用户名: 密码: 验证码:
新型立式储罐结构体系地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立式储罐在地震作用下的损坏,会产生严重的经济损失,特别是立式储罐多为储存易燃易爆介质,地震中易发生次生灾害,对人类的生存环境造成严重的危害和影响。随着石油工业的发展,储油罐的防震减灾已成为一项重要的研究课题。基础隔震属于结构控制领域中的一种有效方法,通过隔震层的变形来吸收地震能量,减少对上部结构的影响。基础隔震为立式储液容器的抗震设计开辟了一个新途径。
     本论文针对柔性罐底隔震立式储罐进行了全面研究,内容包括储罐抗震理论分析、储罐抗震效果数值仿真分析、新型储罐抗震试验研究,以及新型隔震储罐的工程设计方法等,为这种新型抗震储罐的工程应用提供参考依据。具体研究内容和主要成果:
     (1)根据柔性罐底隔震立式储罐数学模型,计算地震作用下储罐的动水压力,求解储罐基底剪力和弯矩的解析式,并建立了隔震储罐三质点简化分析计算模型。
     (2)采用时程分析方法和有限元法,对柔性罐底周边隔震储罐地震响应进行全面分析,研究了系列隔震储油罐的控制效果,分析了隔震参数对柔性罐底隔震储罐的影响。对Ⅰ、Ⅱ类场地,宜取隔震频率ω=2~4rad/s;对Ⅲ、Ⅳ类场地,宜取ω=2~3rad/s。隔震阻尼比宜取ξ=0.1~0.3。理想隔震条件下,隔震储罐弯矩可降到未隔震储罐的5%~15%。
     (3)对柔性罐底隔震储罐进行了地震动台试验研究。分析不同地震动波输入下,隔震储罐功率频谱变化、测点加速度反应。试验结果对比分析表明:基础隔震能有效降低储罐的地震响应,验证了理论分析和数值模拟的正确性。
     (4)进行了柔性罐底隔震储罐工程设计方法研究,给出基于双参数的立式储罐隔震设计基本方法与步骤,并对等效晃动刚度、耦联振动等效刚度和阻尼等设计参数选择进行了分析。给出了基础隔震立式储罐反应谱设计方法,利用振型分解反应谱法对柔性储罐隔震体系进行了抗震分析。
     (5)结合试验模型储罐的设计,给出了柔性罐底隔震储罐系统的结构设计方法和技术要求,包括储罐结构形式的设计、基础选型与设计,以及隔震层设计要求等,为隔震储罐的工程应用提供了指导性设计方法和原则。
The damage of vertical storage tank under earthquake will cause the significant economic loss. Especially the leak of flammable explosive medium, may causes the secondary disaster, which can lead to the serious destroy to the survival environment. Along with the development of oil industry, it is becoming an important research topic to reduce the storage tank seismic disaster. Base isolation, which belongs to the structure control domain, is an effective method to reduce the seismic damage; it reduces the superstructure earthquake damage by means of absorbing the earthquake energy by isolation layers. A new method of the seismic design to tanks is established by means of the base isolation.
     A comprehensive research about the flexible base isolation tank is contained in this paper, such as the theoretical analysis, digital simulation analysis, experimental study, as well as the seismic tank engineering design method, in order to apply in engineering. Contents and achievements:
     (1) According to the flexible base isolation tank mathematical model, the storage tank base shearing force and the base moment analysis formulas are revealed by solving the hydrodynamic pressure under earthquake, established the three centralized particles mechanics analysis model.
     (2) Applying the time history analysis method and the finite element method, the control effect of series base isolation tanks is studied, analyses the influence of isolation parameters. ForⅠ、Ⅱkind locations, the reasonable isolation frequency band isω=2~4rad/s;forⅢ、Ⅳkind locations, the reasonable frequency isω=2~3rad/s, the appropriate isolation damping ratio isξ=0.1~0.3. The isolation storage tank base moment is possible fall to 5%~15% under ideal isolation parameters condition.
     (3) Shaking table tests of seismic to the flexible base isolation tank are presented. Response to different seismic waves of base isolation tank, such as power frequency spectrum changes and the acceleration is analyzed. The test result indicated that, isolating base might effectively reduce the seismic response of storage tank; it also confirms the accuracy of theoretical analysis and digital simulation.
     (4) The research on flexible base isolation tank engineering design method is carried on. The isolation tank essential design method and the steps based on double parameters are given, some design variable such as sloshing rigidity, fluid-solid coupling vibration rigidity, and damping ratio are discussed. In addition, the response spectrum design method is presented, and it is applied to analyses the seismic response of storage tank.
     (5) Considering the design of storage tank experiment model, the structural design method and the specification is given, including the storage tank structural design, the foundation type selecting and design, as well as isolation layers design technical request. It provides a basis design principle for the engineering apply of flexible base isolation tank.
引文
[1]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,(10):1~8.
    [2]梁润胜,常治涛.结构抗震设计理论的发展[J].国外建材科技,2005,26(3):72~74.
    [3]孙建刚.立式储罐地震响应控制研究[D].哈尔滨:中国地震局工程力学研究所,2002.
    [4]孙建刚,袁朝庆,郝进锋.柔性基底立式储罐减震耗能研究[J].哈尔滨工业大学学报,2002,34(3):320~323.
    [5]项忠权,孙家礼.石油化工设备抗震[M].北京:地震出版社,1995.
    [6]丁鉴海,刘杰,余素荣.中国地震预报探索与实践[J].地震,2000,20(增刊):12~17.
    [7]王振.立式浮放储罐三维地震反应分析及试验研究[D].哈尔滨:哈尔滨工程大学,2006.
    [8]刘佩绅.常压液体储罐工艺系统设计[J].化工设计,1999,9(4):22~25.
    [9] Housner, G.. The Dynamic Behavior of Water Tanks, Bulletin of the Seismological Society of America, Vol.53, 1963, pp:381~387.
    [10] Mclver, P., Sloshing Frequencies for Cylindrical and Spherical Containers Tilled to an Arbitrary Depth, Journal of Fluid Mechanics, Vol. 201, April 1989, pp:243-257.
    [11]李德筠,沈国光,项忠权.储罐液面的安全超高[A].立式储罐抗震论文集[C].北京:地震工业出版社,1990.
    [12]沈国光,李德筠.关于粘性波浪[A].立式储罐抗震论文集[C].北京:地震工业出版社,1990.
    [13]唐友刚,张泽盛,李长升,等.无锚固储液罐流体速度势及简化模型[J].水利学报, 1997,(9):42-47.
    [14]苟兴宇.液固耦合系统中液体的有限幅晃动力及晃动力矩[J].应用数学和力学, 2001,22(5):465~476.
    [15] Hutton, R.E., An Investigation of Resonant, Nonlinear Nonplanar Free Surface Oscillations of a Fluid, NASA TN D-1979, 1963.
    [16] Kamatsu, K., Nonlinear Sloshing Analysis of Liquid in Tanks with Arbitrary Geometries, National Aerospace Laboratory, Japan.
    [17] Nakayama, T., and Washizu, K., The Boundary Element Method Applied to The Analysis of Two-Dimensional Nonlinear Sloshing Problems, International Journal For Numerical Methods in Engineering, Vol. 17, 1981, pp. 1631-1646.
    [18] Nakayama, T., and Washizu, K., Nonlinear Analysis of Liquid Motion in a Container Subjected to Forced Pitching Oscillation, International Journal for Numerical Methods in Engineering, Vol. 15, 1980, pp. 1207-1220.
    [19] Ramaswamy, B., Kawahara, M., and Nakayama, T., Lagrangian Finite Element Method for the Analysis of Two-Dimensional Sloshing Problem, International Journal For Numerical Methods in Fluids, Vol. 6, 1986.
    [20] Ramaswamy, B., and Kawahara, M., Arbitrary Lagrangian-Eulerian Finite Element Method for Unsteady, Convective, Incompressible Viscous Free Surface Fluid Flow, International Journal For Numerical Methods in Fluids, Vol. 7, 1987.
    [21] Wei Chen,Large Amplitude Liquid Sloshing in Seismically Excited Tanks,Earthquake Engineering And Structural Dynamics,Vol.25,653~669,1996.
    [22] Yamada, Y., Iemura, H., Noda, S., and Shimada, S., Long-Period Response Spectra from Nonlinear Sloshing Analysis Under Horizontal and Vertical Excitations, Journal of Natural Disaster Science, Vol. 9, No. 2, 1987, pp. 39~54.
    [23]岳宝增,王照林,匡金炉.非线性晃动问题的ALE边界元方法[J].宇航学报, 1998,19(1):1~7.
    [24]王建军,李其汉,朱梓根.自由液面大晃动的流固耦合数值分析方法研究进展[J].力学季刊.2001,22(4):447~454.
    [25]滕爱国,沈永明,郑永红,等.波浪变形数值模拟[J].大连理工大学学报, 2001,41(3):359~362.
    [26]王照林,刘延柱.充液系统动力学[M].北京:科学出版社,2001.
    [27]王建军,陆明万,张雄,等.自由液面流体大晃有限元方法[J].水动力学研究与进展,2001,16(3):390~395.
    [28]岳宝增,刘延柱,王照林.求解液体大幅晃动问题的数值方法评述[J].上海交通大学学报,1999,33(6):760~764.
    [29]岳宝增,刘延柱,王照林.三维液体非线性晃动动力学特性的数值模拟[J].应用力学学报,2001,18(1):111~115.
    [30]李谊乐,刘应中,缪国平.二阶精度的VOF自由面追踪方法及其应用[J].船舶力学,1999,3(1):44~52.
    [31]曾江红,王照林.粘性流体大幅晃动的ALE有限元模拟[J].强度与环境, 1996(3):22~31.
    [32]刘云贺,胡宝柱,闫建文,等. Housner模型在渡槽抗震计算中的适用性[J].水利学报,2002,(9):94~99.
    [33]王永岗,吕英民,张对红,等.储液罐抗震研究[J].油气储运,1999,18(6):1~9.
    [34]陈世一,蔡强康.锚固立式圆柱形储液罐抗震研究的回顾和展望(Ⅰ)[J].抚顺石油学院学报,1996,16(4):38~44.
    [35]陈世一,蔡强康.锚固立式圆柱形储液罐抗震研究的回顾和展望(Ⅱ)[J].抚顺石油学院学报,1997,17(1):31~36.
    [36] Housner, G., Dynamic Pressure on Accelerated Fluid Containers, Bulletin of the Seismological Society of America, Vol.47, 1957, pp.15-35.
    [37] Edwards,N.W.A procedure for dynamic analysis of thin walled liquid storage tanks subjected to lateral ground motions, Ph. D Dissertation, University of Michigan,1969.
    [38] Shaaban,S.H.&Nash,W.A. Finite element analysis of a seismically excited cylindrical storage tank,Ground supported and partially filled with Liquid,Report To National Science Foundation,University of Massachusetts,Amherst,Massachusetts,Ju1y,1976.
    [39] Balendra,T. Ang,K.K. Paramasivam,P. &Lee,S.L.. Seismic design of flexible cylindrical liquid storage tanks,Earthq. Eng.Struct. Dyn. ,1982,10(3) 477~496.
    [40] Daysal,H.& Nash, W. A. :Soil structure interaction effects on the seismic behavior of cylindrical liquid storage tanks, Proc.8th WCEE, San Francisco, Calif. ,1984,5 223-229.
    [41] Veletsos,A.S.Seismic effects in flexible liquid storage tanks. Proc.5th WCEE, Rome, Italy,1974,1:630~ 639.
    [42] Haroun, M.A.&Housner, G..W. Earthquake response of deformable liquid storage tanks, ASME J. Appl. Mech.,1981, 48(2): 411~418.
    [43] Haroun, M.A.:Vibration studies and tests of liquid storage tanks, Earthq.Eng.Struct. Dyn,.1983,11:179~206.
    [44]石油工业部抗震办编.圆柱形储液罐抗震论文集[C],北京:地震出版社,1986.
    [45]项忠权,李清林.立式储罐抗震[C].北京:地震出版社,1990.
    [46]温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1995,25(1):60~76.
    [47] Rammerstorfer, F. G.. Scharf, K. & Fischer, F. D.: Storage tanks under earthquake loading, ASME Appl. Mech. Rev.1990,43(11) :261~282.
    [48] Clough. D.P. Experimental evaluation of seismic design methods for broad cylindrical tanks. Earthquake Engineering Research Center, University of California, Berkeley, report No. UCB/EERC-77/10,1977.
    [49] Niwa. Seismic behavior of tall liquid storage tanks. Earthquake engineering research center. University of California, Berkeley, Report No. UCB/EERC-78/04,1978.
    [50] Clough R.W, Niwa A. Static tilt tests of a tall cylindrical liquid storage tank. Earthquake Engineering Research Center. University of California, Berkeley, Report No. UCB/EERC-79/06,1979.
    [51] Wozniak,R.S.&Mitchell,W.W.;Basis of seismic design provisions for welded steel oil storage tanks, Proc. Session on Advances in Storage Tank Design, API Refining Dept., Toronto.Canada, 1978, 485~493.
    [52] Cambra F J .A Study of liquid storage tank seismic uplift behavior. 1983 Int. Symp. Lifeline Earthq. Eng.,4th Nat. Congr.Pres. Ves. Pip. Tech. ,Portland,Oregon,1983:37~96.
    [53]郭骅,秦文欣.最优化方法在非线性弹性力学提离问题中的应用[J].哈尔滨建工学院学报,1985,(1):44~52.
    [54]郭骅.贮液罐地震反应中的提离现象[J].哈尔滨建工学院学报,1982,(4):94~101.
    [55]郭骅,陈跃,张振华.油罐防震设计中考虑提离因素影响的方法[J].石油工程建设,1990,(1):33~35.
    [56] Malhotra,P.K.&Veletsos,A.S.:Beam model for base up-lifting analysis of cylindrical tanks. ASCE J. Struct. Eng. ,1994,120(12) 3471~3488.
    [57] Malhotra,P.K.&Veletsos,A.S.:Energy method for base up-lifting analysis of liquid-storage tanks, ASME J. Pres. Ves.Tech..1996,118:332~335.
    [58] Liu,W.K.,Finite Element Procedures for Fluid-Structure Interactions and Applications to Liquid Storage Tanks, Journal of Nuclear Engineering and Design, 1981, 65:221~238.
    [59] Liu, W.K., A Method of Computation for Fluid Structure Interaction, Journal of Computers and Structures, 1985, 20:311~320.
    [60] Yao,J.T.P Concept of structure control, Journal of the Structure Division, ASCE,vol.98,No.ST7,1972.
    [61]王光远,等.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1990.
    [62]李爱群.工程结构抗震设计[M].北京:中国建筑工业出版社,2005.
    [63] R·I·Skinner, W·H·Robinson, G·H·Mcverry著.谢礼立,等译.工程隔震概论[M].北京:地震出版社, 1996.
    [64]武田寿一著.纪晓惠,陈良,等译.建筑物隔震防振与控制[M].北京:中国建筑工业出版社,1997.
    [65]张华英.隔震体系简化模型的参数识别及结构选型研究[D],兰州:兰州理工大学,2005.
    [66] I.G.Buckle, R.L.Mayes. Seismic Isolation: History application and performance a world view, earthquake spectra, 1990,6(2).
    [67]吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D],北京:铁道科学研究院,2003.
    [68]孟庆利.基底隔震混合控制和三维隔震系统研究[D],哈尔滨:中国地震局工程力学研究所,2005.
    [69]王优龙,等.隔震技术的研究与应用[C].北京:地震出版社,1991.
    [70]周福霖.工程结构隔震减震技术的新进展[C].北京:地震出版社,2004:1~9.
    [71] W.H.Robinson.Lead-rubber Hysteretic Bearings Suitable for Protecting Structures During Earthquakes, EESD, 1982,10(4):593~604.
    [72] Lindley P B. Engineering Design with Natural Rubber[J].The Nature Rubber Producers. Research Association Technical Bulletin No.8, 1964.
    [73]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究[D].北京:北京工业大学,2003.
    [74] Tajirian, F.E. Seismic isolation of critical components and tank.Proc.,ATC-17-1 Seminar on Seismic Isolation,1993.
    [75] Zayas,V.S., and Low, D.S. Application of seismic isolation to industrial tanks. Proc., Pressure Vessels and piping onf.,ASME/JSME,Hawaii,1995,319: 268~273.
    [76] Malhotra, P.k. Method for seismic base isolation of liquid-storage tanks. J.Struct. Engrg., ASCE,1997,123(1):113~116.
    [77] Malhotra, P.k. Seismic strengthening of liquid-storage tanks with energy-dissipating anchors. J.Struct.Engrg.,ASCE,1998,124(4):405~414.
    [78] Wang Yen-Po, Min-Cheng, Kuo-Whie ChungTeng. Seismic isolation of rigid cylindrical tanks using friction pendulum bearings. Earthquake Engineering & Structural Dynamics, 2001,30(7): 1083~1099
    [79] Wang ,Yen-Po ,Kuo-Whie Chung .Seismic Isolation of Storage Tanks Using Friction Pendulum Bearings.Proceedings of International Conference on Advanced Problems in Vibration Theory and Applications, Xi'an, China,June 19-22, 2000:100~106.
    [80] Wang, Y.P., Teng, M.C.,Experimental Study of Seismic Isolation of Storage Tanks Using Friction Pendulum Bearings. Submitted to Earthquake Engineering and Structural Dynamics. 2003.
    [81]杨佑发,周福霖.隔震结构地震反应分析的实用计算方法[J].世界地震工程,2000,16(1):73~76
    [82]孙建刚,郝进锋,谭英杰,等.结构控制与油田构筑物减震[J].大庆石油学院学报,1998,22(3):87~111.
    [83]孙建刚.立式储液罐隔震结构的一种控制体系[J].世界地震工程,1998,14(1): 34~41.
    [84]孙建刚,郝进锋.立式储液罐基础橡胶垫隔震控制分析[J].大庆石油学院学报,1998,22(4):68~72.
    [85]孙建刚,周抚生,郝进峰.立式储液罐橡胶基底隔震体系的研究[J].地震工程与工程振动,1999,19(3):136~143.
    [86]孙建刚,周丽,袁朝庆,等.立式钢制圆柱储罐的动提离控制[J].大庆石油学院学报,2001,25(3):102~105.
    [87]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.
    [88] M.K.Shrimali, R.S.Jangid. Seismic Response of Base-Isolated Liquid Storage Tanks[J]. Journal of Vibration and Control, 2003,9(10): 1201~1218.
    [89] Vassilis P.Gregoriou, Stephanos V. Tsinopoulos, Dimitris L. Karabalis. Seismic Analysis Of Base Isolated Liquefied Natural Gas Tanks[R].5TH Gracm International Congress On Computational Mechanics, Limassol,2005.
    [90] Malhotra.New Method For Seismic Isolation of Liquid-Storage Tanks[J]. Earthquake Engineering and structural dynamics, 1997,26:839~847.
    [91] Malhotra. Seismic Response of Soil Supported Unanchored Liquid-Storage Tanks[J]. Joumal of Structural Engineering, ASCE, 1997,123(4):440~450.
    [92] Malhotra, Thomas Wenk and Martin Wieland. Simple Procedure For Seismic Analysis of Liquid-Storage Tanks[J]. Structural Engineering international(SEI), 2000,3:197~201.
    [93] Veletsos and Tang. Dynamic of Vertically Excited Liquid Storage Tanks[J].Journal of Structural Engineering, 1986, 112(6): 113~116.
    [94] Hamdan F H. Seismic behavior of cylindrical steel liquid storage tanks [J]. Journal of Constructional Steel Research, 2000, 53: 307~333.
    [95]刘才山,陈滨,阎绍泽.基于Hamilton原理的柔性多体系统动力学建模方法[J].导弹与航天运载技术.1999(5):32~36.
    [96]杜永峰,赵国藩.隔震结构中非经典阻尼影响及最佳阻尼比分析[J].地震工程与工程振动,2000,20(3):100~107.
    [97]孙建刚,张丽,袁朝庆.立式储罐基础隔震动力反应特性分析[J].地震工程与工程振动,2001,21(3):140~144.
    [98]林均岐,李山有,李谊瑞,等.立式储液罐地震反应数值分析[J].地震工程与工程振动,2006,26(4):152~155.
    [99]孙建刚,袁朝庆,郝进锋,等.立式钢制圆柱储液容器基底隔震地震动仿真计算[J].大庆石油学院学报,2000,24(2):64~67.
    [100]朱玉华,吕西林,施卫星,等.铅芯橡胶基础隔震房屋模型地震反应分析[J].振动工程学报,2003,16(2):256~260.
    [101]卢华喜.不同频谱特性地震动输入下的场地地震反应[J].华东交通大学学报, 2007, 24(1):22~26.
    [102] Niwa.A,Clough R W. Buckling of cylindrical liquid-storage tanks under earthquake loading [J].Earthquake Engineering and Structural Dynamics, 1982.10: 107~122.
    [103] J.M.Kelly.The role of damping inseismic isolation[J]. Earthq. Engrg. and Struc. Dyn[J]. 1999, 28(1):3~20.
    [104]孙建刚,郝进锋,张云峰.储液罐液-固耦联振动固有特性有限元分析[J].大庆石油学院学报,1998,22(3):96~112.
    [105]李顺国,王学国.工程抗震试验技术现状[J].国外建材科技,2003,24(5):68~70.
    [106] JGJ101-96,建筑抗震试验方法规程[S].
    [107]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动, 1997,11(2):52~58.
    [108]范力,赵斌,吕西林.拟动力试验中几个问题的讨论[J].结构工程师, 2006, 22(5): 50~53.
    [109]潘泓.相似律在动力基础试验中的应用[J].工业建筑,2005,35(4).60~62.
    [110]叶献国,刘涛,徐勤,等.振动台三维模拟地震试验研究[J].合肥工业大学学报,1998,21(S1):1~6.
    [111]张敏政,孟庆利,刘晓明.建筑结构的地震模拟试验研究[J].工程抗震,2003, (4):31~35.
    [112]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程, 2004,4(24):11~20.
    [113]夏颂佑,张楚芳,张鸣岐.动态结构模型相似条件若干问题的探讨[J].河海大学学报(自然科学版),1980,(1)59~72.
    [114]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000, 40(1):1~8.
    [115]刘育明,陈志平,吴晓滨,等.10万m3原油储罐的应力测试及分析[J].石油机械,2001,29(3):26~29.
    [116]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [117]孙建刚,周抚生,郝进锋.立式储液罐橡胶基底隔震模型实验研究[J].地震工程与工程振动1999,19(4):103~106.
    [118] Haroun,M.A.Hamdy.Model for flexible tanks undergoing rocking[J].J.Engrg. Mech., ASCE, 1985, 111(2):143~157.
    [119] Malhotra.P.K.Method for seism base isolation of liquid-storage tanks[J]. J.Struct Engrg.ASCE, 1997,123:113~116.
    [120]孙建刚,袁朝庆,郝进锋.橡胶基底隔震储罐地震模拟试验研究[J].哈尔滨工业大学学报,2005, 37(6):806~809.
    [121]王振,孙建刚,唐立强.立式浮放储罐三维地震动台模型试验分析[J].东北林业大学学报,2006,34(4):78~80.
    [122] GB50011-2001,建筑抗震设计规范[S].
    [123] GB50341-2003,立式圆筒形刚制焊接油罐设计规范[S].
    [124]李长升,项忠权,丁景运.软土地基上储油罐的抗震设计[J].天津大学学报, 2001,34(5):577~581.
    [125]孙建刚,王振,袁朝庆.储罐隔震设计简化分析方法[J].地震工程与工程振动,2001,21(2):157~160.
    [126]日本工业标准JJSB8501,钢制焊接油罐结构[S],1985年.
    [127]袁朝庆,李惠,王振,等.安装液压阻尼系统储罐的实用设计方法[J].世界地震工程,2000, 16(3):105~109.
    [128]刘保东.工程振动与稳定基础[M].北京:北方交通大学出版社,2002.
    [129]王振,袁朝庆,孙建刚.立式钢制储罐隔震抗震设计的工程化方法[J].世界地震工程,2000,16(4):93~95.
    [130]祁皑,林于东.改进的基础隔震结构地震作用简化计算方法[J].地震工程与工程振动,2006,26(1):152~157.
    [131]项忠权,李清林.立式储罐抗震[C].北京:地震出版社,1990.1~19.
    [132]刘保东.工程振动与稳定基础[M].北京:北方交通大学出版社,2002.104~138.
    [133]韩强,刘文光,杜修力.大高宽比隔震结构隔震层参数确定及地震反应简化计算[J].兰州理工大学学报,2006,32(1):121~125.
    [134]邓雪松.隔震结构的设计与分析方法[J].世界地震工程,2000,16(4):118~123.
    [135]李长升,苑金民.海洋平台上储油罐地震反应计算[J].海洋工程, 1999,17(3):46~53.
    [136]周利剑,孙建刚,张云峰.立式储罐抗震设计新方法[J].四川建筑科学研究, 2005,31(3):102~104.
    [137]孙建刚,齐晗兵,王莉莉.立式储罐橡胶隔震工程应用设计研究[J].大连民族学院学报,2006,(5):4~7.
    [138]宋贞网,王修信.橡胶垫基础隔震建筑的地震作用简化计算[J].东南大学学报,2002,32(6):964~968.
    [139]苏经宇,韩淼,周锡元,等.橡胶支座基础隔震建筑地震作用实用计算方法[J].振动工程学报,1999,12(2):229~236.
    [140] J.M. Kelley, Base Isolation: Origins and Development, Earthquake Engineering Research Center, University of California, Berkley, Jan.1991.
    [141] Shimizu N. Advances and trends in seismic design of cylindrical liquid storage tanks [J]. JSME International Journal, 1990, 33(2):111~124.
    [142] Tanaka M, Akiyama H, Ishida K,Chiba T.Proving test of analysis method on nonlinear response of cylindrical tank under sever earthquake[J].ASME-PVP,1998, 364:33~40.
    [143]李爱群,高振世.工程结构抗震设计[M].北京:中国建筑工业出版社, 2005. 298~317.
    [144]薛素铎,赵均,高向宇.建筑抗震设计[M].北京:科学出版社,2003.329~352.
    [145] CECS 126.叠层橡胶支座隔震技术规程[S].2001.
    [146]周福霖.工程结构减震控制[M].北京:中国地震出版社.1997.
    [147]尚守平,周福霖.结构抗震设计[M].北京:高等教育出版社.2002.
    [148]张耀庭,刘再华.小型叠层橡胶支座水平刚度的实验研究[J].世界地震工程, 1999,15(2):56~60.
    [149]刘文光,周福霖,庄学真.铅芯夹层橡胶隔震垫基本力学性能研究[J].地震工程与工程振动.1999,19(1):93~99.
    [150]华培忠,韩新民,李佩林,等.橡胶隔震支座力学性能试验研究[J].地震研究. 2000,23(1):90~94.
    [151]刘文光,周福霖,庄学真.柱端隔震夹层橡胶垫力学性能试验研究[J].地震工程与工程振动.1999,19(3):121~126.
    [152] SH3068-95.石油化工企业钢储罐地基与基础设计规范[S].
    [153]徐至钧.大型储油罐基础的优化设计[J].储运技术,2002,11(6):28~31.
    [154]张继文.大型储罐软土地基处理的几个问题的探讨[J].石油工程建设, 2002, 28(6):12~15.
    [155]张继文.大型油罐基础选型探讨[J].炼油设计,2001,31(1):35~37.
    [156]王永兴.大型立式圆筒型储罐的设计[J].山西化工,2003,23(4):51~53.
    [157]高威,隋明璋,黄开佳.大型原油储罐技术综述[J].石油化工设备, 2000,29(5):28~31.
    [158]徐至钧.大型储罐基础设计与地基处理[M].北京:中国石化出版社,1999.
    [159]潘家华.圆柱形金属油罐设计[M].北京:石油工业出版社,1984.
    [160]李宏斌,范云.超大型油罐设计需考虑的几个问题[J].炼油技术与工程,2005,35(2):46~48.
    [161]田洁,张俊发,刘云贺,等.铅芯橡胶支座基础隔震体系参数优化配置研究[J].世界地震工程,2003,19(1):158~163.
    [162] GB 50011-2001.建筑抗震设计规范[S].
    [163] CECS126-2001.叠层橡胶支座隔震技术规程[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700