploration of Subtle Trap in Jiyang Depression[J].Petroleum Science,2004,1(2):13-21.
    17.庞雄奇,陈冬霞,张俊.隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J].岩性油气藏,2007,19(1):1-8.
    18.陆克政.关于不整合的分类和含油气盆地不整合的分布[J].华东石油学院学报,1980,(3):10-18.
    19. Vail P.,Mitchum R.,Thompson S..Seismic stratigraphy and global changes of sea level,part 3:relative changes of sealevel from coastal onlap[A].Seismic stratigraphy applications to hydrocarbon exploration[C]. AAPG Memoir 26,1977,63-97.
    20. Brown L. F.,Fisher W. L..AAPG Continuing Education Course Note Series (16):Seismic stratigraphic interpretation and petroleum exploration[M].Tulsa:AAPG,1979,1-181.
    21.吴亚军,张守安,艾华国.塔里木盆地不整合类型及其与油气藏的关系[J].新疆石油地质,1998,19(2):101-105.
    22.付广,段海凤,孟庆芬.不整合及输导油气特征[J].大庆石油地质与开发,2005,24(1):13-16.
    23.尹微,陈昭年,许浩,等.不整合类型及其油气地质意义[J].新疆石油地质,2006,27(2):239-241.
    24.常波涛.陆相盆地中不整合体系与油气的不均一性运移[J].石油学报,2006,27(5):19-23.
    25.牟中海,何琰,唐勇,等.准噶尔盆地陆西地区不整合与油气成藏的关系[J].石油学报,2005,26(3):16-20.
    26.查明,张一伟,邱楠生.油气成藏条件及主要控制因素[M].北京:石油工业出版社,2003.
    27.罗凯声.不整合研究在准噶尔盆地勘探中的作用[J].新疆石油地质,2003,24(6):543-545.
    28.曹剑,胡文瑄,张义杰,等.准噶尔盆地油气沿不整合运移的主控因素分析[J].沉积学报,2006,24(3):399-405.
    29.杨勇,查明.准噶尔盆地乌尔禾—夏子街地区不整合发育特征及其在油气成藏中的作用[J].石油勘探与开发,2007,34(3):304-309.
    30.郭维华,牟中海,赵卫军,等.准噶尔盆地不整合类型与油气运聚关系研究[J].西南石油学院学报,2006,28(2):1-3.
    31.何琰,牟中海.准噶尔盆地不整合类型和分布规律[J].西南石油大学学报,2007,29(2):61-64.
    32.刘波,王英华,钱祥麟.华北奥陶系两个不整合面的成因与相关区域性储层预测[J].沉积学报,1997,15(1):25-30.
    33.曲江秀,查明,田辉,等.准噶尔盆地北三台地区不整合与油气成藏[J].新疆石油地质,2003,24(5):386-388.
    34.吴孔友,查明,洪梅.准噶尔盆地不整合结构模式及半风化岩石的再成岩作用[J].大地构造与成矿学,2003,27(3):270-276.
    35.王艳忠,操应长,王淑萍,等.不整合空间结构与油气成藏综述[J].大地构造与成矿学,2006,30(3):326-329.
    36.洪太元,蔡希源,何治亮,等.准噶尔盆地腹部白垩系底部不整合特征[J].新疆地质,2006,24(3):229-233.
    37.刘克奇,蔡忠贤,张淑贞,等.塔中地区奥陶系碳酸盐岩不整合带的结构[J].地球科学与环境学报,2006,28(2):41-44.
    38.何登发.塔里木盆地的地层不整合面与油气聚集[J].石油学报,1995,16(3):14-21.
    39.陈中红,查明,朱筱敏.准噶尔盆地陆梁隆起不整合面与油气运聚关系[J].古地理学报,2003,5(1):120-126.
    40.陈中红,查明,吴孔友,等.陆梁隆起白垩系底部不整合面特征与油气运聚[J].新疆石油地质,2002,23(4):283-285.
    41.高长海,查明,曲江秀,等.柴达木盆地东部不整合结构的地球物理响应及油气地质意义[J].石油学报,2007,28(6):32-36.
    42.肖乾华,李美俊,彭苏萍,等.辽河东部凹陷北部不整合类型及油气成藏规律[J].石油勘探与开发,2003,30(2):43-45.
    43.刘华,吴智平,张立昌,等.辽河盆地东部凹陷北部地区Es1+2/Es3不整合面与油气运聚的关系[J].石油大学学报(自然科学版),2003,27(6):8-11.
    44.张建林.地层不整合对油气运移和封堵的作用[J].油气地质与采收率,2005,12(2):26-29.
    45.张凡芹,王伟锋.东营凹陷南斜坡古近系不整合及其在油气成藏中的作用[J].石油天然气学报(江汉石油学院学报),2005,27(2):294-297.
    46.艾华国,兰林英,张克银.塔里木盆地不整合面下的碳酸盐岩成岩作用及孔隙特征[J].新疆石油地质,1998,19(2):112-116.
    47. Levorsen A . I..Geology of Petroleum[M].San Francisco:Freeman Company,1954.
    48.蔡春芳,梅博文,马亭,等.塔里木盆地不整合面附近成岩改造体系烃-水-岩相互作用[J].科学通报,1995,40(24):2253-2256.
    49. Surdam R. C.,Crossey L. J.,Hagen E. S.,et al.Organic-inorganic interaction and sandstone diagenesis[J].AAPG Bulletin,1989,73(1):1-23.
    50.赵卫军,支东明,党玉芳,等.准噶尔盆地陆西地区侏罗系西山窑组顶界不整合结构特征及其与油气关系[J].新疆地质,2007,25(1):92-95.
    51.汤良杰,金之钧,庞雄奇.多期叠合盆地油气运聚模式[J].石油大学学报(自然科学版),2000,24(4):67-70.
    52.付广,吕延防,薛永超,等.油气运移通道及其对成藏的控制[J].海相油气地质,1999,4(3):24-28.
    53.赵文智,何登发,池英柳,等.中国复合含油气系统的基本特征与勘探技术[J].石油学报,2001,22(1):6-13.
    54.惠荣耀.准噶尔盆地西北缘的油气运移[J].石油实验地质,1987,9(1):65-68.
    55.王屿涛.准噶尔盆地腹部陆南凸起油气的深源成因及勘探[J].石油实验地质,1999,21(1):34-37.
    56.王尚文.中国石油地质学[M].北京:石油工业出版社,1985.
    57.罗晓容.油气运聚动力学研究进展及存在问题[J].天然气地球科学,2003,14(5):337-346.
    58. Hindle A. D..Petroleum migration pathways an charge concentration:A three-dimensional model[J].AAPG Bulletin,1997,81(9):1451-1481.
    59. Schowalter T. T..Mechanics of secondary hydrocarbon migration and entrapment[J].AAPG Bulletin,1979,63(5):723-760.
    60. Dembicki H. J.,Anderson M. J.Secondary migration of oil:Experiments supporting efficient movement of separate,buoyantoil phase along limited conduits[J].AAPG Bulletin,1989,73(8):1018-1021.
    61. Catalan L., Xiao W. F.,Chatzis I.,et al.An experimental study of secondary oil migration[J].AAPG Bulletin,1992,76(5):638-650.
    62.庞雄奇,金之均,姜振学,等.油气成藏定量模式[M].北京:石油工业出版社, 2003.
    63.李明诚.油气运移基础理论与油气勘探[J].地球科学,2004,29(4):379-383.
    64.王震亮,陈荷立.有效运聚通道的提出与确定初探[J].石油实验地质,1999,21(1):71-75.
    65.李明诚.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004.
    66. Tokunaga T.,Imogi K.,Matsubara O.,et al.Buoyancy and interfacial force effects on two-phase displacement patterns:An experimental study[J].AAPG Bulletin,2000,84(1):65-74.
    67.曾溅辉,金之钧.油气二次运移和聚集物理模拟[M].北京:石油工业出版社,2000.
    68.姜振学,庞雄奇,曾溅辉,等.油气优势运移通道的类型及其物理模拟实验研究[J].地学前缘(中国地质大学(北京);北京大学),2005,12(4):507-515.
    69. Thomas M.,Clouse J..Scaled physical model of secondary migration[J].AAPGBulletin,1995,79(1):19-59.
    70.张守安,吴亚军,佘晓宇,等.塔里木盆地不整合油气藏的成藏条件及分布规律[J].新疆石油地质,1999,20(1):15-17.
    71.闫相宾,张涛.塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J].地质论评,2004,50(4):370-376.
    72.牛彦良.海拉尔盆地潜山油藏油气沿不整合面、断层和砂体运移的控制因素[J].大庆石油地质与开发,2007,26(2):27-29.
    73.吕修祥.塔里木盆地不整合面石油运移散失量的实验研究[J].石油大学学报(自然科学版),2000,24(4):112-114.
    74.付广,许泽剑,韩冬玲,等.不整合面在油气藏形成中的作用[J].大庆石油学院学报,2001,25(1):1-4.
    75.周小军,林畅松,刘景彦,等.塔里木盆地主要构造不整合的分布特征及其与对油气成藏的控制作用[J].新疆石油天然气,2006,2(1):1-4.
    76.赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析[J].石油实验地质,2002,24(6):527-532.
    77.张厚福.石油地质学[M].北京:石油工业出版社,1989.
    78.曾溅辉,王洪玉.输导层和岩性圈闭中石油运移和聚集模拟实验研究[J].地球科学(中国地质大学学报),1999,24(2):193-196.
    79. Bethke C.M.,Reed J.D.,Oltz D.F..Long-range petroleum migration in the Illinois Basin[J].AAPG Bulletin,1991,75(5):925-945.
    80.陈中红,查明,吴孔友,等.准噶尔盆地陆梁地区油气运移方向研究[J].石油大学学报(自然科学版),2003,27(2):19-22.
    81.初宝杰,向才富,姜在兴,等.济阳坳陷西部惠明凹陷第三纪火山岩型油藏成藏机理研究[J].大地构造与成矿学,2004,28(2):201-208.
    82.贾振远,蔡忠贤,肖玉茹.古风化壳是碳酸盐岩一个重要的储集层(体) [J].地球科学,1995,20(3):283-289.
    83.何发岐.碳酸盐岩地层中不整合—岩溶风化壳油气田——以塔里木盆地塔河油田为例[J].地质论评,2002,48(4):391-397.
    84.李新民,丁勇,张旭,等.巴楚—麦盖提地区不整合面特征与油气分布关系[J].新疆石油地质,2001,22(6):475-477.
    85.吕修祥,周新源,李建交,等.塔里木盆地塔北隆起碳酸盐岩油气成藏特点[J].地质学报,2007,81(8):1057-1063.
    86.谢泰俊,潘祖荫,杨学昌.油气运移动力和通道体系[A].南海北部大陆边缘盆地分析与油气聚集[C].北京:科学出版社,1997.385-405.
    87.张卫海,查明,曲江秀.油气输导体系的类型及配置关系[J].新疆石油地质,2003,24(2):118-120.
    88.何登发,赵文智,雷振宇,等.中国叠合型复合含油气系统的基本特征[J].地学前缘,2000,7(3):23-36.
    89. England W.A.,Mackenzie A.S.,Mann D.M.,et al.The movement entrapment of petroleum fluid in the subsurface[J].Journal of Geological Society,Landon,1987,144(2):327-347.
    90.周树勋,马振芳.鄂尔多斯盆地中东部奥陶系不整合面成藏组合及其分布规律[J].石油勘探与开发,1998,25(5):14-17.
    91.刘忠宝,谢华锋,于炳松,等.塔中地区西部奥陶系岩溶发育特征及其与关键不整合面的关系[J].地层学杂志,2007,48(4):127-132.
    92.杜金虎,邹伟宏,费宝生,等.冀中坳陷古潜山复式油气聚集区[M].北京:科学出版社,2002.
    93. Weber K.J..How heterogeneity affects oil recovery[A].Lake L.W.,Carroll Jr H.B..Reservoir Characterization[C].NewYork:Academic Press ,1986:487-544.
    94. McNeal R.P..Hydrodynamic entrapment of oil and gas in Bistfield,San Juan County,New Mexico[J].AAPG Bulletin,1961,45:315-329.
    95. Harms J.C..Stratigraphic traps I a valley fill,western Nebraska[J].AAPG Bulletin,1966,50:2119-2149.
    96. Smith D.A..The oretical considerations of sealing and nonsealing faults[J].AAPG Bulletin,1966,50:363-374.
    97.Berg R.R..Capillary pressure in stratigraphic traps[J].AAPG Bulletin,1975,59(6):939-959.
    98.张发强,罗晓容,苗盛,等.石油二次运移的模式及其影响因素[J].石油实验地质,2003,25(1):69-74.
    99.纪友亮,杜金虎,赵贤正,等.冀中坳陷饶阳凹陷古近系层序地层学及演化模式[J].古地理学报,2006,8(3):397-406.
    100.杨少春.储层非均质性定量研究的新方法[J].石油大学学报(自然科学版),2000,24(1):53-56.
    101.刘泽容,杜庆龙.应用变差函数定量研究储层非均质性[J].地质论评,1993, 39(4):297-301.
    102.高树新,杨少春,胡洪波,等.胜坨油田21断块沙二段储层非均质性定量表征[J].油气地质与采收率,2004,11(5):10-13.
    103.杨少春,杨兆林,胡红波.熵权非均质综合指数算法及其应用[J].石油大学学报(自然科学版),2004,28(1):18-21.
    104.李祖兵,颜其彬,罗明高.非均质综合指数法在砂砾岩储层非均质性研究中的应用——以双河油田V下油组为例[J].地质科技情报,2007,26(6):83-87.
    105.何琰,殷军,吴念胜.储层非均质性描述的地质统计学方法[J].西南石油学院学报,2001,23(3):13-15.
    106.胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报(自然科学版),2001,25(1):107-112.
    107.冯国庆,陈军,李允,等.利用相控参数场方法模拟储层参数场分布[J].石油学报,2002,23(4):61-64.
    108.曹树春.储集层精细描述的新思路[J].地质科技情报,2001,21(1):39-43.
    109.尹太举,张昌民,李中超,等.濮城油田沙三中层序格架内储层非均质性研究[J].石油学报,2003,24(5):74-78.
    110.熊伟,石志良,高树生,等.碎屑岩储层流动单元模拟实验研究[J].石油学报, 2005,26(2):88-91.
    111.庞雄奇.地质过程定量模拟[M].北京:石油工业出版社,2003.
    112.李铁军,罗晓容.碎屑岩输导层内油气运聚非均一性的定量分析[J].地质科学,2001,36(4):402-413.
    113.孟元林,肖丽华,杨俊生,等.成岩演化数值模拟及其应用[J].地学前缘,2000,7(4):430.
    114.Weber K.J.,Kantorowicz J.D. and Williams H..Geological modelling of hydrocarbon reservoirs[J].Marine and Petroleum Geology , 1991 ,8(2):245-246.
    115.Dykstra H , Parsons R L.The prediction of oil recovery by waterflood[C].Second Recovery of Oil in the United States,1950:160-174.
    116.塔雷克,艾哈迈德.油藏工程手册[M].冉新权,何江川译.北京:石油工业出版社,2002.
    117.钟广法,邬宁芬.成岩岩相分析:一种全新的成岩非均质性研究方法[J].石油勘探与开发,1997,24(5):62-66.
    118.赵文光,蔡忠贤,韩中文.应用定量方法描述储层孔隙结构的非均质性[J].新疆石油天然气,2006,2(3):22-25.
    119.刘方成,秦德先,燕永锋,等.地质统计学及其在云南金宝山铂钯矿的应用[J].地质与资源,2005,14(4):293-296.
    120.单敬福,纪友亮,张海玲,等.大庆油田葡萄花油层组储层非均质性[J].地质调查与研究,2006,29(2):136-143.
    121.陈占坤,于兴河,李胜利.渤海湾盆地曙光油田曙266油藏沉积微相及储层的非均质性研究[J].地质力学学报,2006,12(1):91-95.
    122.晏宁平,张宗林,何亚宁,等.靖边气田马五1+2气藏储层非均质性评价[J].天然气工业,2007,27(5):102-103.
    123.陈克勇,张哨楠,胡永章,等.塔巴庙上古生界碎屑岩储层非均质性及控制因素[J].成都理工大学学报(自然科学版),2007,34(3):273-276.
    124.叶成林,张春生,万单夫.西峰油田董志区长81储层层内非均质特征[J].地质调查与研究,2008,31(2):147-153.
    125.杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002.
    126.王家禄,沈平平,田玉玲,等.应用微型探针测量油藏物理模拟饱和度变化[J].测井技术,2004,28(2):99-103.
    127.王永卓,董春晖,姜振学,等.围岩含油饱和度控制岩性油藏成藏的物理模拟[J].石油勘探与开发,2006,33(3):330-334
    128.Hindle A.D..Petroleum migration pathways and charge concentration:A three dimensional model Reply[J].AAPG Bulletin,1999,83:1020-1023.
    129.Bekele E.,Person M.,Marsily G..Petroleum migration pathways and charge concentration:A three dimensional model Disccussion[J].AAPG Bulletin,1999,83:1015-1019.
    130.解习农.莺歌海盆地底辟带热流体输导系统及其成因机制[J].中国科学(D辑),1999,29(3):247-256.
    131.Allen A.,Allen J. R..Basin Analysis:Principles and Applications[M]. London:Blackwell Scientific Publishing,1990.
    132.Bethke C.M.著,田世澄译.伊利诺斯盆地中石油的长距离运移[J].地质科技情报,1992,11(增刊):42-62.
    133.Walters R.F..Differential entrapment of oil and gas in Arbuckle dolomite of central Kansas.AAPG Bulletin,1958,42(9):2133-2173.
    134.杨子成,张金亮.东营凹陷南斜坡原油生物标志物特征和油源对比[J].中国海洋大学学报,2008,38(3):453-460.
    135.蒋有录,刘华,张乐,等.东营凹陷油气成藏期分析[J].石油与天然气地质,2003,24(3):215-218.
    136.姜福杰,庞雄奇,姜振学,等.东营凹陷沙三段源岩排烃特征及潜力评价[J].西南石油大学学报,2007,29(4):7-11.
    137.姜福杰,庞雄奇,姜振学,等.东营凹陷沙四上亚段烃源岩排烃特征及潜力评价[J].地质科技情报,2007,26(2):69-73.
    138.朱光有,金强,戴金星,等.东营凹陷油气成藏期次及其分布规律研究[J].石油与天然气地质,2004,25(2):209-215.
    139.孙永壮.东营凹陷南斜坡地层油藏成藏规律[J].油气地质与采收率,2006,13(4):52-54.
    140.郝芳,邹华耀,王敏芳,等.油气成藏机理研究进展和前沿研究领域[J].地质科技情报,2002,21(4):7-13.
    141.郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-21.
    142.Magoon L.B.,Dow W.G..The petroleum system-from source to trap[J].AAPG Memoir,1994,60:1-49.
    143.Cao Jian,Zhang Yijie,Hu Wenxuan,et al.The Permian hybrid petroleum system in the northwest margin of the Junggar Basin,northwest China[J].Marine and Petroleum Geology,2005,22(3):331-349.
    144.刘震,陈艳鹏,赵阳,等.陆相断陷盆地油气藏形成控制因素及分布规律概述[J].岩性油气藏,2007,19(2):121-127.
    145.李长宝.车镇凹陷不整合特征及地层油气藏形成模式[J].石油地质与工程,2007,21(5):16-19.
    146.卓勤功,隋风贵,银燕,等.济阳坳陷地层油气藏油气运移动力与方式探讨[J].油气地球物理,2006,4(4):36-40.
    147.向才富,冯志强,吴河勇,等.松辽盆地西部斜坡带油气运聚的动力因素探讨[J].沉积学报,2005,23(4):719-724.
    148.程荣,吴智平.埕岛地区输导体系发育特征[J].石油地质与工程,2008,22(1):15-17.
    149.郭元岭,张林晔,蒋有录,等.济阳坳陷地层油藏勘探实践分析[J].石油勘探与开发,2006,33(4):432-436.
    150.杜金虎,赵贤正,张以明,等.中国东部裂谷盆地地层岩性油气藏[M].北京:地质出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700