用户名: 密码: 验证码:
高邮凹陷高频层序研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文立足于高邮凹陷勘探实践,运用层序地层学理论对研究区进行低频层序地层划分;在层序格架范围内对沉积体系和沉积相进行了研究;重点对戴南组地层进行了高频层序研究;并论述了高频层序的识别方法、控制因素;最后提出了三角洲相高频层序地层定量划分的方法。
     运用经典层序地层学理论,综合岩芯、测井和地震等资料,建立了高邮凹陷上白垩统—新近系的层序地层框架,划分出相对盆地而言的2个一级层序、4个二级层序、11个三级层序。
     在等时层序地层格架内,研究了各层序的沉积相展布及演化规律,提出了本区的沉积相模式。研究区在层序SQ5、SQ6和SQ7 (戴南组)沉积期主要发育三角洲沉积体系,SQ8 (三垛组)沉积期发育河流相沉积体系。
     重点对戴南组地层进行了高频旋回层序研究,应用Fischer图解、测井曲线频谱分析和小波分析等方法对高频旋回进行了识别。研究认为Fischer图解并不适用于陆相碎屑岩地层的高频旋回识别;对处于构造平稳期的以三角洲前缘沉积为主的地层,测井曲线频谱分析和小波分析能有效识别其中的高频旋回。
     对测井曲线频谱分析结果表明地层中很好的保存了米兰科维奇旋回,偏心率长周期控制的地层旋回厚度约100m;偏心率短周期控制的地层旋回厚度约25m;岁差周期控制的地层旋回厚度约5m,由此计算本区的沉积速率为25cm/kyr。
     在层序划分过程中,应用小波振幅谱和复小波相位谱,确定了适用于戴南组地层的Morlet小波尺度与高频旋回层序级别的对应关系: 800尺度小波系数曲线对应四级层序;200尺度小波系数曲线对应五级层序;40尺度小波系数曲线对应六级层序。
     分析了高频层序的主控因素,认为高频层序受控于米兰科维奇天文周期。确定了高频层序划分方案。
Based on the exploration on Gaoyou Sag, directed by the principles of sequence stratigraphy, and within the framework of sequence stratigraphy, the paper took study of sedimentary system and facies, and especially study of high-frequency sequence stratigraphy on Dainan Formation. At the same time, the paper found controlling factors and the discriminating method on high-frequency sequence stratigraphy, and finally developed a quantitative method to discriminating high-frequency sequences of delta.
     Directed by the principles of classical sequence stratigraphy, combined with core, well logging and seismic data, etc., the sequence framework from Eogene to upper Crataceous in Gaoyou Sag was set up and divided into 2 primary sequences, 4 secondary sequences and 11 tertiary sequences for the basin.
     Within the equal-time sequence framework, distribution of sedimentary facies and their evolution rule were analyzed, and the sedimentary mode was proposed. Delta deposit system was mainly developed in Sequence 5, Sequence 6, and Sequence 7 (such as Dainan Formation), and fluvial deposit system was mainly developed in Sequence 8 (such as Formation Sanduo).
     It was mainly done on the study of high-frequency cycle sequence in Dainan Formation. Applying the method of Fischer Graphy, spectrum analysis of the log, wavelet analysis to discriminate high-frequency cycle, the study showed that the Fischer graphy was not applicable to high-frequency cycle discrimination of continental clastic rock, but as the main layer of the delta front sedimentary during the stable period of structure, the log spectrum analysis and wavelet analysis could efficiently discriminate high-frequency cycle in it.
     The result of the log spectrum analysis indicated Milankovitch cycle was well kept in stratum, and the thickness of the formation cycle long-period controlled by eccentricity was about 100m, and the thickness of the formation cycle short-period controlled by eccentricity was about 25m and the thickness of the formation cycle controlled by precession was only about 5m, consequently, deposition rate in study area was 25cm/ka.
     Through the application of wavelet amplitude spectrum and phase spectrum of multiple wavelet in sequence division, the paper confirmed the correspondence relationship between Morlet wavelet dimension and high-frequency sequence cycle level——800-scale wavelet coefficients corresponding period of the medium-term cycle, 200-scale wavelet coefficients corresponding period of the short-term cycle, 40-scale wavelet coefficients corresponding period of the ultra-term cycle.
     The paper analysed the master factor of high-frequency cycle, and it was thought that high-frequency sequence cycle was controlled by Milankovitch cycle, thus the division method was confirmed.
引文
[1] Haq B V, Hardenbol J, Vail P L. Chronology of fluctuating sea level since the Triassic[J]. Science, 235: 1156~1167.
    [2] Aitken J F, Flint S S. The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the Upper Carboniferous Breathitt Group[J], eastem Kentuck USA. Sedimentology, 1995, 42 (1): 3~30.
    [3] Currie B S. Sequence stratigrphy of nonmarine Jurassic Cretaceous rocks, centra Cordilenan foreland basin system[J]. GSA Bull, 1997, 109 (6): 1206~1222.
    [4]邓宏文,王洪亮,翟爱军,徐长贵.中国陆源碎屑盆地层序地层与储层展布[J].石油与天然气地质,1999,20(2):108~114.
    [5]郑荣才、彭军.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报,2002,20(1):92~100.
    [6]朱筱敏,王贵文,马立驰,张巨星,孙月平.内蒙古东部陆西凹陷中北部上侏罗统层序地层格架及体系域特征分布[J].古地理学报,2002,4(3):33~39.
    [7] Sloss L L, Sequence in the cratonic interior of North America, Geol Soc Am Bull, 74: 93~114.
    [8] Vail P R, Mitchum R M Jr, Thompson III S. Seismic Stratigraphy and global changes of sea level, Part 3: relative changes of sea level from coastal onlap. In: Payton C E, ed. Seismic Stratigraphy Application to Hydroncarbon Exploration. AAPG Mem, 1977a., 26:63~82.
    [9] Payton C E, ed. Seismic Stratigraphy Application to Hydrocarbon Exploration[J]. AAPG, Mem 1977, 26: 1~516.
    [10] Posamentier H W, Jervey M T, Vail P R. Eustatic controls on classic deposition. I-Sequence and systems tract models. In: Wilgus C K, Hastings B S, Kendall C G St C, et al . eds. Sea Level Changes: An Intergrated Approach. SEPM Spec Publ, 1988, 42: 109~124.
    [11] Galloway W E. Genetic stratigraphic sequence in basin analysis I: architecture and genesis of flooding-surface bounded depositional units [J]. AAPG, 1989, 73:125~142.
    [12] Van Wagoner J C Mitchum R M, Campionquence stratigraphy in well logs, cores, and outcrops concepte for high- resolution correlation of time and facies. AAPG, Methods in Ex-ploration, 1990,(7): 1~55.
    [13] Vail P.R. Seismic stratigraphy interpretation using sequence stratigrapy. Part 1: Seismic stratigraphy interpretation procedure [A]. In: Bally A.W. ed. Atlas of Seismic stratigraphy. AAPG Stud in Geol, 1987, 27: 1~10.
    [14] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[C]. In: Proceedings of Northwestern European Sequence Stratigraphy Congress, 1994,105~123.
    [15] Galloway W E. Genetic stratigraphic sequence in basin analysis I: architecture and genesis of flooding-surface bounded depositional units [J]. AAPG, 1989, 73:125~142
    [16] Johnson J G, Klapper G, Sandberg C A.. Devonian eustatic fluctuation in Eurameria [J]. Geological Socitery of America Bulletin, 1985, 96: 567~587.
    [17]薛良清.层序地层学在湖相盆地中的应用探讨[J].石油勘探与开发,1990,17(6):29~34.
    [18] Shanley K W and McCabe P J. Perspectives on the sequence stratigrphy of continental strata[J]. AAPG Bull, 1994, 78: 544~568.
    [19] Olsen P E Kent DV. H igh- resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Bulletin of the Geological Society of America, 1996,108(1 ) : 40~77.
    [20]李思田.含煤盆地层序地层分析的几个问题[J].煤田地质与勘探,1993,21(4):18~25.
    [21]魏魁生,徐怀大,雷怀玉等.非海相层序地层学——以松辽盆地为例[M].北京:地质出版社,1993.
    [22]解习农,李思田.陆相盆地层序地层研究特点[J].地质科技情报,1993,12(1):83~89.
    [23]王东坡,刘立.大陆裂谷盆地层序地层学研究[J].岩相古地理,1994,14(3):1~9.
    [24]刘招君,汪筱林等.满洲里—绥芬河地学断面域松辽—海拉尔中生代盆地形成机制.见M—SGT地质课题组编:中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究[M].北京:地震出版社,1994,14~25.
    [25]顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6~10.
    [26]纪友亮,张世奇.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996.
    [27]姜在兴,李华启等.层序地层学原理及应用. [M].北京:石油工业出版社,1996.
    [28]郑荣才.四川盆地下侏罗统大安寨段高分辨率层序地层学[J].沉积学报,1998,16(2):42~49.
    [29]郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义.沉积学报,2001, 9(2): 249~254.
    [30] Anderson E .J Goodwin P W. The significance of meter~scale allocycles in the quest for a fundamental stratigraphic unit Journal of Geology, 1990,7:507~518.
    [31]梅冥相,徐德斌,周洪瑞.米级旋回层序的成因类型及其相序组构特征.沉积学报,2000,8( 1): 43~48.
    [32]王鸿祯,史晓颖.沉积层序及海平面旋回的分类级别.现代地质,1998,2( 1):1~16.
    [33]刘立,薛林福.旋回地层学的基本原理与研究方法.世界地质,1994,3(3): 86~90.
    [34] Berger A Milankovitch theory and climate. Reviews of Geophysics ,1988,6,625~ 657.
    [35] Balog A, Haas .J Read J F, etal Shallow marine rcords of orbitally forced cyclicity in a late Triassic carbonate platform, Hungary Journal of Sedimentary Research, 1997, 67(4): 661~675.
    [36] Fischer A O, Bottjer D J Orbital forcing and sedimentary sequence. Journal of Sedimentary Petrology 1991, 1(7):1063~1069.
    [37] Berger A, Loutre M F, Laskar J Stability of the astronomy ical frequencies over the earth' s history for pale climate studies Science,1992,255 ,560~565.
    [38] Fischer A G Orbital cyclicity in Mesozoic strata Einsele G, Ricken W, SeilacherA, eds. Cycles and Events in Stratigraphy, 1991. 48~62.
    [39] Crzitsch Cycle staking and long-temp sea level history in the lower Cretaceous. Joumal of Sedimentary Research, 1996,64 (4):723~736.
    [40]金之钧,范国章,刘国臣.一种地层精细定年的新方法.地球科学,1999,24(4): 379~381.
    [41]吕炳全,王红罡,赵会民等. 2002,主频计算法对测井曲线沉积旋回的精细分析.海洋地质动态2002,18(4):27~30.
    [42]李凤杰,王多云,郑希民等.测井曲线频谱分析在含煤地层沉积旋回研究中的应用.煤田地质与勘探2003,6(31):14~18.
    [43]张国仁,王国祯,曲洪祥等.辽宁省复州西南部张夏组上段高频率旋回地层及复合海平面变化.中国区域地质1997.3(16):321~328.
    [44] Olsen P E, KentD V. High-resolution stratigraphy of theNewark rift basin (early Mesozoic, eastern NorthAmerica ). Bulletin of the Geological Society of America, 1996, 108 (1): 40~ 77.
    [45] Burn B A, Heller P L, MarzoM,et al. Fluvial response in a sequence stratigraphic framework: Example from theMontserrat delta, Spain. Journal of Sedimentary Research, 1997, 67 (2): 311 ~320.
    [46] Williams D F, Peck J, Karabanov A A, etal. Lake Baikal record of continental climate response to orbital isolation during the past 5million years. Science, 1997, 278: 1114 ~1117.
    [47] Fischer A G, Bottjier D J. Orbital forcing and sedimentary sequences[J],Journal of sedimentary Petrology, 1991, 61(7):1063~1069.
    [48]李玉成,王苏民.气候环境变化的湖泊沉积学响应.地球科学进展,1999,14(4):412~415.
    [48]林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架.现代地质,2002,16(3):276-281
    [49]林畅松,张燕梅,刘景彦,等.高精度层序地层学和储层预测.地学前缘,2000,7(3):111~117.
    [50]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学.石油与天然气地质,1995 16(2):89~96.
    [51]王鸿祯,史晓颖,王训练等.中国层序地层研究[M].广东科技出版社,2000,1~30.
    [52]罗立民.河湖沉积体系三维高分辨率层序地层学[M].北京:地质出版社,1999,16~41.
    [53] Dalrymple R W, Zaitlin B A. High-resolution sequence stratigraphy of a complex, incised valley succession, Cobequid Bay-Salmon River Estuary, Bay of Fundy, Canada. Sedimentology, 1995, 41(6): 1069~1091.
    [54] Aitken J F, Howell J A. High resolution sequence stratigraphy: innovations, applications and future prospects. Geological Society Special Publication, 1996, 104:1~9.
    [55]陈刚强,王伟锋,万钧.民丰洼陷断层活动性及其对层序的控制作用[J].新疆石油地质,2007,28(4):480~482.
    [56]朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,21(2):2003,281~287.
    [57]岳文浙等.陆盆层序地层研究的思路[J].地质论评,2000,46(4):347~354.
    [58]张希明.塔里木盆地北部陆相层序地层特征[J].石油勘探与开发,1996,23(5).
    [59]魏魁生,徐怀大,雷怀玉等.非海相层序地层学——以松辽盆地为例[M].北京:地质出版社,1993.
    [60]冯友良,李思田.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,2000,7(3):119~131.
    [61]操应长,姜在兴,夏斌,等.利用测井资料识别层序地层界面的几种方法[J].石油大学学报(自然科学版), 2003,27(2):23~26.
    [62]操应长,姜在兴,王留奇,等.陆相断陷湖盆层序地层单元的划分及界而识别标志[J].石油大学学报(自然科学版) ,1996,20(4):1~5.
    [63]董清水,崔宝琛,李想,等.陆相层序地层划分及岩芯测井高分辨率层序界面判别.石油实验地质,1997,19(2):121~126.
    [64]邓宏文,王洪亮,等.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177~183.
    [65]邓宏文、王红亮、李小孟.高分辨率层序地层对比在河流相中的应用[J].石油与天然气地质,1997,18(2):90~95.
    [66]郑荣才、尹世民、彭军.基准面旋回结构与叠加式样的沉积动力学分析[J].沉积学报,2000.
    [67]李思田,程守田,杨士恭等.鄂尔多斯盆地东北部层序地层及沉积体系分析[M].北京:地质出版社,1992,1~194.
    [68]马正,应用自然电位测井曲线解释沉积环境,1982,石油与天然气地质(3): 1,25-39.
    [69]贾振远,蔡忠贤.层序与旋回.地球科学—中国地质大学学报,1997, 22 (5): 449~455.
    [70] Fischer A G, Bottjer D J . Orbital forcing and edimentary sequence. Jour Sediment Petrol , 1991 , 61(7) : 1 063~1 069 .
    [71] Berger A L. Long - term variations of caloric insolation resulting from the earth’s orbital elements. Quat Res , 1978 ,9 : 139~167 .
    [72] Comclhammer R K et al. Deposition cycles, composite sea level changes, cycle slacking patterns, and the hierarchy of slraligraphic forcing: examples from Alpine Triassic platform carbonates. Geological Society of America Bulletin,1990, 5(102):535~562.
    [73] Cooclwin P W,Anderson E J. Punctuated aggradational cycles: a general hypothesis of episodic stratigraphic accumulation. Journal of Geo1ogy, 1985, 5(93):515~553.
    [74] Anderson E J, Goodwin P W. The significance of meter-scale allo-cyces in the quest for a fundamental stratigraphic unit[ J].Journal of Geology, 1990, 147: 507~518.
    [75]Einsele G, Seilacher A. Cyclic and Event stratification [M]. pringer-Verlag,1982. 1~306.
    [76] Osleger D A. Subtidal carbonate cycles: Implications for allocyclic Versus antocyclic controlls[ J].Geology, 1991, 19:917~920.
    [77]刘志飞,胡修棉.白垩纪至早三纪的极端气候事件.地球科学进展,2003,18(5):681~688.
    [78]李凤杰,王多云程微.应用自然伽玛曲线反演陇东地区延安组沉积旋回.成都理工大学学报(自然科学版),2004,31(5):473~477.
    [79]胡受权,郭文平.断陷湖盆陆相层序中高频层序的米氏旋回成因探讨.中山大学学报(自然科学版),2002,41(6):91~94.
    [80]胡春燕,刘立.高频湖相沉积节律研究的新进展.世界地质,1998,17(2):14~18.
    [81] Schwarzacher W.Cyclostratigraphy and the Milankovitch theory. Elservier,1993
    [82] Fischer A G, Bottjer D J. Orbital forcing and sedimentary sequences. Journal of Sedimentary Petrology, 1991, 6(7): 1063~1069.
    [83] Bradley W H. The varves and climate of the Green River Epoch. U S Geol. Surv. Prof. Pap. 1929,(158-E):87~110.
    [84] Glenn C R, Kelts K. Sedimentary rhythms in lake deposits. In: Einsele, etal, eds. Cycle sandevents in stratigraphy. Springer-Verlag Berlin Heidelberg, 1991. 189~221.
    [85] Anadon P, CabreraL, ulicR. Anoxic-oxic cyclical lacustrine sedimentation in the Miocene Rubielos de Mora Basin, Spain. In: Fleet Aj, Kelte K, Talbot MR, eds. Lacustrine petroleum source rocks. Geol. Soc. London Spec Publ. 1988, 40: 353~367.
    [86] Mitchell J M Jr, Stockton C W, Meko D M. Evidence of a 22 year rhythm of drought in the solar cycle Since the 17 thcentury. In: Mc Cormac B M, Seliga T A, eds, Solarterrestrial influences on weather and climate. Reidl, Dordrecht, 1988.125~144.
    [87]胡受权,郭文平等.泌阳断陷下第三系核三上段高频层序中米兰科维奇天文旋回信息.矿物岩石. 2000 20(3):29~34.
    [88] Bum B A, Heller P L, Marzo M, et al Fluvial response in a sequence stratigraphic framework Example from the Montserrat delta, Spain Journal of Sedimentary Research, 1997,67(2): 311~320.
    [89] Williams D F, Peck J, Karahanov A A, et al Lake Baikal record of continental climate response to orbital isolation during the past 5million yearsScience, 1997, 278:1114~1117.
    [90] Allen P. A, Allen J R. Basin analysis: principle and application[M]. Oxford: Black-well Scientific Publications, 1990,141~188.
    [91] Maill A D. Principles of sedimentary basin anslysis[M]. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag.1990.
    [92] Vail P R, Audemard F, Bowman S A, et al. The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview. In: Einsele G, Ricken W, eds. Cycles and events in stratigraphy. Berlin, Heidelberg: Springer-Verlag, 1991, 617~659.
    [93] Goldhammer R K, Lehmann P J, Dunn P A.. The Origin of High-frequency platform carbonate cycles and third-order sequences (Lower Ordovician EL PASO GP. West Texas): constraints from outcrop date and stratigraphic modeling [J]. Journal of Sedimentational Petrology, 1993, 63(3): 318~359.
    [94] Wang H Z, Shi X Y. A scheme of the hierarchy for sequence stratigraphy [J]. Joural of China University of Geoscience, 1996, 7(1): 1~12.
    [95]Brett C E, Goodman W M, Loduca S T. Sequences, cycles, and basin dynamics in the silurian of the appalachian foreland basin[J]. Geology Sedimentary, 1990,69 (3-4): 191~244.
    [96] Cooper M R. Tectonic cycles in southern Africa[J]. Earth Science Review, 1990, 28 (4): 321~364.
    [97]王立峰.冀中中奥陶统高频率旋回层序的基本特征[J].岩相古地理,1994,14(6):49~58.
    [98] Vail P R, Mitchum R P J r, Thompson SⅢ. Seismic Stratigraphy and global change of sea level. AAPG, 1977, 26: 63~82.
    [99] Sloss L L. Sequences in the cratonic interior of North America. Geol Soc Am Bull, 1963, 74:43~114.
    [100] Allen P A, Allen J R. Basin analysis: principles and application. Oxford: Black~Well Scientific Publications, 1990. 141~188.
    [101] Miall A D. Principles of sedimentary basin analysis. New York, Berlin, Heidelberg, Tokyo: Springer~Verlag ,1990.
    [102] Goldhammer R K, Lehmann P J, Dunn P A. The Origin of high-frequency platform carbonate cycles and third-order sequences (Lower Ordovician EL PASO GP. West Texas): constraints from outcrop date and stratigraphic modeling. Journal of Sedimentational Petrology, 1993 , 63 (3) : 318~359.
    [103] Mitchum R M, Van Wagoner J C. High frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high frequency eustatic cycles. Sediment Geol, 1981, 70: 131~160.
    [104] Haq B V, Hardenbol J, Vail P L. Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. In: Wilgus C K, Hastings B S, Posamentir M, et al, eds. Sea-level change: an integrated approach. SEPM Spec Pub, 1988, 42: 71~108.
    [105] Vail P R, Audemard F, Bowman S A, et al. The stratigraphic signatures of tectonics, eustasy and sedimentology an overview. In: Einsele G, Ricken W, Seilacher A , eds. Cycles and events in stratigraphy. Berlin, Heidelberg: Springer~Verlag, 1991. 617~659.
    [106]赵玉光,许效松,刘宝.上扬子台地西缘峨嵋地区三叠纪高频层序与海平面振荡研究.岩相古地理,1996, 16(1) :1~18.
    [107] Ross J R P, Ross C A. Ordovician sea-level fluctuations. In : Webby B D, Laurie, J R, eds. Global perspectives on Ordovician geology. Rotterdam: Balkema, 1992. 327~355.
    [108]苏德辰,李庆谋等. Fischer图解及其在旋回层序研究中的应用—以北京山张夏组为例.现代地质,1995,9(3):279~282.
    [109]梅冥相,马永生等.雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化中的应用.地球学报,2001,22(5):429~436.
    [110]胡受权,陈国能等. Fischer图解及其沉积响应的计算机模拟—以泌阳断陷下第三系核三上段为例.石油与天然气地质,1999,20(1):70~74.
    [111] Goldharamer R K, Duma P A, Hardie L A, Highfrequency glacio-eustatic sea-level oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in Northern Italy. American Journal of Science.1987, 287 :853~892.
    [112] Read J F, Goldhammer R K. Use of Fischer plots to define third-order sevelcurves in Ordovician perital cyclic carbonates, Appalachians. Geology,1988, l6: 895~899.
    [113] Koerschner W W, Read J F. Field and modetiag studies of Cambrian carbonate cycles, Virginia Appalachians. Journal of Sedimentary Petrology, 1989, 59: 684~ 687.
    [114] Osleger D A, Read J F. Relation of eustasy to stackiag patterns of meter-scale carbonate cycles. Late Cambrian, U S A. Journal of Sedimentary Petrology.1991,61: 1225~1252.
    [115] Montanez I P, Read J F. Eustatic control on early dolomitization of cyclic peritidal carbonates; evidence from the early Ordovician Upper Knox Group, Appalachians Geological Society of America Bulletin, 1992,104:872~886.
    [116] Sadler PM, Osleger D A, Montanez I P. On the labeling, and objective basis of Fischer plots. Journal of Sedimentary Petrology, 1998, 68: 360~368.
    [117] Read J F, Gotdkammer R K. Use of Fischer plots to define third-order sea-level curves in Ordovician perital cyclic carbonates. Applications Geology, 1988, l6: 895~899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700