用户名: 密码: 验证码:
济阳坳陷第三系不整合结构与输导机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从济阳坳陷不整合取心井岩心精细观察入手,结合地震、测井、镜下观察、矿物成分和元素含量测试等手段,细致研究了济阳坳陷不整合结构地质特征及不整合输导机理。研究认为济阳坳陷第三系不整合可划分为三类:Ⅰ1型结构、Ⅰ2型结构和Ⅱ型结构,完整的不整合结构包括风化粘土层、半风化岩石、未风化岩石。风化岩石矿物成分上具有方解石、长石蚀变,粘土矿物、石英相对富集的特征,元素含量具有富Fe、Al、Mn、Ti,贫Ca、Mg的变化规律,风化粘土层蚀变富集程度略高;在此基础上建立了济阳坳陷不整合结构判识图版:Al-CN-K三角判识图版、Q-PL+CA-CL三角判识图版,并总结了化学风化指标在济阳坳陷不整合的适应性及界限值,判识图版和风化指标可以对不整合结构进行准确的判识。总结了济阳坳陷不整合发育主控因素(时间、岩性、古地貌、古气候、保存条件等),建立了不整合结构发育模式,并利用模糊综合评判方法建立了济阳坳陷第三系不整合结构模糊综合评判定量预测模型。通过对不整合输导要素研究,发现非碎屑岩不整合(碳酸盐岩、变质岩、岩浆岩)孔渗类型以裂缝、溶蚀孔洞为主,见方解石、泥岩、白云石等充填物,大都为Ⅰ-Ⅱ类储层,纵向上可分为:致密带(“硬壳”)、高渗带、低渗带、非储层带四个带,其中高渗带为不整合主要的储集层和输导层;碎屑岩不整合孔渗类型以原生孔隙、长石或方解石的溶孔为主,风化岩石渗透性得到一定程度的改善,渗透性改善程度主要受母岩岩性、泥岩隔层、不整合面埋深、不整合级别等控制。为了进一步阐明不整合的输导机理,对太平油田、高青油田等不整合油藏成藏过程进行了解剖,发现不整合既可以作为输导层也可以作为遮挡层,济阳坳陷存在三种不整合控藏模式:不整合侧向输导模式、不整合“天窗”式垂向输导模式、不整合遮挡模式;综合影响不整合输导能力的各项因素:油气运移动力、阻力、输导层本身特征等,建立了不整合输导能力量化表征公式:T=(-1)biΔP×K×H×L×ρ/μ,该式是一个评价不整合输导能力的综合评价指标,可以对含油气盆地中不整合输导性能进行定量评价。
Based on the seismic data, core data, logging data, microscopy, mineralogy content and element content test etc., the geological feature of unconformity structures and transportation mechanism of unconformity in Jiyang Depression were detailedly analyzed. It is considered that the Tertiary unconformity in Jiyang Depression can be divided into three types: typeⅠ1, typeⅠ2 and typeⅡ. Unconformity generally consists of weathered clay, semi-weathered rock and unweathered rock. The weathered rock is characteristic of Feldspar and calcite leached out, while quartz and clay minerals concentrated, and is rich in Fe, Al, Mn and Ti while lack of Ca, Mg in terms of the element content, especially in the weathered clay. So established the Al-CN-K triangle chart board and Q-PL+CA-CL triangle chart board to identify the unconformity structures. The applicability and the threshold value of the chemical weathering indices in Jiyang Depression were sudied. The development model and the main controlling factors (such as time, lithology, palaeogeomorphology, palaeoclimate, conservation) of unconformity were established. The forecasting model of unconformity structure in Jiyang Depression was erected using fuzzy comprehensive evaluation method. By the transportation element analysis of the unconformity,found that the reservoir space of non-clastical unconformity (carbonatite, metamorphics, magmatite) contains fractures and dissolved pores, and calcite ,mudstone, dolomite are found in cave filling, and mostly are typeⅠ-Ⅱreservoir. It can be divided into four zones vertically:Including tight zone(crust), high permeability zone, low permeability zone and non-reservoir zone, in which the high permeability zone is the main reservoir and transporting layer of the unconformity. The reservoir space of clastical unconformity is dominated by primary pore and the dissolved pores of feldspar or calcite. The permeability of the weathered rock is improved in certain degree, and the improvement degree is mainly controlled by lithology of mother rock, mudstone barrier, the buried depth of the unconformity and the unconformity level etc. In order to clarify the transportation mechanism of the unconformity, the aggregation process of the Taiping oilfield and Gaoqing oilfield are studied, it indicates that the unconformity can be taken as not only pathways for oil and gas migration, but also barrier for oil and gas accumulation. There are three kinds of pool-controlling models existed in Jiyang Depression: lateral migration pattern, clearstory-like vertical migration pattern and barrier pattern. According to the influencing factors: the features of the transporting layer, the dynamics and resistance for oil and gas migration,a quantitative formula of unconformity transportation capability is erected: T=(-1)biΔP×K×H×L×ρ/μ, it is a Comprehensive evaluation index, which can evaluate the transportation capability of the unconformity precisely.
引文
[1] Hutton J. Royal Society Edinburgh Transactional Investigation of the laws observable in composition, dissolution and restoration of land up on the globe [J]. Royal Society Edinburgh Transactional, 1988:109-304.
    [2] Bates R L and Jackson J A(eds). Glossary of geology. Falls Church [J]. Virg in ia: American Geological Institute, 1980:747.
    [3] Dunbar,C.O., John Rodgers,Principles of Stratigraphy[M].New York, John Wiley and Sons,1957:356.
    [4] L. F. Brown, William L. Fisher. Seismic stratigraphy interpretation and petroleum exploration[J].AAPG, 1980(16):181
    [5] James A. Beer, Richard W. Allmendinger, Daniel E. Figueroa. Seismic stratigraphy of a Neogene piggyback basin Argentina [J].AAPG Bulletin, 1990,74:1183-1202.
    [6]艾华国,兰林英,张克银等.塔里木盆地前石炭系顶面不整合特征及其控油作用[J].石油实验地质,1996,18(1):2-12.
    [7]吴亚军,张守安,艾华国.塔里木盆地不整合类型及其与油气藏的关系[J].新疆石油地质, 1998, 4(2):101-106.
    [8]蒋有录,査明.石油天然气地质与勘探[M].石油工业出版社,2006:130-290
    [9]徐果明,周蕙兰.地震学原理[M].北京.科学出版社,1982.
    [10]葛孟春,冯庆来等.初论变异性不整合-以滇西北中甸地区为例[J].地球科学-中国地质大学学报,1999,24(6):563-567.
    [11]张守安,吴亚军等.塔里木盆地不整合油气藏的成藏条件及分布规律[J].新疆石油地质,1999,20(2):15-18.
    [12]李景阳,朱立军.论碳酸盐岩现代风化壳与古风化壳[J].中国岩溶,2004,23(1): 56-62
    [13]张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发,1996,23(5):16-19.
    [14]隋风贵,赵乐强.济阳坳陷不整合结构类型及控藏作用[J].大地构造与成矿学, 2006,30(2):161-167.
    [15]张建林.地层不整合对油气运移和封堵的作用[J].油气地质与采收率,2004,12 (2):26-29.
    [16]付广,许则剑,韩冬玲,等.不整合面在油气藏形成中的作用[J].大庆石油学院学报,2001,25(1):1-4.
    [17]隋风贵,赵乐强,林会喜,等.济阳坳陷第三系地层油藏形成机制与组合模式[J].油气地质与采收率,2005,12(6):1-5.
    [18]吴孔友,查明,洪梅.准噶尔盆地不整合结构的地球物理响应及油气成藏意义[J],石油实验地质,2003,25(4):328-332.
    [19] Pavel Krasilnikov, Norma E. Garca’. A WRB-based buried paleosol classification[J]. Quaternary International, 2006 :176-188.
    [20] C.R.M. Butt,M.J. Lintern,R.R Anand. Evolution of regoliths and landscapes in deeply weathered terrain- implications for geochemical exploration[J]. Ore Geology Reviews, 2000, 16:167-183.
    [21] Moshood N. Tijani,Olugbenga A. . Abimbola. Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: A case study from SW Nigeria[J]. Journal of African Earth Sciences, 2006, 46:427-438.
    [22]朱立军,李景阳.碳酸盐岩风化成土作用及其环境效应[M].地质出版社, 2004:1-16.
    [23] Md. R. Islam, Rojstaczer Stuart. Mineralogical changes during intense chemical weathering of sedimentaryrocks in Bangladesh [J]. Journal of Asian Earth Sciences, 2002, 20:889-901.
    [24] W. Buytaert, J. Sevink, B. De Leeuw, J. Deckers. Clay mineralogy of the soils in the south Ecuadorian paramo region [J]. Geoderma, 2005, 127: 114-129.
    [25] Reinhard Zeese. Tertiary weathering profiles in central Nigeria as indicators paleoenvironmental conditions [J]. Geomorphology, 1996,16: 61-70.
    [26] Hailiang Dong. The study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile[J]. Geochimical Cosmochimica Acta, 1998, 62(11): 1881-1887.
    [27] Balz s. Kamber, Alan Greig, Kenneth D. Collerson. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1041-1058.
    [28] Alicia Kirschbaum, Estela Martanez. Weathering profiles in granites, Sierra Norte (Coardoba, Argentina) [J]. Journal of South American Earth Sciences, 2005, 19:479-493.
    [29] Yoko Nedachi, Munetomo Nedachi. Geochemistry and mineralogy of the 2.45 Ga Pronto paleosols, Ontario, Canada [J]. Chemical Geology, 2005, 214: 21-44.
    [30]张丽萍.三峡坝区花岗岩风化分带的化学风化特征指标研究[J].浙江大学学报(理学版),2003,30(4):471-476.
    [31]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001:6-15.
    [32]徐义芳,朱照宇,文启忠等.英峰岭剖面红土的粘土矿物和化学特征与成土环境关系[J].地球化学,1999,28(3):281-288.
    [33]郝立波,马力,赵海滨.岩石风化成土过程中元素均一化作用及机理:以大兴安岭北部火山岩区为例[J].地球化学,2007,33(2):131-138.
    [34] Elen Roaldset. Mineralogy and geochemistry of Quaternary clays in the Numedal area, [J]. NorwayNorsk Geologisk Tidsskrift, Supplement, 1972, 52(4):335-369
    [35] Neung-Hwan Oh. Elemental translocation and loss from three highly weathered soil- bedrock profiles in the southeastern United States [J]. Geoderma, 2005, 126:5-25.
    [36] Edier Aristiza bal,Barry Roser,Shuichiro Yokota. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburras Valley, northern Colombian Andes[J]. Engineering Geology, 2005, 81:389-406.
    [37] Yasuhiro Ohnuki,Ryuichi Terazono,Hitoshi Ikuzawa, et.al. Distribution of colluvia and saprolites and their physical properties in a zero-order basin in Okinawa, southwestern Japan [J]. Geoderma, 1997, 80: 75-93.
    [38] Judy Ehlen. Above the weathering front: contrasting approaches to the study and classification of weathered mantle [J]. Geomorphology, 2004, 67:7-21.
    [39] Timothy M. Demko, Brian S. Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA[J]. Sedimentary Geology, 2004, 167:115-135.
    [40] A. D'Alessandro,F. Massari,Eric. Pliocene-Pleistocene sequences bounded by subaerial unconformities within foramol ramp calcarenites and mixed deposits (Salento, SE Italy) [J]. Sedimentary Geology, 2004, 166:89-144.
    [41] Raymond E. Smith, R.R. Anand, N.F. Alley. Use and implications of paleoweathering surfaces in mineral exploration in Australia[J]. Ore Geology Reviews, 2000, 16:185-204.
    [42] Raymond E. Smith. Regolith research in support of mineral exploration in Australia [J].Journal of Geochemical Exploration, 1996, 57:159-173.
    [43]廖士范.论铝土矿床成因及矿床类型.华北地质矿产杂志,1994,9(2):153-160
    [44]牟中海,何琰,唐勇等.准噶尔盆地陆西地区不整合与油气成藏的关系[J].石油学报,2005,16(3):16-20.
    [45]洪金益.红土型铝土矿的矿化时间研究[J].有色金属矿产与勘查,1994, 3(3):141-145.
    [46]戴晓彬.菲律宾西萨马省铝土矿基本地质特征及成矿机理初探[J].矿产与地质,2005, 19(110):394-397.
    [47]陈云.元谋盆地的第四纪红土.海洋地质与第四纪地质,1994,14(1):75-86
    [48] Torsten Schwarz. Distribution and genesis of bauxite on the Mambilla Plateau, SE Nigeria[J]. Applied Geochemistry, 1997, 12:119-131.
    [49]毕先梅,程守田,董茹丽.内蒙古东胜地区高岭土矿床的岩石矿物学研究[J].现代地质,2000,45-50
    [50]胡宝林.两淮煤田山西组顶部高岭石泥岩特征及其成因[J].安徽地质,1996, 6(1): 47-51
    [51]向伟东,方锡珩,李田港等.鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式[J].铀矿地质,2006,22(5):257-266
    [52]潘钟祥.不整合对油气运移聚集的重要性[J].石油学报,1983;4(4):1-10
    [53]张克银,杨克明,艾华国等.塔里木盆地T50面对油气运移作用的探讨[J].新疆石油地质,1996,17(3):225-230
    [54]吴亚军,张守安,艾华国.塔里木盆地不整合类型及其与油气藏的关系[J].新疆石油地质,1998,19(2):101-105
    [55]张年富,曹耀华,况军.淮噶尔盆地腹部石炭系火山岩风化壳模式[J].新疆石油地质,1996,19(6):450-452
    [56]陈中红,查明,朱筱敏.准噶尔盆地陆梁隆起不整合面与油气运聚关系[J].古地理学报,2003,5(1):120-126
    [57]汤良杰,金之钧,庞雄奇.多期叠合盆地油气运聚模式[J].石油大学学报(自然科学版),2000,24(4):67-70
    [58]翟光明.中国石油地质志-胜利油田[M].石油工业出版社,1993:3-200
    [59]胡瑞林,岳中琦,王立朝等.斜长石溶蚀度:一种评价花岗质岩石风化度的新指标[J].地质论评,2005,56(6):649-655
    [60] H.W. Nesbitt, Grant M. Young. Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5):715-717
    [61] Parker A. An index of weathering for silicate rocks [J]. Geological Magazine, 1970, 107:501-504
    [62] M. Fedo, H. Wayne Nesbitt, Grant M. Young. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23: 921-924
    [63] Bryan P. Ruxton. Measures of the degree of chemical weathering of rocks [J]. Journal of Geology, 1968, 76(5):518-527
    [64] Luc Harnois. The CIW index; a new chemical index of weathering [J]. Sedimentary Geology, 1988, 55(3-4):319-322
    [65] U. de S. Jayawardena and Eiji Izawa, A new chemical index of weathering for metamorphic silicate rocks in tropical regions; a study from Sri Lanka [J]. Engineering Geology, 1994, 36(3-4):303-310
    [66]周瑶琪,吴智平.地层间断面的时间结构研究[M].北京:地质出版社,2000:3-27.
    [67]史德明.红壤地区土壤侵蚀及防治.中国红壤[M].科学出版社, 1983: 237-253.
    [68]李守军,王明镇,等.山东济阳坳陷古近纪的气候恢复[J].山东科技大学学报(自然科学版),2003, 22(3):6-9.
    [69]王秉海,钱凯.胜利油区地质研究与勘探实践[M].东营:石油大学出版社,1992:
    [70]陈水利,李敬功,等.模糊集理论及其应用[M].北京:科学出版社,2005:187-234.
    [71]王杰堂.测井油水层识别模糊综合评判方法.测井技术,2006,30(2):137-138.
    [72]余克林,杨永生.模糊综合评判在判别矿井突水水源中的应用[J].金属矿山, 2007, 369(3):47-50.
    [73]许多年,王伟锋.模糊综合评判技术在乌夏地区圈闭评价中的应用[J].新疆石油天然气,2006,2(4):7-11.
    [74]王猛,题正义.模糊综合评判在深部煤层稳定性评价中的应用[J].矿业安全与环保, 2006, 33(5):48-50.
    [75]禹峰,吴礼年.岩石风化程度的模糊综合评判[J].岩土工程勘测, 2005, 4(2):24-26.
    [76]欧阳明光,张云涛.一种基于模糊综合评判的网络入侵特征描述矩阵[J].计算机工程, 2003,29(5):6-8.
    [77]王东晔,查明.运用模糊综合评判方法定量研究断层封闭性[J].断块油气田, 2006, 13(4):5-7.
    [78]刘传虎.潜山油气藏概率[M].石油工业出版社,2006,12:33-120
    [79]孟祥豪.鄂北塔巴庙地区奥陶系风化壳结构特征与储层评价[D].成都:成都理工大学, 2006:35-130
    [80]黄成刚.桩西、埕岛地区下古生界古潜山储层地球化学特征及形成机制[D].成都:成都理工大学,2006:20-100
    [81]王秉海,钱凯.胜利油区地质研究与勘探实践[M].石油大学出版社, 1992,181-187.
    [82]王永诗,石砥石.济阳坳陷新近系地层油藏特征—以太平油田为例[J].油气地质与采收率,2006,13(1):44-46
    [83]刘显凤,吴楠.浅述油气运移示踪研究的方法[J].小型油气藏,2007,12(2):1-5
    [84]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社, 1993
    [85]刘德汉.包裹体研究—盆地流体追踪的有利工具[J].地学前缘,1995,2(4): 149-154
    [86]陈建平,查明,周瑶琪.有机包裹体在油气运移研究中的应用综述[J].地质科技情报, 2000,19(1): 61-64.
    [87]陈红汉,龚再生,John Parnell.碎屑石英颗粒继承性裂纹和空隙胶结物中同生流体包裹体--获取古环境温度和盐度又一新途径[J].天然气工业,2002,22(1): 9-16
    [88]陈红汉,李纯泉,张希明等.运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J].地学前缘, 2003, 10(1): 190
    [89]刘斌,沈昆.包裹体流体势图在油气运聚研究方面的应用[J].地质科技情报, 1998, 17(增刊): 81-86
    [90]欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报, 2006, 25(1): 1-8 [91邱楠生,金之钧,胡文喧.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报(自然科学版), 2000, 24(4): 95~97
    [92] Goldstein R H. Fluid inclusions in sedimentary diagenetic systems [J]. Lithos, 2001, 55: 159~193
    [93] Munz I A. Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications [J]. Lithos, 2001, 55: 195-212
    [94] Burruss R C. Pratical aspects of fluoresence microscopy of petroleum fluid inclusions [J].SEPM Short Course, 1991, 25(1): 1-7
    [95]李明诚.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004:1-150
    [96]刘华,蒋有录,蔡东梅等.东营凹陷下第三系原油物性及其影响因素.油气地质与采收率,2006,13(3):4-7
    [97]李丕龙,金之钧,张善文等.济阳坳陷油气勘探现状及主要研究进展[J].石油勘探与开发.2003.30(3):1-4
    [98]李丕龙,张善文等.济阳成熟探区非构造油气藏深化勘探[J].石油学报,2003, 24(5): 10-15.
    [99]李丕龙,庞雄奇.隐蔽油气藏形成机理与勘探实践[M].北京:石油工业出版社, 2004: 1-100
    [100]李丕龙,张善文等.陆相断陷盆地油气地质与勘探[M].北京:石油工业出版社,2003: 10-150
    [101]李丕龙,张善文等.断陷盆地隐蔽油气藏形成机制-以渤海湾盆地济阳坳陷为例[J].石油实验地质,26(1):3-10.
    [102]潘元林,张善文等.济阳断陷盆地隐蔽油气藏勘探[M].石油工业出版社, 2003:20-150
    [103]蒋有录,荣启宏.高青地区油气成藏模式与富集特征[J].石油实验地质,1998, 20(1): 35-38.
    [104]谭丽娟,蒋有录,苏成义等.东营凹陷博兴地区烃源岩和油源特征[J].石油大学学报(自然科学版),2006,26(5):1-4
    [105]蒋有录.高青地区油气藏类型和分布特征[J]石油大学学报(自然科学版) , 1998, 22(4):30-34
    [106]秦国昌.高青油田青城凸起地层油藏综合研究[D].西安:西安科技大学, 2007:10-45
    [107]徐亮.高青断裂带多藏共存机制研究[D].成都:成都理工大学,2007:15-100
    [108]刘建磊.高青油田储层及沉积相研究[D].西安:西安科技大学,2007:3-40
    [109]郑朝阳,段毅,吴保祥等.塔里木盆地塔河油田原油中生物标志化合物成熟度指标特征与石油运移[J].沉积学报,2007,25(3):482-486
    [110] Schowalter T. Mechanics of secondary hydrocarbon migration and entrapment [J]. AAPG Bulletin, 1979, 63(5):723-760
    [111] Thomas M, Clouse J A. Scaled physical model of secondary oil migration [J]. AAPG Bulletin, 1995, 79:19-29
    [112] Hindle A D. Petroleum migration pathways and charge concentration: a tree- dimensional model [J]. AAPG Bulletin, 1997, 81:1451-1481
    [113] Hubbert M K.Entrapment of petroleum under hydrodynamic conditions [J]. AAPG Bulletin, 1953, 37:1954-2026
    [114] Rhea L, Person M, Marsily G D et al. Geostatistical models of secondary oil migration within heterogeneous carrier beds: a theoretical example [J]. AAPG Bulletin, 1994, 78:1679-1691
    [115] Gussow W C. Differential entrapment of oil and gas: a fundamental principle [J]. AAPG Bulletin, 1954, 38:816-853
    [116] England D A, et al. The movement entrapment of petroleum fluid in the subsurface [J]. Journal of Geological Society, London, 1987, 114:327-347
    [117]刘兴刚,张旭.测井裂缝参数估算方法研究[J],天然气工业,2003, 23(4):31-34
    [118]闫晓芳,陈景阳,龚晶晶.碳酸盐岩储层裂缝参数和发育程度的确定方法[J].海洋石油,2006,26(3):31-34
    [119]万军.勘探早期天然气运移输导能力综合评价—以绥滨坳陷城子河组为例[J].大庆石油地质与开发,2008,27(2):4-8
    [120]张立宽,王震亮,曲志浩等.砂岩输导层内天然气运移速率影响因素的实验研究[J].天然气地球科学,2007,18(3):342-346
    [121]孙永河,吕延防,付广.断裂输导体系输导天然气效率评价方法及其应用[J].天然气地球科学,2006,17(1):73-77
    [122]付广,孙永河,吕延防.库车坳陷北带断裂输导天然气效率评价[J].大庆石油地质与开发,2007,26(1):26-31
    [123]李铁军,罗晓容.碎屑岩输导层内油气运聚非均一性的定量分析[J].地质科学,2001, 36(4):402-413
    [124]付广,孙永河,吕延防等.西斜坡区萨二、三油层砂体输导层输导天然气效率评价[J].沉积学报,2006,24(5):763-768

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700